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where λ > 0 and PD is the metric projection of H1 onto D. Furthermore, if
G−10∩A−1(B−10) is nonempty, then for γ > 0, z ∈ G−10∩A−1(B−10) is equivalent
to

(1.2) z = Jλ(I − γA∗(I −Qµ)A)z,

where Jλ and Qµ are the resolvents of G for λ > 0 and B for µ > 0, respectively.
Using such results regarding nonlinear operators and fixed points, many authors
have studied the split feasibility problem, the split common null point problem and
the split common fixed point problem; see, for instance, [3,6,16,17,27,28]. However,
it is difficult to have such results outside Hilbert spaces. Takahashi [23, 24] and
Hojo and Takahashi [10] extended the results of (1.1) and (1.2) in Hilbert spaces
to Banach spaces. Furthermore, by using the methods of [13, 14, 20], Takahashi
[25] proved a strong convergence theorem for two metric resolvents of maximal
monotone operators in two Banach spaces. Furtheremore Takahashi [26] proved a
strong convergence theorem for two generalized resolvents of maximal monotone
operators in two Banach spaces; These theorems solved the split common null point
problems in two Banach spaces.

In this paper, we consider split common null point problems in two Banach
spaces. We first prove a strong convergence theorem under a new hybrid method
for metric resolvents and generalized resolvents of maximal monotone operators with
generalized projections in two Banach spaces. Furthermore, we prove another strong
convergence theorem under the hybrid method for generalized resolvents and metric
resolvents of maximal monotone operators with metric projections in two Banach
spaces. Using these results, we get new results which are connected with the split
feasibility problem and the split common null point problem in two Banach spaces.

2. Preliminaries

Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the dual space of
E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn} is a sequence
in E, we denote the strong convergence of {xn} to x ∈ E by xn → x and the weak
convergence by xn ⇀ x. The modulus δ of convexity of E is defined by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for every ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if
δ(ϵ) > 0 for every ϵ > 0. It is known that a Banach space E is uniformly convex if
and only if for any two sequences {xn} and {yn} in E such that

lim
n→∞

∥xn∥ = lim
n→∞

∥yn∥ = 1 and lim
n→∞

∥xn + yn∥ = 2,

limn→∞ ∥xn − yn∥ = 0 holds. A uniformly convex Banach space is strictly convex
and reflexive. We also know that a uniformly convex Banach space has the Kadec-
Klee property, i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u; see [8, 15].

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
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for every x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In this case, E is called smooth. We know that E is smooth if and only if
J is a single-valued mapping of E into E∗. The norm of E is said to be Fréchet
differentiable if for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . The
norm of E is said to be uniformly smooth if the limit (2.1) is attained uniformly for
x, y ∈ U . If E is uniformly smooth, then J is uniformly norm-to-norm continuous
on each bounded subset of E. We also know that E is reflexive if and only if J
is surjective, and E is strictly convex if and only if J is one-to-one. Therefore,
if E is a smooth, strictly convex and reflexive Banach space, then J is a single-
valued bijection and in this case, the inverse mapping J−1 coincides with the duality
mapping J∗ on E∗. For more details, see [21,22].

Lemma 2.1 ([21]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let E be a smooth Banach space and let J be the duality mapping on E. Define
a function ϕE : E × E → R by

(2.2) ϕE(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ E.

In the case when E is clear, ϕE is simply denoted by ϕ. Observe that, in a Hilbert
space H, ϕ(x, y) = ∥x − y∥2 for all x, y ∈ H. Furthermore, we know that for each
x, y, z, w ∈ E,

(2.3) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2;

(2.4) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩;

(2.5) 2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w).

If E is additionally assumed to be strictly convex, then

(2.6) ϕ(x, y) = 0 if and only if x = y.

The following lemma was proved by Kamimura and Takahashi [11].

Lemma 2.2 ([11]). Let E be a uniformly convex and smooth Banach space and
let {yn}, {zn} be two sequences of E. If ϕ(yn, zn) → 0 and either {yn} or {zn} is
bounded, then yn − zn → 0.

Let C be a nonempty, closed and convex subset of a strictly convex and reflexive
Banach space E. Then we know that for any x ∈ E, there exists a unique element
z ∈ C such that ∥x− z∥ ≤ ∥x− y∥ for all y ∈ C. Putting z = PCx, we call PC the
metric projection of E onto C. We know the following result.

Lemma 2.3 ([9,21]). Let E be a smooth, strictly convex and reflexive Banach space.
Let C be a nonempty, closed and convex subset of E and let x ∈ E and z ∈ C. Then,
the following conditions are equivalent:

(1) z = PCx;
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(2) ⟨z − y, J(x− z)⟩ ≥ 0, ∀y ∈ C.

For any x ∈ E, we also know that there exists a unique element z ∈ C such that

ϕ(z, x) = min
y∈C

ϕ(y, x).

The mapping ΠC : E → C defined by z = ΠCx is called the generalized projection
of E onto C. The following results are well-known. For example, see [1, 2, 11].

Lemma 2.4 ([1, 2, 11]). Let E be a smooth, strictly convex and reflexive Banach
space. Let C be a nonempty, closed and convex subset of E and let x ∈ E and
z ∈ C. Then, the following conditions are equivalent:

(1) z = ΠCx;
(2) ⟨z − y, Jx− Jz⟩ ≥ 0, ∀y ∈ C.

Lemma 2.5 ([1, 2, 11]). Let E be a smooth, strictly convex and reflexive Banach
space. Let C be a nonempty, closed and convex subset of E and let x ∈ E. Then

ϕ(y,ΠCx) + ϕ(ΠCx, x) ≤ ϕ(y, x)

for all y ∈ C.

Let E be a Banach space and let B be a mapping of E into 2E
∗
. The effective

domain of B is denoted by dom(B), that is, dom(B) = {x ∈ E : Bx ̸= ∅}. A
multi-valued mapping B on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for
all x, y ∈ dom(B), u∗ ∈ Bx, and v∗ ∈ By. A monotone operator B on E is said
to be maximal if its graph is not properly contained in the graph of any other
monotone operator on E. The following theorem is due to Browder [5,19]; see also
[22, Theorem 3.5.4].

Theorem 2.6 ([5,19]). Let E be a uniformly convex and smooth Banach space and
let J be the duality mapping of E into E∗. Let B be a monotone operator of E into
2E

∗
. Then B is maximal if and only if for any r > 0,

R(J + rB) = E∗,

where R(J + rB) is the range of J + rB.

Let E be a uniformly convex and smooth Banach space and let B be a maximal
monotone operator of E into 2E

∗
. For all x ∈ E and r > 0, we consider the following

equation

0 ∈ J(xr − x) + rBxr.

This equation has a unique solution xr; see [22]. We define Jr by xr = Jrx. Such a
Jr is denoted by

Jr = (I + rJ−1B)−1

and is called the metric resolvent of B. For r > 0, the Yosida approximation
Ar : E → E∗ is defined by

Arx =
J(x− Jrx)

r
, ∀x ∈ E.
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Lemma 2.7 ([22]). Let E be a uniformly convex and smooth Banach space and
let B ⊂ E × E∗ be a maximal monotone operator. Let r > 0 and let Jr and Ar

be the metric resolvent and the Yosida approximation of B, respectively. Then, the
following hold:

(1) ⟨Jrx− u, J(x− Jrx)⟩ ≥ 0, ∀x ∈ E, u ∈ B−10;
(2) (Jrx,Arx) ∈ B, ∀x ∈ E;
(3) F (Jr) = B−10.

For all x ∈ E and r > 0, we also consider the following equation

Jx ∈ Jxr + rBxr.

This equation has a unique solution xr; see [12]. We define Qr by xr = Qrx. Such
a Qr is called the generalized resolvent of B. For r > 0, the Yosida approximation
Br : E → E∗ is defined by

Brx =
Jx− JQrx

r
, ∀x ∈ E.

The set of null points of B is defined by B−10 = {z ∈ E : 0 ∈ Bz}. We know that
B−10 is closed and convex; see [22]. In case a Banach space is a Hilbert space, we
have that Jr = Qr for all r > 0. Such a Jr is simply called the resolvent of B.

Lemma 2.8 ([12]). Let E be a uniformly convex and smooth Banach space and let
B ⊂ E × E∗ be a maximal monotone operator. Let r > 0 and let Qr and Br be the
generalized resolvent and the Yosida approximation of B, respectively. Then, the
following hold:

(1) ϕ(u,Qrx) + ϕ(Qrx, x) ≤ ϕ(u, x), ∀x ∈ E, u ∈ B−10;
(2) (Qrx,Brx) ∈ B, ∀x ∈ E;
(3) F (Qr) = B−10.

3. Main results

In this section, using a new hybrid method, we first prove a strong convergence
theorem for finding a solution of the split common null point problem in two Banach
spaces; see also [13,14,20].

Theorem 3.1. Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let
A,B ⊂ E × E∗ be maximal monotone operators and let G ⊂ F × F ∗ be a maximal
monotone operator. Let JA

µ = (I + µJ−1
E A)−1 be the metric resolvent of A for all

µ > 0, let QB
λ = (JE + λB)−1JE be the generalized resolvent of B for all λ > 0

and let QG
η = (JF + ηG)−1J be the generalized resolvent of G for all η > 0. Let

T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗ be the adjoint
operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.
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Let x1 ∈ E and let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFQ
G
ηnTxn)

)
,

yn = JA
µn
zn,

un = QB
λn
yn,

Bn = {z ∈ E : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn)},
Cn = {z ∈ E : 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q

G
ηnTxn)},

Dn = {z ∈ E : ⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2},
Qn = {z ∈ E : ⟨xn − z, JEx1 − JExn⟩ ≥ 0},
xn+1 = ΠBn∩Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn}, {λn}, {µn}, {ηn} ⊂ (0,∞) and a, b ∈ R satisfy the following inequalities:

0 < a ≤ rn ≤ 1

∥T∥2
and b ≤ λn, µn, ηn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Proof. It is obvious that Bn ∩Cn ∩Dn ∩Qn is closed and convex for all n ∈ N. To
show that Ω ⊂ Bn∩Cn∩Dn∩Qn for all n ∈ N, we first show that, for z ∈ Ω ⊂ B−10,

2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn).

In fact, since QB
λn

is the generalized resolvent, we have from [4] that

⟨QB
λn
yn − z, JEyn − JEQ

B
λn
yn⟩ ≥ 0

for all z ∈ Ω ⊂ B−10. Thus, we get that

⟨QB
λn
yn − yn + yn − z, JEyn − JEQ

B
λn
yn⟩ ≥ 0

and hence

2⟨yn − z, JEyn − JEQ
B
λn
yn⟩ ≥ 2⟨yn −QB

λn
yn, JEyn − JEQ

B
λn
yn⟩.

We have from (2.5) that

2⟨yn − z, JEyn − JEQ
B
λn
yn⟩ ≥ ϕE(yn, Q

B
λn
yn) + ϕE(Q

B
λn
yn, yn).

This implies that

2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn).

Next, let us show that, for z ∈ Ω ⊂ T−1(G−10),

2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q
G
ηnTxn).

In fact, we have that

2⟨xn − z, JExn − JEzn⟩ = 2⟨xn − z, rnT
∗(JFTxn − JFQ

G
ηnTxn)⟩

= 2rn⟨Txn − Tz, JFTxn − JFQ
G
ηnTxn⟩

≥ rnϕF (Txn, Q
G
ηnTxn).

We can also show that, for z ∈ Ω ⊂ A−10,

⟨zn − z,JE(zn − yn)⟩ − ∥zn − yn∥2

= ⟨zn − z, JE(zn − JA
µn
zn)⟩ − ∥zn − JA

µn
zn∥2
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≥ ∥zn − JA
µn
zn∥2 − ∥zn − JA

µn
zn∥2

= 0.

We finally show that Ω ⊂ Qn for all n ∈ N. From
Q1 = {z ∈ E : ⟨x1 − z, JEx1 − JEx1⟩ ≥ 0} = E,

it is obvious that Ω ⊂ Q1. Suppose that Ω ⊂ Qk for some k ∈ N. Then we have
Ω ⊂ Bk ∩ Ck ∩Dk ∩Qk. From xk+1 = ΠBk∩Ck∩Dk∩Qk

x1, we get that

⟨xk+1 − z, JEx1 − JExk+1⟩ ≥ 0, ∀z ∈ Bk ∩ Ck ∩Dk ∩Qk

and hence
⟨xk+1 − z, JEx1 − JExk+1⟩ ≥ 0, ∀z ∈ Ω.

Then Ω ⊂ Qk+1. We have by induction that Ω ⊂ Qn for all n ∈ N. Thus we have
that Ω ⊂ Bn ∩ Cn ∩Dn ∩Qn for all n ∈ N. This implies that {xn} is well defined.

Since Ω is a nonempty, closed and convex subset of E, there exists z0 ∈ Ω such
that z0 = ΠΩx1. From xn+1 = ΠBn∩Cn∩Dn∩Qnx1, we have that

ϕE(xn+1, x1) ≤ ϕE(y, x1)

for all y ∈ Bn ∩ Cn ∩Dn ∩Qn. Since z0 ∈ Ω ⊂ Bn ∩ Cn ∩Dn ∩Qn, we have that

(3.1) ϕE(xn+1, x1) ≤ ϕE(z0, x1), ∀n ∈ N.
This means that {xn} is bounded. We show that limn→∞ ϕE(xn+1, xn) = 0. From
the definition of Qn, we have that xn = ΠQnx1. From xn+1 = ΠBn∩Cn∩Dn∩Qnx1 we
have that xn+1 ∈ Qn. Thuen we have that

ϕE(xn, x1) ≤ ϕE(xn+1, x1)

for all n ∈ N. This implies that {ϕE(xn, x1)} is bounded and nondecreasing. Then
there exists the limit of {ϕE(xn, x1)}. From Lemma 2.5, we have that

ϕE(xn+1, xn) = ϕE(xn+1,ΠQnx1) ≤ ϕE(xn+1, x1)− ϕE(ΠQnx1, x1)

= ϕE(xn+1, x1)− ϕE(xn, x1)

for all n ∈ N. This implies that limn→∞ ϕE(xn+1, xn) = 0. From Lemma 2.2, we
get that

(3.2) lim
n→∞

∥xn − xn+1∥ = 0.

From xn+1 = ΠBn∩Cn∩Dn∩Qnx1, we have xn+1 ∈ Cn. This implies that

(3.3) 2⟨xn − xn+1, JExn − JEzn⟩ ≥ rnϕF (Txn, Q
G
ηnTxn).

Furthermore, we claim that {JExn − JEzn} is bounded. That {JExn − JEzn} is
bounded is proved as follows. We first have that

∥JExn − JEzn∥ = ∥rnT ∗(JFTxn − JFQ
G
ηnTxn)∥.

Furthermore, we have that

∥JFTxn∥ = ∥Txn∥ ≤ ∥T∥∥xn∥.
We also have that, for z ∈ T−1(G−10),

(∥Tz∥ − ∥QG
ηnTxn∥)

2 ≤ ϕF (Tz,Q
G
ηnTxn)

≤ ϕF (Tz, Txn) ≤ (∥Tz∥+ ∥Txn∥)2
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≤ ∥T∥2(∥z∥+ ∥xn∥)2.

Using this, we have that

∥QG
ηnTxn∥ ≤ ∥T∥(∥z∥+ ∥xn∥) + ∥Tz∥ ≤ ∥T∥(∥z∥+ ∥xn∥) + ∥T∥∥z∥.

Then, we have that

∥JFQG
ηnTxn∥ = ∥QG

ηnTxn∥ ≤ ∥T∥(2∥z∥+ ∥xn∥).

Hence, we have that

∥JExn − JEzn∥ = ∥rnT ∗(JFTxn − JFQ
G
ηnTxn)∥

≤ 1

∥T∥2
∥T∥

(
∥JFTxn∥+ ∥JFQG

ηnTxn)∥
)

≤ 1

∥T∥2
∥T∥

(
∥T∥∥xn∥+ ∥T∥(2∥z∥+ ∥xn∥)

)
≤ 2(∥xn∥+ ∥z∥).

This implies that {JExn − JEzn} is bounded. Since rn ≥ a > 0 for all n ∈ N, we
have from (3.3) that

(3.4) 2⟨xn − xn+1, JExn − JEzn⟩ ≥ aϕF (Txn, Q
G
ηnTxn).

Since ∥xn − xn+1∥ → 0 from (3.2) and {JExn − JEzn} is bounded, we get that

(3.5) lim
n→∞

ϕF (Txn, Q
G
ηnTxn) = 0.

Therefore, we get from Lemma 2.2 that

(3.6) lim
n→∞

∥Txn −QG
ηnTxn∥ = 0.

Furthermore, since F is uniformly smooth, we have from (3.6) that

(3.7) lim
n→∞

∥JFTxn − JFQ
G
ηnTxn∥ = 0.

Since ∥JExn − JEzn∥ = ∥rnT ∗(JFTxn − JFQ
G
ηnTxn)∥ and {rn} is bounded, we get

from (3.7) that

(3.8) lim
n→∞

∥JExn − JEzn∥ = 0.

Since E∗ is uniformly smooth, we have from (3.8) that

(3.9) lim
n→∞

∥xn − zn∥ = 0.

We also have from xn+1 ∈ Dn that

⟨zn − xn+1, JE(zn − yn)⟩ ≥ ∥zn − yn∥2

and hence

∥zn − xn+1∥ ≥ ∥zn − yn∥.
From ∥xn − xn+1∥ → 0 and ∥xn − zn∥ → 0, we have that limn→∞ ∥zn − yn∥ = 0.
Using yn = JA

µn
zn, we have that

(3.10) lim
n→∞

∥zn − JA
µn
zn∥ = 0.
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Furthermore,we have from xn+1 ∈ Bn that

2⟨yn − xn+1, Jyn − Jun⟩ ≥ ϕE(yn, un) + ϕE(un, yn).

From yn − zn → 0, zn − xn → 0 and xn − xn+1 → 0, we have ∥yn − xn+1∥ → 0.
Then we get that limn→∞ ϕE(yn, un) = 0 and hence

(3.11) lim
n→∞

∥yn −QB
λn
yn∥ = 0.

Since {xn} is bounded, there exists a subsequence {xni} of {xn} converging
weakly to w. From ∥zn − xn∥ → 0, we have that {zni} converges weakly to w.
Since limn→∞ ∥JA

µn
zn − zn∥ = 0 from (3.10), {JA

µn
zn} converges weakly to w. Since

JA
µn

is the metric resolvent of A, we have that

JE(zn − JA
µn
zn)

µn
∈ AJA

µn
zn

for all n ∈ N. From the monotonicity of A we have that

0 ≤
〈
s− JA

µn
zn, t

∗ −
JE(zn − JA

µn
zn)

µn

〉
for all (s, t∗) ∈ A. Since ∥JE(zn − JA

µn
zn)∥ → 0 and 0 < b ≤ µn for all n ∈ N, we

have that 0 ≤ ⟨s − w, t∗ − 0⟩ for all (s, t∗) ∈ A. Since A is maximal monotone, we
have that w ∈ A−10. Furthermore, since T is bounded and linear, we also have that
{Txni} converges weakly to Tw. Using this and limn→∞ ∥Txn −QG

ηnTxn∥ = 0, we

have that {QG
ηnTxn} converges weakly to Tw. Since QG

ηn is the generalized resolvent
of G, we have that

JFTxn − JFQ
G
ηnTxn

ηn
∈ GQG

ηnTxn

for all n ∈ N. From the monotonicity of G we have that

0 ≤
〈
u−QG

ηnTxn, v
∗ −

JFTxn − JFQ
G
ηnTxn

ηn

〉
for all (u, v∗) ∈ B. Since ∥JFTxn − JFQ

G
ηnTxn∥ → 0 from (3.7) and 0 < b ≤ ηn for

all n ∈ N, we have that 0 ≤ ⟨u−Tw, v∗− 0⟩ for all (u, v∗) ∈ G. Since G is maximal
monotone, we have that Tw ∈ G−10. We show w ∈ B−10. Since E is uniformly
smooth, from un = QB

λn
yn and (3.11) we have that

lim
n→∞

∥Jyn − Jun∥ = 0.

From λn ≥ b, we have

lim
n→∞

1

λn
∥Jyn − Jun∥ = 0.

Therefore, we have

lim
n→∞

∥BB
λn
yn∥ = lim

n→∞

1

λn
∥Jyn − Jun∥ = 0.

For (p, p∗) ∈ B, from the monotonicity of B and BB
λn
yn ∈ BQB

λn
yn, we have

⟨p− un, p
∗ −BB

λn
yn⟩ ≥ 0
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for all n ∈ N. From un ⇀ w and BB
λn
yn → 0, we get ⟨p − w, p∗⟩ ≥ 0. From the

maximality of B, we have w ∈ B−10. Therefore, we have w ∈ Ω.
From z0 = ΠΩx1, w ∈ Ω and (3.14), we have that

ϕE(z0, x1) ≤ ϕE(w, x1) ≤ lim inf
i→∞

ϕE(xni , x1)

≤ lim sup
i→∞

ϕE(xni , x1) ≤ ϕE(z0, x1).

From z0 = ΠΩx1, we have w = z0. Furthermore, we get that

lim
i→∞

ϕE(xni , x1) = ϕE(w, x1) = ϕE(z0, x1).

This implies that

lim
i→∞

(∥xni∥2 − 2⟨xni , x1⟩+ ∥x1∥2) = ∥w∥2 − 2⟨w, x1⟩+ ∥x1∥2).

Thus we get limi→∞ ∥xni∥ = ∥w∥. From the Kadec-Klee property of E, we have
that xni → w = z0. Therefore, we have xn → z0. This completes the proof. □

Next, using the hybrid method, we prove another strong convergence theorem for
finding a solution of the split common null point problem in two Banach spaces.

Theorem 3.2. Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let
A,B ⊂ E × E∗ be maximal monotone operators and let G ⊂ F × F ∗ be a maximal
monotone operator. Let QA

µ = (JE + µA)−1JE be the generalized resolvent of A for

all µ > 0, let JB
λ = (I + λJ−1

E B)−1 be the metric resolvent of B for all λ > 0 and

let JG
η = (I + ηJ−1

F G)−1 be the metric resolvent of G for all η > 0. Let T : E → F
be a bounded linear operator such that T ̸= 0 and let T ∗ be the adjoint operator of
T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.
Let x1 ∈ E and let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − JG

ηnTxn),

yn = QA
µn
zn,

un = JB
λn
yn,

Bn = {z ∈ E : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2},
Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Dn = {z ∈ E : 2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PBn∩Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn}, {λn}, {µn}, {ηn} ⊂ (0,∞) and a, b ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
and b ≤ λn, µn, ηn, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.
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Proof. It is obvious that Bn ∩Cn ∩Dn ∩Qn is closed and convex for all n ∈ N. Let
us show Ω ⊂ Bn ∩Cn ∩Dn ∩Qn for all n ∈ N. Since JB

λn
is the metric resolvent, we

have that, for z ∈ Ω ⊂ B−10,

⟨JB
λn
yn − z, JE(yn − JB

λn
yn)⟩ ≥ 0.

From this, we get that ⟨JB
λn
yn − yn + yn − z, JE(yn − JB

λn
yn)⟩ ≥ 0 and hence

⟨yn − z, JE(yn − JB
λn
yn)⟩ ≥ ∥yn − JB

λn
yn∥2.

This implies that

⟨yn − z, JE(yn − un)⟩ ≥ ∥yn − un∥2.
Then we have that Ω ⊂ Bn. To show that Ω ⊂ Cn for all n ∈ N, let us show that
⟨zn − z, JE(xn − zn)⟩ ≥ 0 for all z ∈ Ω ⊂ T−1(G−10) and n ∈ N. In fact, we have
that for all z ∈ Ω,

⟨zn − z,JE(xn − zn)⟩ = ⟨zn − xn + xn − z, JE(xn − zn)⟩
= ⟨−rnJ

−1
E T ∗JF (Txn − JG

ηnTxn)

+ xn − z, JE(rnJ
−1
E T ∗JF (Txn − JG

ηnTxn))⟩
= ⟨−rnJ

−1
E T ∗JF (Txn − JG

ηnTxn) + xn − z, rnT
∗JF (Txn − JG

ηnTxn)⟩
= −r2n⟨J−1

E T ∗JF (Txn − JG
ηnTxn), T

∗JF (Txn − JG
ηnTxn)⟩

+ ⟨xn − z, rnT
∗JF (Txn − JG

ηnTxn)⟩(3.12)

= −r2n∥T ∗JF (Txn − JG
ηnTxn)∥

2 + ⟨xn − z, rnT
∗JF (Txn − JG

ηnTxn)⟩
≥ −r2n∥T ∗JF (Txn − JG

ηnTxn)∥
2 + rn∥Txn − JG

ηnTxn∥
2

≥ −r2n∥T∥2∥Txn − JG
ηnTxn∥

2 + rn∥Txn − JG
ηnTxn∥

2

= rn
(
1− rn∥T∥2

)
∥Txn − JG

ηnTxn∥
2

≥ 0.

Then we have that Ω ⊂ Cn for all n ∈ N. Next, to show that Ω ⊂ Dn, let us show
that

2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)

for all z ∈ Ω. In fact, we have that

2⟨zn − z,JEzn − JEyn⟩ − ϕE(zn, yn)

= 2⟨zn − z, JEzn − JEQ
A
µn
zn⟩ − ϕE(zn, Q

A
µn
zn)(3.13)

≥ ϕ(zn, Q
A
µn
zn)− ϕE(zn, Q

A
µn
zn)

= 0.

Then we have that Ω ⊂ Dn for all n ∈ N. We show that Ω ⊂ Qn for all n ∈ N.
Since Q1 = {z ∈ E : ⟨x1 − z, JE(x1 − x1)⟩ ≥ 0} = E, it is obvious that Ω ⊂ Q1.
Suppose that Ω ⊂ Qk for some k ∈ N. Then Ω ⊂ Bk ∩ Ck ∩ Dk ∩ Qk. From
xk+1 = PBk∩Ck∩Dk∩Qk

x1, we have that

⟨xk+1 − z, JE(x1 − xk+1)⟩ ≥ 0, ∀z ∈ Bk ∩ Ck ∩Dk ∩Qk.
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From Ω ⊂ Bk ∩ Ck ∩Dk ∩Qk, we have that

⟨xk+1 − z, JE(x1 − xk+1)⟩ ≥ 0, ∀z ∈ Ω.

Then Ω ⊂ Qk+1. We have by induction that Ω ⊂ Qn for all n ∈ N. Thus we have
that Ω ⊂ Bn ∩ Cn ∩Dn ∩Qn for all n ∈ N. This implies that {xn} is well defined.

Since Ω is nonempty, closed and convex, there exists w1 ∈ Ω such that w1 = PΩx1.
From xn+1 = PBn∩Cn∩Dn∩Qnx1, we have that

∥x1 − xn+1∥ ≤ ∥x1 − y∥
for all y ∈ Bn ∩ Cn ∩Dn ∩Qn. Since w1 ∈ Ω ⊂ Bn ∩ Cn ∩Dn ∩Qn, we have that

(3.14) ∥x1 − xn+1∥ ≤ ∥x1 − w1∥.
This means that {xn} is bounded. We show that limn→∞ ∥xn − xn+1∥ = 0. From
the definition of Qn, we have that xn = PQnx1. From xn+1 = PBn∩Cn∩Dn∩Qnx1 we
have that xn+1 ∈ Qn. Thus

∥xn − x1∥ ≤ ∥xn+1 − x1∥
for all n ∈ N. This implies that {∥x1 − xn∥} is bounded and nondecreasing. Then
there exists the limit of {∥x1 − xn∥}. Put limn→∞ ∥xn − x1∥ = c. If c = 0, then
limn→∞ ∥xn − xn+1∥ = 0. Assume that c > 0. Since xn = PQnx1, xn+1 ∈ Qn and
xn+xn+1

2 ∈ Qn, we have that

∥x1 − xn∥ ≤
∥∥∥x1 − xn + xn+1

2

∥∥∥ ≤ 1

2

(
∥x1 − xn∥+ ∥x1 − xn+1∥

)
and hence

lim
n→∞

∥∥∥x1 − xn + xn+1

2

∥∥∥ = c.

Since E is uniformly convex, we get that limn→∞ ∥xn − xn+1∥ = 0.
From xn+1 = PBn∩Cn∩Dn∩Qnx1, we have xn+1 ∈ Cn. This implies that

⟨zn − xn+1, JE(xn − zn)⟩ ≥ 0

and hence
⟨zn − xn + xn − xn+1, JE(xn − zn)⟩ ≥ 0.

Then we have that

⟨xn − xn+1, JE(xn − zn)⟩ ≥ ∥xn − zn∥2

and hence
∥xn − zn∥ ≤ ∥xn − xn+1∥.

From limn→∞ ∥xn − xn+1∥ = 0 we have that

(3.15) lim
n→∞

∥xn − zn∥ = 0.

On the other hand, we have that

∥xn − zn∥ = ∥JE(xn − zn)∥
= ∥rnT ∗JF (Txn − JG

ηk
Txn)∥

= rn∥T ∗JF (Txn − JG
ηk
Txn)∥

≥ a∥T ∗JF (Txn − JG
ηk
Txn)∥.
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Since limn→∞ ∥xn − zn∥ = 0, we have that

lim
n→∞

∥T ∗JF (Txn − JG
ηk
Txn)∥ = 0.

Since JG
ηn is the metric resolvent, we have that, for Tz ∈ G−10,

⟨xn − z, T ∗JF (Txn − JG
ηnTxn)⟩ = ⟨Txn − Tz, JF (Txn − JG

ηnTxn)⟩
≥ ∥Txn − JG

ηnTxn∥
2.

Then we get that

(3.16) lim
n→∞

∥Txn − JG
ηnTxn∥ = 0.

Furthermore, from xn+1 = PBn∩Cn∩Dn∩Qnx1 and xn+1 ∈ Dn, we have that

2⟨zn − xn+1, JEzn − JEyn⟩ ≥ ϕE(zn, yn)

and hence

(3.17) 2⟨zn − xn + xn − xn+1, JEzn − JEyn⟩ ≥ ϕE(zn, yn).

Let us show that {JEzn−JEyn} is bounded. Since QA
µn

is the generalized resolvent,

we have that, for z ∈ A−10,

2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)

and hence

ϕE(zn, yn) + ϕE(z, zn)− ϕE(z, yn) ≥ ϕE(zn, yn).

This implies that

ϕE(z, zn) ≥ ϕE(z, yn).

Thus we have that, for z ∈ A−10,

(∥z∥ − ∥yn∥)2 ≤ ϕE(z, yn) ≤ ϕE(z, zn) ≤ (∥z∥+ ∥zn∥)2.
Using this, we have that

|∥z∥ − ∥yn∥| ≤ ∥z∥+ ∥zn∥
and hence

∥yn∥ ≤ 2∥z∥+ ∥zn∥.
Hence, we have that

∥JEzn − JEyn∥ ≤ ∥JEzn∥+ ∥JEyn∥
= ∥zn∥+ ∥yn∥
≤ 2∥z∥+ 2∥zn∥.

This implies that {JEzn − JEyn} is bounded. From (3.17), ∥xn − xn+1∥ → 0 and
∥xn− zn∥ → 0, we have that limn→∞ ϕE(zn, yn) = 0. Then we get from Lemma 2.2
that ∥zn − yn∥ → 0 and hence

(3.18) lim
n→∞

∥zn −QA
µn
zn∥ = 0.

Since xn+1 ∈ Bn, we have that

⟨yn − xn+1, J(yn − un)⟩ ≥ ∥yn − un∥2
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and hence

∥yn − xn+1∥ ≥ ∥yn − un∥.
From yn − zn → 0, zn − xn → 0 and xn − xn+1 → 0, we have ∥yn − xn+1∥ → 0.
Then we get that

(3.19) lim
n→∞

∥yn − un∥ = 0

and hence

(3.20) lim
n→∞

∥yn − JB
λn
yn∥ = 0.

Since {xn} converges weakly to w, we have from limn→∞ ∥xn−zn∥ = 0 that {zn}
converges weakly to w. We also have from (3.18) that {QA

µn
zn} converges weakly

to w. Since QA
µn

is the generalized resolvent of A, we have that

JEzn − JEQ
A
µn
zn

µn
∈ AQA

µn
zn

for all n ∈ N. From the monotonicity of A we have that

0 ≤
〈
s−QA

µn
zn, t

∗ −
JEzn − JEQ

A
µn
zn

µn

〉
for all (s, t∗) ∈ A. Since E is uniformly smooth, from (3.18) we have that

∥JEzn − JEQ
A
µn
zn∥ → 0.

Using 0 < b ≤ µn for all n ∈ N, we have that 0 ≤ ⟨s− w, t∗ − 0⟩ for all (s, t∗) ∈ A.
Since A is maximal monotone, we have that w ∈ A−10. Furthermore, since T is
bounded and linear, we also have that {Txn} converges weakly to Tw. From (3.16)
we have that {JG

ηnTxn} converges weakly to Tw. Since JG
ηn is the metric resolvent

of G, we have that

JF (Txn − JG
ηnTxn)

ηn
∈ GJG

ηnTxn

for all n ∈ N. From the monotonicity of G we have that

0 ≤
〈
u− JG

ηnTxn, v
∗ −

JF (Txn − JG
ηnTxn)

ηn

〉
for all (u, v∗) ∈ G. Since ∥JF (Txn−JG

ηnTxn)∥ → 0 and 0 < b ≤ ηn for all n ∈ N, we
have that 0 ≤ ⟨u − Tw, v∗ − 0⟩ for all (u, v∗) ∈ G. Since G is maximal monotone,
we have that Tw ∈ G−10. We show w ∈ B−10. From λn ≥ b and (3.20), we have

lim
n→∞

1

λn
∥JE(yn − JB

λn
yn)∥ = 0.

Therefore, we have

lim
n→∞

∥AB
λn
yn∥ = lim

n→∞

1

λn
∥JE(yn − JB

λn
yn)∥ = 0.

For (p, p∗) ∈ B, from the monotonicity of B, we have

⟨p− JB
λn
yn, p

∗ −AB
λn
yn⟩ ≥ 0
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for all n ∈ N. Letting n → ∞, we get from JB
λn
yn ⇀ w that ⟨p−w, p∗⟩ ≥ 0. By the

maximality of B, we have w ∈ B−10. Therefore, we have w ∈ Ω.
From w1 = PΩx1, w ∈ Ω and (3.14), we have that

∥x1 − w1∥ ≤ ∥x1 − w∥ ≤ lim inf
i→∞

∥x1 − xni∥

≤ lim sup
i→∞

∥x1 − xni∥ ≤ ∥x1 − w1∥.

Then we get that

lim
i→∞

∥x1 − xni∥ = ∥x1 − w∥ = ∥x1 − w1∥

and hence w = w1. Furthermore, from the Kadec-Klee property of E, we have that
x1 − xni → x1 − w and hence

xni → w = w1.

Therefore, we have xn → w = w1. This completes the proof. □

4. Applications

In this section, using Theorems 3.1 and 3.2, we get new strong convergence the-
orems which are connected with the split feasibility problem and the split com-
mon null point problem in Banach spaces. Let E be a Banach space and let
f : E → (−∞,∞] be a proper, lower semicontinuous and convex function. De-
fine the subdifferential of f as follows:

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ ⟨y − x, x∗⟩+ f(x), ∀y ∈ E}
for all x ∈ E. Then we know that ∂f is a maximal monotone operator; see [18] for
more details. Let C be a nonempty, closed and convex subset of E and let iC be
the indicator function, that is,

iC =

{
0, x ∈ C,

∞, x /∈ C.

Then we have that ∂iC is a maximal monotone operator and the generalized resol-
vent Qr = ΠC for all r > 0, where ΠC is the generalized projection of E onto C. In
fact, for any x ∈ E and r > 0, we have from Lemma 2.4 that

z = Qrx ⇔ Jz + r∂iC(z) ∋ Jx

⇔ Jx− Jz ∈ r∂iC(z)

⇔ iC(y) ≥
〈
y − z,

Jx− Jz

r

〉
+ iC(z), ∀y ∈ E

⇔ 0 ≥ ⟨y − z, Jx− Jz⟩, ∀y ∈ C

⇔ z = argmin
y∈C

ϕ(y, x)

⇔ z = ΠC .

Furthermore, the metric resolvent Jr = PC for all r > 0, where PC is the metric
projection of E onto C. In fact, for any x ∈ E and r > 0, we have that

z = Jrx ⇔ J(z − x) + r∂iC(z) ∋ 0

⇔ J(x− z) ∈ r∂iC(z)
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⇔ iC(y) ≥ ⟨y − z,
J(x− z)

r
⟩+ iC(z), ∀y ∈ E

⇔ 0 ≥ ⟨y − z, J(x− z)⟩, ∀y ∈ C

⇔ z = PCx.

As a direct consequence of Theorem 3.1, we have the following theorem for finding
a solution of the split common null point problem in two Banach spaces.

Theorem 4.1. Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let
A,B ⊂ E × E∗ be maximal monotone operators and let G ⊂ F × F ∗ be a maximal
monotone operator. Let JA

µ = (I + µJ−1
E A)−1 be the metric resolvent of A for all

µ > 0, let QB
λ = (JE + λB)−1JE be the generalized resolvent of B for all λ > 0

and let QG
η = (JF + ηG)−1J be the generalized resolvent of G for all η > 0. Let

T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗ be the adjoint
operator of T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.

Let x1 ∈ E and let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFQ
G
η Txn)

)
,

yn = JA
µ zn,

un = QB
λ yn,

Bn = {z ∈ E : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn)},
Cn = {z ∈ E : 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn, Q

G
η Txn)},

Dn = {z ∈ E : ⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2},
Qn = {z ∈ E : ⟨xn − z, JEx1 − JExn⟩ ≥ 0},
xn+1 = ΠBn∩Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following inequalities:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Next, using Theorem 3.1, we have the following theorem for finding a solution of
the split feasibility problem in two Banach spaces.

Theorem 4.2. Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let
C and D be nonempty, closed and convex subsets of E and let H be a nonempty,
closed and convex subset of F . Let PC be the metric projection of E onto C, let ΠC

be the generalized projection of E onto C. and let ΠH be the generalized projection
of F onto H. Let T : E → F be a bounded linear operator such that T ̸= 0 and let
T ∗ be the adjoint operator of T . Suppose that

Ω = C ∩D ∩ T−1H ̸= ∅.
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Let x1 ∈ E and let {xn} be a sequence generated by

zn = J−1
E

(
JExn − rnT

∗(JFTxn − JFΠHTxn)
)
,

yn = PCzn,

un = ΠDyn,

Bn = {z ∈ E : 2⟨yn − z, JEyn − JEun⟩ ≥ ϕE(yn, un) + ϕE(un, yn)},
Cn = {z ∈ E : 2⟨xn − z, JExn − JEzn⟩ ≥ rnϕF (Txn,ΠHTxn)},
Dn = {z ∈ E : ⟨zn − z, JE(zn − yn)⟩ ≥ ∥zn − yn∥2},
Qn = {z ∈ E : ⟨xn − z, JEx1 − JExn⟩ ≥ 0},
xn+1 = ΠBn∩Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following inequalities:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point z0 ∈ Ω, where z0 = ΠΩx1.

Proof. We have that QG
ηn = ΠH , JA

µn
= PC and QB

λn
yn = PiD in Theorem 3.1.

Therefore, we have the desired result from Theorem 3.1. □
Similarly, using Theorem 3.2 and the proofs in Theorems 4.1 and 4.2, we have

the following strong convergence theorems for the split common null point problem
and the split feasibility problem in two Banach spaces.

Theorem 4.3. Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let
A,B ⊂ E × E∗ be maximal monotone operators and let G ⊂ F × F ∗ be a maximal
monotone operator. Let QA

µ = (JE + µA)−1JE be the generalized resolvent of A for

all µ > 0, let JB
λ = (I + λJ−1

E B)−1 be the metric resolvent of B for all λ > 0 and

let JG
η = (I + ηJ−1

F G)−1 be the metric resolvent of G for all η > 0. Let T : E → F
be a bounded linear operator such that T ̸= 0 and let T ∗ be the adjoint operator of
T . Suppose that

Ω = A−10 ∩B−10 ∩ T−1(G−10) ̸= ∅.
Let x1 ∈ E and let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − JG

η Txn),

yn = QA
µ zn,

un = JB
λ yn,

Bn = {z ∈ E : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2},
Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Dn = {z ∈ E : 2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PBn∩Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.
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Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.

Theorem 4.4. Let E and F be uniformly convex and uniformly smooth Banach
spaces and let JE and JF be the duality mappings on E and F , respectively. Let
C and D be nonempty, closed and convex subsets of E and let H be a nonempty,
closed and convex subset of F . Let ΠC be the generalized projection of E onto C,
let PD be the metric projection of E onto D and let PH be the metric projection of
F onto H. Let T : E → F be a bounded linear operator such that T ̸= 0 and let T ∗

be the adjoint operator of T . Suppose that

Ω = C ∩D ∩ T−1H ̸= ∅.
Let x1 ∈ E and let {xn} be a sequence generated by

zn = xn − rnJ
−1
E T ∗JF (Txn − PHTxn),

yn = ΠCzn,

un = PDyn,

Bn = {z ∈ E : ⟨yn − z, J(yn − un)⟩ ≥ ∥yn − un∥2},
Cn = {z ∈ E : ⟨zn − z, JE(xn − zn)⟩ ≥ 0},
Dn = {z ∈ E : 2⟨zn − z, JEzn − JEyn⟩ ≥ ϕE(zn, yn)},
Qn = {z ∈ E : ⟨xn − z, JE(x1 − xn)⟩ ≥ 0},
xn+1 = PBn∩Cn∩Dn∩Qnx1, ∀n ∈ N,

where {rn} ⊂ (0,∞) and a ∈ R satisfy the following:

0 < a ≤ rn ≤ 1

∥T∥2
, ∀n ∈ N.

Then the sequence {xn} converges strongly to a point w1 ∈ Ω, where w1 = PΩx1.
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