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fact that we don’t use any variational principles. The main idea of our approach
is to find a large (but not convex) approximating cone to the epigraph of the in-
tegral functional for which there is some small, but still positive, “inaccuracy” of
the approximation allowed. Then we build a Lagrange multiplier separating the
tangent cone to the constraint from the convex hull of the Clarke tangent cone to
the epigraph and a suitable convex subcone of the “large” one. This method is
a continuation of the variational approach we together with Apostolov began to
develop in [1].

The paper is organized as follows. Some preliminaries as well as part of the ideas
of the proposed method are presented in the next section. The third section contains
the definition of the “large” approximating cone and a sufficient condition for tan-
gential transversality (whose proof is rather technical). In section 4 a nonseparation
result and a Lagrange multiplier theorem are proved.

2. Preliminaries

Throughout the paper if Y is a Banach space, we will denote by BY [BY ] its
open [closed] unit ball, centered at the origin. The index could be omitted if there
is no ambiguity about the space. If S is a closed subset of Y and y ∈ S, we will

denote by T̂S(y) the Clarke tangent cone to S at y, i.e.

T̂S(y) :=

v ∈ Y :
for every ε > 0 there exists δ > 0
such that for every t ∈ [0, δ] it holds true that
S ∩ (y + δB) + tv ⊂ S + tεB

 .

In this paper we continue the research in [1] whose starting point was the famous
Aubin condition from [7] for the basic problem of the calculus of variations. We
formulated there an abstract (infinite-dimensional) version of this condition and
established its relation to the original idea of “perturbation” and subsequent “cor-
rection” of the epigraph of the considered functional (introduced by J.M. Borwein
and H.M. Strojwas in 1985 in [5]):

Definition 2.1. Let X and Y be Banach spaces and f : X × Y → R∪ {+∞} be a
proper lower semicontinuous function which has finite value at (x, y) ∈ X × Y . It
is said that f satisfies the Aubin condition at (x, y, f(x, y)) iff there exist positive
reals δ > 0 and K > 0 such that for every t ∈ [0, δ] the following inclusion holds
true:

epi f ∩
(
(x, y, f(x, y)) + δ ·BX×Y×R

)
+ t

(
BX ,0, 0

)
⊂

⊂ epi f + t
(
0,K ·BY ,K[−1, 1]

)
.

The Aubin condition enables one to prove an abstract Lagrange multiplier rule
(cf. [1]) for a natural optimization problem:

Corollary 2.2. Let X and Y be Banach spaces. We consider the optimization
problem

f(x, y) → min subject to (x, y) ∈ S ,

where f : X × Y −→ R ∪ {+∞} is lower semicontinuous, proper and satisfies the
Aubin condition at (x, y, f(x, y)) and S := {(Ly, y) : y ∈ Y }, where L : Y −→ X is
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a compact linear operator. Let (x, y) be a solution of the above problem. Then there
exists a triple (ξ, η, ζ) ∈ X∗ × Y ∗ × R such that

(i) (ξ, η, ζ) ̸= (0,0, 0);
(ii) ζ ∈ {0, 1};
(iii) ⟨ξ, Ly⟩+ ⟨η, y⟩ = 0 for every y ∈ Y ;

(iv) ⟨ξ, u⟩+ ⟨η, v⟩+ ζw ≥ 0 for every (u, v, w) ∈ T̂epif (x, y, f(x, y)).

The proof of this assertion is based on the concept of subtransversality and a
general sufficient condition for it.

Transversality is a classical concept of mathematical analysis and differential
topology. Recently, it has proven to be useful in variational analysis as well (cf. [11]).
In the literature there exist many notions generalizing the classical transversality as
well as transversality of cones (cf., for example, [23]). Some of them are introduced
under different names by different authors, but actually coincide. We refer to [16]
for a survey of terminology and comparison of the available concepts. The central
ones among them are transversality and subtransversality. They are also objects of
study in the recent book [12].

The term subtransversality is recently introduced in [8] in relation to proving
linear convergence of the alternating projections algorithm. However, this property
has been around for more than 20 years, but under different names – see Remark 4 in
[16] and the references therein. It is a key assumption for two types of results: linear
convergence of sequences generated by projection algorithms and a qualification
condition for normal intersection property with respect to the limiting normal cone
and a sum rule for the limiting subdifferential. The precise definition is

Definition 2.3. Let A and B be closed subsets of the Banach space X. A and B
are said to be subtransversal at x0 ∈ A ∩B, if there exists K > 0 such that

d(x,A ∩B) ≤ K(d(x,A) + d(x,B))

for all x in a fixed neighborhood of x0.

From our point of view the most remarkable thing about subtransversality is
the fact that it implies a rather general nonseparation result which is crucial for
obtaining necessary optimality conditions of Pontryagin maximum principle type
(including optimal control problems with infinite-dimensional state space). More-
over, subtransversality is a natural assumption for proving abstract Lagrange mul-
tiplier rule. But the intriguing thing is to verify the subtransversality assumption
in nontrivial cases. Our approach to verification of subtransversality is proving the
following local property:

Definition 2.4. Let A and B be closed subsets of the Banach space X. We say
that A and B are tangentially transversal at x0 ∈ A ∩ B, if there exist M > 0,
δ > 0 and η > 0 such that for any two different points xA ∈ (x0 + δB) ∩ A and
xB ∈ (x0 + δB) ∩ B, there exists a sequence {tm}, tm ↘ 0, such that for every
m ∈ N there exist wA

m ∈ X with ∥wA
m∥ ≤ M and xA + tmwA

m ∈ A, and wB
m ∈ X

with ∥wB
m∥ ≤ M , xB + tmwB

m ∈ B, and the following inequality holds true

∥xA − xB + tm(wA
m − wB

m)∥ ≤ ∥xA − xB∥ − tmη .
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The above condition is a stronger condition than subtransversality (c.f. [2], Propo-
sition 2.8). For a discussion on this notion the reader is referred to [2]. It happens
that usually tangential transversality is easier to verify than subtransversality when
the information known concerns the tangential structure of the sets. We presented
in [1] a general sufficient condition for tangential transversality:

Theorem 2.5. Let A and B be closed subsets of the Banach space X and let
x0 ∈ A ∩ B. Assume that there exist ε > 0, δ > 0, q1 > 0, q2 > 0, such that
q1 + q2 < 1 and:

(i) there exist bounded “ball covering” sets MA and MB such that MA −MB is
εq1-dense in εB and “correcting” sets UA, UB such that

A ∩ (x0 + δB) + tMA ⊂ A+ tUA and B ∩ (x0 + δB) + tMB ⊂ B + tUB

whenever t ∈ [0, δ];
(ii) there exist two bounded sets DA and DB such that DA −DB is εq2-dense in

UA −UB and they are “η-uniform” with η := (1− q1 − q2)/3, i.e. for each t ∈ [0, δ]

A ∩ (x0 + δB) + tDA ⊂ A+ tηB and B ∩ (x0 + δB) + tDB ⊂ B + tηB.

Then A and B are tangentially transversal at x0.

The underlying idea is that in many cases the uniformness of the local approxi-
mation of a closed set can be used instead of some suitable compactness assumption.
This is especially important in the infinite-dimensional case. If the property of a set
being “η-uniform” (from condition (ii) written above) holds true for every η > 0,
we arrive to the concept of uniform tangent set which was introduced in [15] and its
study was continued in [4]. It happened to be very useful for obtaining necessary
conditions for optimal control problems in infinite dimensional state space, because
the diffuse variations (which are naturally defined and easy to calculate for local
approximation of the reachable set) are uniform. Examples 2.5 and 4.11 in [14]
further motivate the importance of “uniformity of approximation”.

Definition 2.6. Let S be a closed subset of X and x0 belong to S. We say that the
bounded set DS(x0) is a uniform tangent set to S at the point x0 if for each ε > 0
there exists δ > 0 such that for each v ∈ DS(x0) and for each point x ∈ S∩(x0+δB)
one can find λ > 0 for which S ∩ (x+ t(v + εB)) is non empty for each t ∈ [0, λ].

The next theorem is the main result from [4]. It establishes one of the important
properties of the uniform tangent sets whose direct corollary is the fact that every
uniform tangent set DS(x0) to the set S at the point x0 is contained in the Clarke

tangent cone T̂S(x0).

Theorem 2.7. Let S be a closed subset of X and x0 belong to S. The following
are equivalent

(1) DS(x0) is a uniform tangent set to S at the point x0
(2) for each ε > 0 there exist δ > 0 and λ > 0 such that for each v ∈ DS(x0)

and for each point x ∈ S∩ (x0+δB) the set S∩ (x+ t(v+εB)) is non empty
for each t ∈ [0, λ].

The basic properties of uniform tangent sets are gathered in the next proposition
taken from [3]:
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Proposition 2.8. Let S be a closed subset of X and let x0 ∈ S. Let DS(x0) be a
uniform tangent set to S at the point x0. Then, the following hold true:

(1) the set cDS(x0) is a uniform tangent set to S at x0 for each fixed constant
c > 0;

(2) if D′
S(x0) ⊂ DS(x0), then D′

S(x0) is a uniform tangent set to S at x0;
(3) if D′

S(x0) is another uniform tangent set to S at x0, then DS(x0) ∪D′
S(x0)

is a uniform tangent set to S at x0;
(4) the convex closed closure coDS(x0) of DS(x0) is a uniform tangent set to S

at x0
(5) if S is convex, then (S − x0) ∩MB is a uniform tangent set to S at x0 for

every M > 0.

Throughout the paper we consider the following optimization problem

(2.1) φ(x, y) → min subject to (x, y) ∈ A,

where X and Y are Banach spaces, φ : X × Y −→ R ∪ {+∞} is a lower semi-
continuous function, L : Y −→ X a bounded linear operator,

S := {(Ly, y) ∈ X × Y : y ∈ Y }
is a closed linear subspace of X × Y and A := S + {(ξ, η)}, where (ξ, η) is a fixed
point of X × Y .

In this paper we prove an analogue of Corollary 2.2 under much weaker assump-
tions. We have to note that the “correcting set” in the Definition 2.1 depends only
on the second and the third variables. We generalize the Aubin condition imposed
on the epigraph of the considered function by assuming “a variational condition
(A1)” and “a measure of noncompactness condition (A2)”. The “variational condi-
tion” allows one to use a “correcting set” which contains an open ball in the first
variable and thus to go away from the Lipshitz continuous case. Regarding the
“measure of noncompactness condition”, it replaces the compactness of the linear
operator L in Corollary 2.2. Moreover, these two conditions are closely intertwined
- the “measure of noncompactness condition” poses some restrictions on the size
of the “correcting set”. In fact, the case when L is the integration operator from
Y = L1([a, b],Rn) to X = L∞([a, b],Rn) could be important for future applications
of our results. Clearly, this operator is bounded but not compact, and it maps
weakly compact sets in Y to totally bounded sets in X, thus allowing to use weakly
compact sets as “correcting sets”. To deal with the “measure of noncompactness
condition” is not a trivial task. We solved it by combining ideas from the proofs
of Theorem 2.5 (cf. [1]) and the main result of [17]. The obtained Lagrange mul-
tiplier separates the constraint from an arbitrary convex subcone of the “large”
approximating cone Dη introduced in Section 3.

3. A general sufficient condition for tangential transversality

Definition 3.1. Let us fix η > 0. It is said that (u, v, w) ∈ Dη(x̄, ȳ, φ(x̄, ȳ)) if there
exists δ(u, v, w) > 0 such that for each t ∈ [0, δ(u, v, w)] the following inclusion holds
true:

epi φ ∩
(
(x̄, ȳ, φ(x̄, ȳ)) + δ(u, v, w)B̄

)
+ t(u, v, w) ⊂ epi φ+ tη∥u− Lv∥B̄ .
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Note that in the above definition the constant δ(u, v, w) may depend on the vector
(u, v, w).

Theorem 3.2. Let in the above setting the following assumptions hold true:

(a) “variational condition” : there exist a positive real δ > 0, an uniform tangent
set D to epi φ at (x̄, ȳ, φ(x̄, ȳ)) and a “correcting set” U ⊂ X×Y ×R (having
the appearance U = (UX , UY , UR)) such that for each t ∈ [0, δ] we have

epi φ ∩
(
(x̄, ȳ, φ(x̄, ȳ)) + δB̄

)
+ t

(
B̄X,0, 0

)
⊂ epi φ+ tU + tD .

(b) “measure of noncompactness condition” : The set U is bounded and

µ (UX − L(UY )) < 1

where µ denotes the ball measure of noncompactness (in X).
(c) “density condition”: there exists R > 0 such that Dη(x̄, ȳ, φ(x̄, ȳ))+

T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ R B̄ − S × (−∞, 0] is dense in the closed unit ball
of X × Y × R centered at the origin for some η > 0 satisfying

η <
1

(1− q)−1(1 + ∥L∥)(1 +M + ∥L∥M + q)(1 + (1 + ∥L∥)R)
,

where M := 2 sup{∥z∥ : z ∈ U ∪D}+ 1 .

Then the sets epi φ and (S + (x̄, ȳ))× (−∞, φ(x̄, ȳ)] are tangentially transversal
at (x̄, ȳ, φ(x̄, ȳ)).

Proof. Let us first fix the constants involved. The reason for defining them in this
particular way is to be clarified in the proof.

M := 2 sup{∥z∥ : z ∈ U ∪D}+ 1,

q̃ and q are such that µ (UX − L(UY )) < q̃ < q < 1,

σ > 0 is such that q = q̃ + σ(1 + ∥L∥).
Since q̃ > µ (UX − L(UY )), there exist a finite set F ⊂ X and a finite set G ⊂ R
such that

(UX − L(UY ),0, UR) ⊂
(
F + q̃B̄X,0, G+ q̃[−1, 1]

)
.

Let us denote

T :=
1 + ∥L∥
1− q

(conv ({0} ∪ F ) ,0, conv ({0} ∪G) + [−1, 1]) .

Note that for every z ∈ T it is true that

∥z∥ ≤ 1 + ∥L∥
1− q

max {(1 + ∥L∥)M + q, M + 1 + q} ≤

≤ (1 + ∥L∥)(1 +M + ∥L∥M + q)

1− q
=: N .

Because D is a uniform tangent set to epi φ at (x̄, ȳ, φ(x̄, ȳ)), there exists δ̂ > 0, so

that for each t ∈ (0, δ̂)

(3.1) epi φ ∩ ((x̄, ȳ, φ(x̄, ȳ)) + δ̂B̄) + tD ⊆ epi φ+ tσB̄.
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We continue with the definition of the basic constants:

η > 0 is such that η <
1

N(1 + (1 + ∥L∥)R)
,

ρ > 0 is such that ρ <
1− η(N(1 + (1 + ∥L∥)R)

η(1 + ∥L∥) + 2
.

Since T is compact, there exists a finite ρ-net

Hρ := {p1, p2, . . . , pk}
for T . Without loss of generality, we may think that Hρ ⊂ T . The “density
condition” implies that

Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ R B̄− S × (−∞, 0]

is dense in the closed unit ball of X × Y × R centered at the origin. Therefore

Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ RNB̄− S × (−∞, 0]

is dense in T ⊂ RNB̄. Let

{(ui, vi, wi)}ki=1 ⊂ Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ RN B̄

and {(L(qi), qi, ri)}ki=1 ⊂ S × (−∞, 0] be such that

∥pi − ((ui, vi, wi)− (L(qi), qi, ri))∥ < ρ for every i ∈ {1, 2, . . . , k}.

Since (ui, vi, wi) ∈ Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ RN B̄, it has the ap-
pearance

(ui, vi, wi) = (u1i , v
1
i , w

1
i ) + (u2i , v

2
i , w

2
i ), (u

1
i , v

1
i , w

1
i ) ∈ Dη(x̄, ȳ, φ(x̄, ȳ))

and
(u2i , v

2
i , w

2
i ) ∈ T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ RN B̄

for every i ∈ {1, 2, . . . , k}.
As (u2i , v

2
i , w

2
i ) ∈ T̂epi φ(x̄, ȳ, φ(x̄, ȳ)), there exists δ(u

2
i , v

2
i , w

2
i ) > 0 such that that

for each t ∈ [0, δ(u2i , v
2
i , w

2
i )] the following inclusion holds true:

epi φ ∩
(
(x̄, ȳ, φ(x̄, ȳ)) + δ(u2i , v

2
i , w

2
i )B̄

)
+ t(u2i , v

2
i , w

2
i ) ⊂ epi φ+ tηB̄

for each i = 1, . . . , k.
We put

0 < δ̃ := min
{
δ, δ̂, δ(u1i , v

1
i , w

1
i ), δ(u

2
i , v

2
i , w

2
i ), i = 1, . . . , k

}
,

(where δ(u11, v
1
1, w

1
1), δ(u

1
2, v

1
2, w

1
2), . . . , δ(u

1
k, v

1
k, w

1
k) come from the definition of

Dη(x̄, ȳ, φ(x̄, ȳ))) and

δ̄ :=
δ̃

2

(
q

1− q
(1 + ∥L∥)2(1 +M) + (1 + ∥L∥)(1 +M + ∥L∥M) + 1

) .

Let us denote by A the epigraph epi φ and byB the set (S + (x̄, ȳ))×(−∞, φ(x̄, ȳ)].
The reference point (x̄, ȳ, φ(x̄, ȳ)) belongs to the intersection A ∩ B. We consider
the space X × Y × R endowed with the usual uniform norm.
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Let zA ∈ A∩ B̄δ̄(x̄, ȳ, φ(x̄, ȳ)) and zB ∈ B ∩ B̄δ̄(x̄, ȳ, φ(x̄, ȳ)) be different. We fix
t ∈ [0, δ̄] and we denote

w := − zA − zB

∥zA − zB∥
∈ B̄X×Y×R .

1st step: Reducing to a variational condition with a smaller constant.
We put MA

1 := (B̄X,0, 0) and MB
1 := (0, B̄Y, [−1, 1]). Then B̄X×Y×R = MA

1 −MB
1

and therefore w = mA
1 −mB

1 for some mA
1 ∈ MA

1 , mB
1 ∈ MB

1 . It is straightforward
to check that

B + tMB
1 ⊂ B + tUB

1 for every t > 0 , where UB
1 :=

(
L(B̄Y),0, [−1, 1]

)
.

Hence there exists uB1 ∈ UB
1 such that zB1 := zB + tmB

1 − tuB1 ∈ B. Putting
UA
1 := MA

1 , uA1 := mA
1 , we have zA1 := zA + tmA

1 − tuA1 = zA ∈ A. Thus

zA1 − zB1 = (zA + tmA
1 − tuA1 )− (zB + tmB

1 − tuB1 ) = zA − zB + tw − t(uA1 − uB1 ) .

Moreover,
∥zA1 − zA∥ = 0, ∥zA1 − (x̄, ȳ, φ(x̄, ȳ))∥ ≤ δ̄ and

∥zB1 − zB∥ ≤ t(1 + ∥L∥), ∥zB1 − (x̄, ȳ, φ(x̄, ȳ))∥ ≤ δ̄(2 + ∥L∥).
Now we are to replace the “correcting term” uA1 − uB1 by another difference, more
suitable to be corrected. As

UA
1 − UB

1 =
(
B̄X − L(B̄Y),0, [−1, 1]

)
⊂

(
(1 + ∥L∥)B̄X,0, [−1, 1]

)
⊂ MA

2 −MB
2

where MA
2 :=

(
(1 + ∥L∥)B̄X,0, 0

)
, MB

2 := (0,0, [−1, 1]), there exist mA
2 ∈ MA

2 ,

mB
2 ∈ MB

2 such that uA1 − uB1 = mA
2 −mB

2 .

Now (having in mind that δ̄ is less than δ
1+∥L∥) we can apply the “variational

condition” scaling the parameter t and obtain

A ∩ B̄δ̄(x̄, ȳ, φ(x̄, ȳ)) + t
(
(1 + ∥L∥)B̄X,0, 0

)
⊂ A+ t(1 + ∥L∥)(U +D) .

Therefore there exists uA2 ∈ UA
2 := (1 + ∥L∥)U and dA2 ∈ DA

2 := (1 + ∥L∥)D such
that zA2 := zA1 + tmA

2 − tuA2 − tdA2 ∈ A. Putting UB
2 := MB

2 , uB2 := mB
2 , we have

zB2 := zB1 + tmB
2 − tuB2 = zB1 ∈ B. Hence

zA2 − zB2 = (zA1 + tmA
2 − tuA2 − tdA2 )− (zB1 + tmB

2 − tuB2 )

= zA1 − zB1 + t(mA
2 −mB

2 )− t(uA2 − uB2 )− tdA2

= zA − zB + tw − t(uA1 − uB1 ) + t(mA
2 −mB

2 )− t(uA2 − uB2 )− tdA2

= zA − zB + tw − t(uA2 − uB2 )− tdA2 .

Moreover,

∥zA2 − zA∥ = t(1 + ∥L∥)M, ∥zA2 − (x̄, ȳ, φ(x̄, ȳ))∥ ≤ δ̄(1 + (1 + ∥L∥)M) and

∥zB2 − zB∥ ≤ t(1 + ∥L∥), ∥zB2 − (x̄, ȳ, φ(x̄, ȳ))∥ ≤ δ̄(2 + ∥L∥).
We continue again by calculating

UA
2 − UB

2 = ((1 + ∥L∥)UX , (1 + ∥L∥)UY , (1 + ∥L∥)UR + [−1, 1]) = MA
3 −MB

3

where
MA

3 := ((1 + ∥L∥)UX ,0, 0)
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and

MB
3 := (0,−(1 + ∥L∥)UY ,−(1 + ∥L∥)UR + [−1, 1]) .

Then there exist mA
3 ∈ MA

3 , mB
3 ∈ MB

3 such that uA2 − uB2 = mA
3 −mB

3 . Again it is
easy to check that B + tMB

3 ⊂ B + tUB
3 for every t > 0 where

UB
3 := ((1 + ∥L∥)L(UY ),0,−(1 + ∥L∥)UR + [−1, 1]) .

Hence there exists uB3 ∈ UB
3 such that ẑB3 := zB2 + tmB

3 − tuB3 ∈ B. Not touching A,
we put UA

3 := MA
3 , uA3 := mA

3 , and we have ẑA3 := zA2 + tmA
3 − tuA3 = zA2 ∈ A. Thus

ẑA3 − ẑB3 = (zA2 + tmA
3 − tuA3 )− (zB2 + tmB

3 − tuB3 )

= zA2 − zB2 + t(mA
3 −mB

3 )− t(uA3 − uB3 )

= zA − zB + tw − t(uA2 − uB2 )− tdA2 + t(mA
3 −mB

3 )− t(uA3 − uB3 )

= zA − zB + tw − t(uA3 − uB3 )− tdA2 .

We set dA3 := dA2 and write this equality as follows

ẑA3 − ẑB3 = zA − zB + tw − t(uA3 − uB3 )− tdA3 .

Now the last “correcting set” has the appearance

UA
3 − UB

3 = ((1 + ∥L∥)(UX − L(UY )),0, (1 + ∥L∥)UR + [−1, 1])

= (1 + ∥L∥)K + (0,0, [−1, 1]) ,

where by K we have denoted the set (UX − L(UY ),0, UR).
Let us remind that D is a uniform tangent set and zA is an arbitrary point from

A ∩ B̄δ̄(x̄, ȳ, φ(x̄, ȳ)). Because δ̃ < δ̂, we have that

∥ẑA3 − (x̄, ȳ, φ(x̄, ȳ))∥ = ∥zA2 − (x̄, ȳ, φ(x̄, ȳ))∥

≤ δ̄(1 + (1 + ∥L∥)M) < δ̂,

according to our choice of M and δ̄.
Therefore, we can apply (3.1) starting from ẑA3 and obtain that there exists

oA3 := (o3X , o3Y , o
3
R) with ∥oA3 ∥ ≤ σ such that

zA3 := ẑA3 + tdA3 − toA3 ∈ A.

By setting zB3 := ẑB3 − t(L(o3Y ), o
3
Y , 0) ∈ B, we obtain that

zA3 − zB3 = ẑA3 + tdA3 − toA3 − ẑB3 + t(L(o3Y ), o
3
Y , 0)

= zA − zB + tw − t(uA3 − uB3 )− tdA3 + tdA3 − toA3 + t(L(o3Y ), o
3
Y , 0)

= zA − zB + tw − t(uA3 − uB3 )− t(o3X , o3Y , o
3
R) + t(L(o3Y ), o

3
Y , 0)

= zA − zB + tw − t(uA3 − uB3 )− t(o3X − L(o3Y ), 0, o
3
R).

Let us remind that

uA3 − uB3 ∈ UA
3 − UB

3 = ((1 + ∥L∥)(UX − L(UY )),0, (1 + ∥L∥)UR + [−1, 1])

and (o3X − Lo3Y , 0, o
3
R) ∈ (1 + ∥L∥)σ(B̄X,0, [−1, 1]). Since

0 < q = q̃ + (1 + ∥L∥)σ < 1,
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we obtain that

uA3 −uB3 +(o3X −Lo3Y , 0, o
3
R) ∈ (1+∥L∥)

(
F + qB̄X,0, G+ q[−1, 1]

)
+(0,0, [−1, 1]) .

Hence,

(3.2)
zA3 − zB3 ∈ zA − zB + tw

−t
(
(1 + ∥L∥)

(
F + qB̄X,0, G+ q[−1, 1]

)
+ (0,0, [−1, 1])

)
.

Moreover, the following estimates hold true

∥zA3 − zA∥ ≤ ∥zA3 − ẑA3 ∥+ ∥ẑA3 − zA∥
≤ t(1 + ∥L∥)M + tσ ≤ t(1 +M + ∥L∥M)

∥zA3 − (x̄, ȳ, φ(x̄, ȳ))∥ ≤ ∥zA3 − zA∥+ ∥zA − (x̄, ȳ, φ(x̄, ȳ))∥
≤ δ̄(1 +M + ∥L∥M) + δ̄ = δ̄(2 +M + ∥L∥M).

Also,

∥zB3 − zB∥ ≤
∥∥zB3 − ẑB3

∥∥+
∥∥ẑB3 − zB2

∥∥+
∥∥zB2 − zB

∥∥
≤ t∥(L(o3Y ), o3Y , 0)∥+ t

∥∥mB
3 − uB3

∥∥+ t(1 + ∥L∥)
≤ tσmax{∥L∥, 1}+ t(1 + ∥L∥)(1 +M + ∥L∥M) + t(1 + ∥L∥)
≤ t(1 + ∥L∥)(1 + (1 +M + ∥L∥M) + 1)

= t(1 + ∥L∥)(3 +M + ∥L∥M).

∥zB3 − (x̄, ȳ, φ(x̄, ȳ))∥ ≤ ∥zB3 − zB∥+ ∥zB − (x̄, ȳ, φ(x̄, ȳ))∥
≤ t(1 + ∥L∥)(3 +M + ∥L∥M) + δ̄

≤ δ̄((1 + ∥L∥)(3 +M + ∥L∥M) + 1).

We are ready for the next step.

2nd step: Reducing to a compact correcting set.
We are going to use repeatedly the following induction step:

Induction step. For each ζ̄ ∈ (0, δ̃), ζ ∈ (0, 1) and for each z̃A ∈ A ∩
B̄ζ̄(x̄, ȳ, φ(x̄, ȳ)), z̃B ∈ B ∩ B̄ζ̄(x̄, ȳ, φ(x̄, ȳ)), m ∈

(
ζB̄X,0, 0

)
and for the fixed

t ∈ [0, δ̄] there exist z̃A,∗ ∈ A, z̃B,∗ ∈ B such that

z̃A,∗ − z̃B,∗ = z̃A − z̃B + tm− tu , where u ∈ ζ
(
F + qB̄X,0, G+ q[−1, 1]

)
and

∥∥z̃A,∗ − z̃A
∥∥ ≤ tζ(1 +M) ,

∥∥z̃B,∗ − z̃B
∥∥ ≤ tζ(1 + ∥L∥)M .

Proof of the induction step. In fact we repeat the second half of the con-
struction in the previous step. Since ζ̄ < δ and tζ < δ, we apply the “variational
condition” with the parameter tζ and obtain

A ∩ B̄ζ̄(x̄, ȳ, φ(x̄, ȳ)) + t
(
ζB̄X,0, 0

)
⊂ A+ tζU + tζD .

Therefore there exists uA = (uAX , uAY , u
A
R) ∈ ζU and dA ∈ ζD such that

zA,∗ := z̃A + tm− tuA − tdA ∈ A .
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Since tζ < δ̂ and ζ̄ < δ̂, we obtain from (3.1) there exists oA := (oAX , oAY , o
A
R) with

∥oA∥ ≤ ζσ such that

z̃A,∗ := zA,∗ + tdA − toA ∈ A.

By setting z̃B,∗ := z̃B − t
(
L(oAY + uAY ), o

A
Y + uAY , 0

)
∈ B, we obtain that

z̃A,∗ − z̃B,∗ = zA,∗ + tdA − toA − z̃B + t
(
L(oAY + uAY ), o

A
Y + uAY , 0

)
= z̃A − z̃B + tm− tuA − tdA + tdA − toA

+ t
(
L(oAY + uAY ), o

A
Y + uAY , 0

)
= z̃A − z̃B + tm− t(uAX , uAY , u

A
R)− t(oAX , oAY , o

A
R)

+ t
(
L(oAY + uAY ), o

A
Y + uAY , 0

)
= z̃A − z̃B + tm− t(uAX + oAX − L(oAY + uAY ), 0, u

A
R + oAR)

⊆ z̃A − z̃B + tm− tζ(UX + σB̄X − L(UY + σB̄Y),0, UR + σ[−1, 1]).

Note that

(UX + σB̄X − L(UY + σB̄Y),0, UR + σ[−1, 1])

⊂ (UX − L(UY ) + σ(1 + ∥L∥)B̄X,0, UR + σ[−1, 1]).

Having in mind that 0 < q = q̃ + (1 + ∥L∥)σ < 1 and

(UX − L(UY ),0, UR) = K ⊂
(
F + q̃B̄X,0, G+ q̃[−1, 1]

)
,

we obtain that

(UX − L(UY ) + σ(1 + ∥L∥)B̄X,0, UR + σ[−1, 1]) ⊂
(
F + qB̄X,0, G+ q[−1, 1]

)
.

Therefore, the formula for z̃A,∗ − z̃B,∗ in the induction step is proved. It remains
to estimate the distance from z̃A,∗ and z̃B,∗ to the starting points. Indeed, we have
(according to our choice of M and σ)∥∥z̃A,∗ − z̃A

∥∥ = t∥m−uA− oA∥ ≤ t(∥m∥+ ∥uA∥+ ∥oA∥) < tζ(M +σ) < tζ(1+M)

and ∥∥z̃B,∗ − z̃B
∥∥ = t∥(−L(uAY + oAY ),−uAY − oAY , 0)∥
≤ tmax{∥L∥(∥uAY ∥+ ζσ), ∥uAY ∥+ ζσ}
≤ tζ(1 + ∥L∥)M .

End of the proof of the induction step.

We proceed by constructing zA4 and zB4 . According to (3.2) we have that

(3.3)
zA3 − zB3 ∈ zA − zB + tw − tm

−t ((1 + ∥L∥) (F,0, G+ q[−1, 1]) + (0,0, [−1, 1])) ,

where m ∈ (1 + ∥L∥)qB̄X.
We apply the induction step with ζ̄ := δ̄((1 + ∥L∥)(1 + M + ∥L∥M) + 1), ζ :=

q(1 + ∥L∥), z̃A := zA3 , z̃
B := zB3 , m and t. We denote the resulting z̃A,∗ by zA4 and
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z̃B,∗ by zB4 . Thus we have zA4 ∈ A, zB4 ∈ B and

zA4 − zB4 ∈ zA3 − zB3 + tm− tq(1 + ∥L∥)
(
F + qB̄X,0, G+ q[−1, 1]

)
⊂ zA − zB + tw − tm− t(1 + ∥L∥) (F,0, G+ q[−1, 1])

− t (0,0, [−1, 1]) + tm− tq(1 + ∥L∥)
(
F + qB̄X,0, G+ q[−1, 1]

)
= zA − zB + tw − t(1 + ∥L∥)

(
F + qF,0, G+ qG+ (q + q2)[−1, 1]

)
− t (0,0, [−1, 1])− t

(
q2(1 + ∥L∥)B̄X,0, 0

)
.

This could be written as

zA4 − zB4 ∈ zA − zB + tw − tV4 − t
(
q2(1 + ∥L∥)B̄X,0, 0

)
if we put

V4 := (1 + ∥L∥)
(
F + qF,0, G+ qG+ (q + q2)[−1, 1]

)
+ (0,0, [−1, 1]) .

Moreover, we can estimate the distance∥∥zA4 − zA
∥∥ ≤

∥∥zA4 − zA3
∥∥+

∥∥zA3 − zA
∥∥

≤ tq(1 + ∥L∥)(1 +M) + t(1 +M +M∥L∥)
≤ t(1 + q)(1 + ∥L∥)(1 +M)

∥∥zA4 − (x̄, ȳ, φ(x̄, ȳ))
∥∥

≤
∥∥zA4 − zA

∥∥+
∥∥zA − (x̄, ȳ, φ(x̄, ȳ))

∥∥
≤ t(1 + q)(1 + ∥L∥)(1 +M) + δ̄

≤ δ̄(1 + (1 + q)(1 + ∥L∥)(1 +M)).

Analogously,∥∥zB4 − zB
∥∥ ≤

∥∥zB4 − zB3
∥∥+

∥∥zB3 − zB
∥∥

≤ tq(1 + ∥L∥)2M + t(1 + ∥L∥)(3 +M +M∥L∥)
≤ t(1 + ∥L∥)(q(1 + ∥L∥)M + 3 +M +M∥L∥)

∥∥zB4 − (x̄, ȳ, φ(x̄, ȳ))
∥∥

≤
∥∥zB4 − zB

∥∥+
∥∥zB − (x̄, ȳ, φ(x̄, ȳ))

∥∥
≤ t(1 + ∥L∥)(q(1 + ∥L∥)M + 3 +M +M∥L∥) + δ̄

≤ δ̄(1 + (1 + ∥L∥)(q(1 + ∥L∥)M + 3 +M +M∥L∥)).

Let for n ≥ 4 the points zAn ∈ A, zBn ∈ B have been constructed satisfying

zAn − zBn ∈ zA − zB + tw − tmn − tVn

where mn ∈
(
qn−2(1 + ∥L∥)B̄X,0, 0

)
and Vn has the appearance

Vn := (1 + ∥L∥)
(
F + qF + · · ·+ qn−3F,0, G+ qG

+ · · ·+ qn−3G+ (q + · · ·+ qn−2)[−1, 1]
)
+ (0,0, [−1, 1]) .

Moreover, let∥∥zAn − zA
∥∥ ≤ t(1 + q + · · ·+ qn−3)(1 + ∥L∥)(1 +M) and∥∥zBn − zB

∥∥ ≤ t(q + · · ·+ qn−3)(1 + ∥L∥)2M + t(1 + ∥L∥)(3 +M +M∥L∥).
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Next we apply the induction step with ζ := qn−2(1 + ∥L∥), z̃A := zAn , z̃
B := zBn ,

m := mn and t. We denote the resulting z̃A,∗ by zAn+1 and z̃B,∗ by zBn+1. Thus we

have zAn+1 ∈ A, zBn+1 ∈ B and

zAn+1 − zBn+1 ∈ zAn − zBn + tmn − tqn−2(1 + ∥L∥)
(
F + qB̄X,0, G+ q[−1, 1]

)
⊂ zA − zB + tw − tmn − tVn + tmn

− tqn−2(1 + ∥L∥)
(
F + qB̄X,0, G+ q[−1, 1]

)
= zA − zB + tw − tVn+1 − t

(
qn−1(1 + ∥L∥)B̄X,0, 0

)
.

where

Vn+1 := (1 + ∥L∥)
(
F + qF + · · ·+ qn−2F,0, G+ qG

+ · · · +qn−2G+ (q + · · ·+ qn−1)[−1, 1]
)
+ (0,0, [−1, 1]) .

One can directly check that∥∥zAn+1 − zA
∥∥ ≤

∥∥zAn+1 − zAn
∥∥+

∥∥zAn − zA
∥∥

≤ tqn−2(1 + ∥L∥)(1 +M) + t(1 + q + · · ·+ qn−3)(1 + ∥L∥)(1 +M)

≤ t(1 + q + · · ·+ qn−2)(1 + ∥L∥)(1 +M)

and∥∥zBn+1 − zB
∥∥ ≤

∥∥zBn+1 − zBn
∥∥+

∥∥zBn − zB
∥∥

≤ tqn−2(1 + ∥L∥)2M + t(q + · · ·+ qn−3)(1 + ∥L∥)2M
+ t(1 + ∥L∥)(3 +M +M∥L∥)t(q + · · ·+ qn−2)(1 + ∥L∥)2M
+ t(1 + ∥L∥)(3 +M +M∥L∥).

Estimating the distance to the reference point, we have∥∥zAn+1 − (x̄, ȳ, φ(x̄, ȳ))
∥∥ ≤

∥∥zAn+1 − zA
∥∥+

∥∥zA − (x̄, ȳ, φ(x̄, ȳ))
∥∥

≤ δ̄
(
1 + (1 + q + · · ·+ qn−2)(1 + ∥L∥)(1 +M)

)
and ∥∥zBn+1 − (x̄, ȳ, φ(x̄, ȳ))

∥∥ ≤
∥∥zBn+1 − zB

∥∥+
∥∥zB − (x̄, ȳ, φ(x̄, ȳ))

∥∥
≤ δ̄

(
1 + (q + · · ·+ qn−2)(1 + ∥L∥)2M

+(1 + ∥L∥)(3 +M +M∥L∥)) .

Let us note that for every n ≥ 4 we have

F + qF + q2F + . . . qn−2F

=
1− qn−1

1− q

(
1− q

1− qn−1
· F + q · 1− q

1− qn−1
· F + · · ·+ qn−2 · 1− q

1− qn−1
· F

)
⊂ 1− qn−1

1− q
· conv F ⊂ 1

1− q
conv ({0} ∪ F ) =: P
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and similarly,

G+ qG+ q2G+ . . . qn−2G ⊂ 1− qn−1

1− q
· conv G ⊂ 1

1− q
conv ({0} ∪G) =: Q .

Thus for every n ≥ 4 it is true that

Vn ⊂ (1 + ∥L∥)
(
P,0, Q+

1

1− q
[−1, 1]

)
=: T .

The set T is a polytope (closed convex hull of finitely many points) contained
in X × {0} × R. Note that stopping at stage n for n sufficiently large we can
assume that the term mn ∈

(
qn−2(1 + ∥L∥)B̄X,0, 0

)
is as small as desired. It is

sufficient for our purposes. Nevertheless we prefer to work with the infinite version
of this construction. Indeed, the sequences {zAn }∞n=1 ⊂ A and {zBn }∞n=1 ⊂ B are
fundamental as the distances between two subsequent terms are majorized by a
geometric progression with ratio q ∈ (0, 1). Let

zAn −→n→∞ z̃A and zBn −→n→∞ z̃B .

Apparently z̃A ∈ A and z̃B ∈ B because A and B are closed. Keeping in mind that
Vn ⊂ T for every n ∈ N, we can let n tend to infinity in the inclusion

zAn − zBn ∈ zA − zB + tw − tT − t
(
qn−2(1 + ∥L∥)B̄X,0, 0

)
and obtain that

z̃A − z̃B ∈ zA − zB + tw − tT = zA − zB + tw − tT

because of the compactness of T . Letting n tend to infinity in the distance estimates,
we obtain the inequalities∥∥z̃A − zA

∥∥ ≤ t
1

1− q
(1 + ∥L∥)(1 +M) and∥∥z̃B − zB

∥∥ ≤ t
q

1− q
(1 + ∥L∥)2M + t(1 + ∥L∥)(3 +M +M∥L∥).

Therefore ∥∥z̃A − (x̄, ȳ, φ(x̄, ȳ))
∥∥ ≤ δ̄

(
1 +

1

1− q
(1 + ∥L∥)(1 +M)

)
< δ̃,

∥∥z̃B − (x̄, ȳ, φ(x̄, ȳ))
∥∥ ≤ δ̄

(
1 +

q

1− q
(1 + ∥L∥)2M + (1 + ∥L∥)(3 +M +M∥L∥)

)
< δ̃.

3rd step: Using the density assumption.
Let us remind that Hρ := {p1, p2, . . . , pk} is a finite ρ-net for T ,

{(ui, vi, wi)}ki=1 ⊂ Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ NR B̄

and {(L(qi), qi, ri)}ki=1 ⊂ S × (−∞, 0] are such that

∥pi − ((ui, vi, wi)− (L(qi), qi, ri))∥ < ρ for every i ∈ {1, 2, . . . , k},

(ui, vi, wi) = (u1i , v
1
i , w

1
i ) + (u2i , v

2
i , w

2
i ), (u

1
i , v

1
i , w

1
i ) ∈ Dη(x̄, ȳ, φ(x̄, ȳ))

and
(u2i , v

2
i , w

2
i ) ∈ T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ NR B̄
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for every i ∈ {1, 2, . . . , k}, where N is an upper bound for the norms of the elements
of T .

Now z̃A and z̃B are in δ̃ neighbourhood of (x̄, ȳ, φ(x̄, ȳ)). As z̃A− z̃B ∈ zA−zB+
tw − tT , there exists i ∈ {1, 2, . . . , k} such that

z̃A − z̃B ∈ zA − zB + tw − tpi + tρB̄ .

Therefore

z̃A − z̃B ∈ zA − zB + tw − t(ui, vi, wi) + t(L(qi), qi, ri) + 2tρB̄ .

Now the definition of Dη(x̄, ȳ, φ(x̄, ȳ)) yields the existence of a point z̄A1 ∈ A with

z̄A1 ∈ z̃A + t(u1i , v
1
i , w

1
i )− tη∥u1i − L(v1i )∥B̄ .

Analogously, the definition of the Clarke tangent cone T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) yields the
existence of a point z̄A ∈ A with

z̄A ∈ z̄A1 + t(u2i , v
2
i , w

2
i )− tηB̄ .

The last two inclusions give us

z̄A ∈ z̃A + t(ui, vi, wi)− tη(1 + ∥u1i − L(v1i )∥)B̄ .

Apparently we have

z̄B := z̃B + t(L(qi), qi, ri) ∈ B .

Then we have

z̄A − z̄B ∈ z̃A − z̃B + t(ui, vi, wi)− t(L(qi), qi, ri)− tη(1 + ∥u1i − L(v1i )∥)B̄
⊂ zA − zB + tw − t(ui, vi, wi) + t(L(qi), qi, ri) + 2tρB̄

+ t(ui, vi, wi)− t(L(qi), qi, ri)− tη(1 + ∥u1i − L(v1i )∥)B̄
= zA − zB + tw − tη(1 + ∥u1i − L(v1i )∥)B̄+ 2tρB̄ .

Therefore ∥∥z̄A − z̄B
∥∥ ≤

∥∥zA − zB + tw
∥∥+ tη(1 + ∥u1i − L(v1i )∥) + 2tρ

=
∥∥zA − zB

∥∥− t
(
1− η(1 + ∥u1i − L(v1i )∥)− 2ρ

)
.

Let pi = (pXi ,0, pRi ). Because

∥pi − ((ui, vi, wi)− (L(qi), qi, ri))∥ < ρ,

we have ∥qi − vi∥ < ρ, and hence∥∥pXi − (ui − L(vi))
∥∥ ≤

∥∥pXi − (ui − L(qi))
∥∥+ ∥L(vi)− L(qi)∥ ≤ (1 + ∥L∥)ρ .

Hence

∥u1i − L(v1i )∥ ≤ ∥ui − L(vi)− u1i − L(v1i )∥+ ∥ui − L(vi)− pXi ∥+ ∥pXi ∥
= ∥u2i − L(v2i )∥+ ∥ui − L(vi)− pXi ∥+ ∥pXi ∥
≤ (1 + ∥L∥)NR+ (1 + ∥L∥)ρ+max{∥p∥ : p ∈ T}
≤ (1 + ∥L∥) (ρ+NR) +N.

Thus we obtain that∥∥z̄A − z̄B
∥∥ ≤

∥∥zA − zB
∥∥− t (1− η (N + (1 + ∥L∥) (ρ+NR))− 2ρ) .
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Then the coefficient α := 1−η (N + (1 + ∥L∥) (ρ+NR))−2ρ is positive because of
the choice of the constants η and ρ. As the set {(ui, vi, wi)}ki=1 ∪ {(L(qi), qi, ri)}ki=1
is bounded, this proves tangential transversality of A and B at (x̄, ȳ, φ(x̄, ȳ)). □

4. A Lagrange multiplier rule

Lemma 4.1. Let Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ R B̄ − S × (−∞, 0] be
dense in the closed unit ball B̄ of X × Y × R. Then, for each ε > 0 there exist
p̃ = (ũ, ṽ, w̃) ∈ Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ 2R B̄ and s̃ = (L(q̃), q̃, r̃) ∈
S × (−∞, 0] with unit norm such that ∥p̃− s̃∥ < ε and ∥ũ− L(ṽ)∥ < ε.

Proof. Let us fix an arbitrary ε ∈ (0, 1). We consider the vector z := (0,0,−1) ∈
X × Y × R. Now the density of

Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩R B̄− S × (−∞, 0]

yields the existence of two vectors

p = (u, v, w) ∈ Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩R B̄

and s = (L(q), q, r) ∈ S × (−∞, 0], such that

∥z − (p− s) ∥ <
ε

4max{1, ∥L∥}
,

hence

∥u− L(q)∥ <
ε

4
, ∥v − q∥ <

ε

4max{1, ∥L∥}
, | − 1− (w − r)| < ε

2
.

As s = (L(q), q, r) ∈ S × (−∞, 0], we have (L(q), q, r − 1) ∈ S × (−∞, 0]. Also,

∥(L(q), q, r − 1)∥ ≥ |r − 1| ≥ 1

since r ≤ 0. Moreover, ∥(u, v, w)∥ ≥ |w| ≥ |r − 1| − ε/2 > 1/2, and hence

p̃ :=
(u, v, w)

∥(u, v, w)∥
∈ Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ 2R B̄

and s̃ :=
(L(q), q, r − 1)

∥(L(q), q, r − 1)∥
∈ S × (−∞, 0] .

Therefore, if p̃ := (ũ, ṽ, w̃), we have

∥ũ− L(ṽ)∥ =

∥∥∥∥ u

∥(u, v, w)∥
− L

(
v

∥(u, v, w)∥

)∥∥∥∥
=

∥u− L(v)∥
∥(u, v, w)∥

≤ 2 (∥u− L(q)∥+ ∥L(q)− L(v)∥)

< 2
(ε
4
+ ∥L∥ ∥v − q∥

)
≤ ε

2
.
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Apparently, ∥p̃∥ = 1 and ∥s̃∥ = 1 . We estimate

∥p̃− s̃∥ =

∥∥∥∥ (u, v, w)

∥(u, v, w)∥
− (L(q), q, r − 1)

∥(L(q), q, r − 1)∥

∥∥∥∥
≤

∥∥∥∥ (u, v, w)

∥(u, v, w)∥
− (u, v, w)

∥(L(q), q, r − 1)∥

∥∥∥∥
+

∥∥∥∥ (u, v, w)

∥(L(q), q, r − 1)∥
− (L(q), q, r − 1)

∥(L(q), q, r − 1)∥

∥∥∥∥
= ∥(u, v, w)∥

∣∣∣∣ 1

∥(u, v, w)∥
− 1

∥(L(q), q, r − 1)∥

∣∣∣∣
+

∥(u, v, w)− (L(q), q, r − 1)∥
∥(L(q), q, r − 1)∥

=
|∥(L(q), q, r − 1)∥ − ∥(u, v, w)∥|

∥(L(q), q, r − 1)∥
+

∥(u, v, w)− (L(q), q, r − 1)∥
∥(L(q), q, r − 1)∥

≤ 2
∥(u, v, w)− (L(q), q, r − 1)∥

∥(L(q), q, r − 1)∥
≤ 2max{∥u− L(q)∥, ∥v − q∥, |w − (r − 1)|} < ε .

The proof is complete. □

Lemma 4.2. (Nonseparation result) Let A be the epigraph epi φ and B be the set
(S + (x̄, ȳ))×(−∞, φ(x̄, ȳ)]. Let A and B be tangentially transversal at (x̄, ȳ, φ(x̄, ȳ))
with constants δ > 0, α > 0 and Ω > 0. Let there exist vA := (u, v, w) with unit

norm that belongs to the sum of the cone Dη(x̄, ȳ, φ(x̄, ȳ)) and T̂epi φ(x̄, ȳ, φ(x̄, ȳ))∩
2R B̄, vB := (L(q), q, r) with unit norm that belongs to S × (−∞, 0] such that

η
(
1 +

α

2Ω
+ (1 + ∥L∥)2R

)
<

α

2Ω
, ∥vA − vB∥ <

α

2Ω
and ∥u− L(v)∥ <

α

2Ω
.

Then A and B can not be locally separated at (x̄, ȳ, φ(x̄, ȳ)).

Proof. We set z0 := (x̄, ȳ, φ(x̄, ȳ)). Since vA := (u, v, w) belongs toDη(x̄, ȳ, φ(x̄, ȳ))+

T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ 2R B̄ there exist vA1 := (u1, v1, w1) ∈ Dη(x̄, ȳ, φ(x̄, ȳ)) and

vA2 := (u2, v2, w2) ∈ T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ 2R B̄ such that

(u, v, w) = (u1, v1, w1) + (u2, v2, w2).

The definitions of the cone Dη(x̄, ȳ, φ(x̄, ȳ)) and the Clarke tangent cone imply the

existence δ̃ > 0 such that for every t ∈ [0, δ̃] it holds true that

zA1 (t) := z0 + tvA1 − tη∥u1 − L(v1)∥z1t ∈ A for some z1t ∈ B̄

and

zA(t) := zA1 (t) + tvA2 − tηz2t ∈ A for some z2t ∈ B̄.

From these two inclusions we obtain that

zA(t) = z0 + tvA − tη(1 + ∥u1 − L(v1)∥)zt ∈ A for some zt ∈ B̄.
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Also,

∥u1 − L(v1)∥ ≤ ∥u1 + u2 − L(v1 + v2)∥+ ∥u2 − L(v2)∥

≤ ∥u− L(v)∥+ (1 + ∥L∥)2R ≤ α

2Ω
+ (1 + ∥L∥)2R.

Apparently
zB(t) := z0 + tvB ∈ B for every t > 0 .

Clearly,
∥zB(t)− z0∥ = t .

Using Theorem 2.3 from [2], we obtain the existence of zAB(t) ∈ A ∩ B with
∥zAB(t) − zA(t)∥ ≤ Ω

α∥z
A(t) − zB(t)∥ and ∥zAB(t) − zB(t)∥ ≤ Ω

α∥z
A(t) − zB(t)∥.

Therefore

∥zAB(t)− zB(t)∥ ≤ Ω

α
∥zA(t)− zB(t)∥

=
Ω

α
t
∥∥vA − vB − η(1 + ∥u1 − L(v1)∥)zt

∥∥
≤ Ω

α
· ∥zB(t)− z0∥ ·

(
∥vA − vB∥+ η(1 + ∥u1 − L(v1)∥

)
<

Ω

α
· ∥zB(t)− z0∥ ·

( α

2Ω
+ η

(
1 +

α

2Ω
+ (1 + ∥L∥)2R

))
≤ Ω

α
· ∥zB(t)− z0∥ ·

( α

2Ω
+

α

2Ω

)
= ∥zB(t)− z0∥.

Therefore zAB(t) ̸= z0. Moreover,

∥zAB(t)− z0∥ ≤ ∥zB(t)− z0∥+ ∥zAB(t)− zB(t)∥ < 2∥zB(t)− z0∥ ≤ 2t

which tends to zero as t tends to zero. Thus zAB(t) → z0 as t tends to zero, and
the sets A and B can not be locally separated at z0. □

Recall that X and Y are Banach spaces and φ : X × Y −→ R∪ {+∞} is a lower
semi-continuous function, L : Y −→ X a bounded linear operator and

S := {(Ly, y) ∈ X × Y : y ∈ Y }
be a closed linear subspace of X × Y . Let us consider the optimization problem

(4.1) φ(x, y) → min subject to (x, y) ∈ S

Let the following assumptions hold true:

(A1) “variational condition”: there exist a positive real δ > 0, an uniform
tangent set D that is intersection of a cone and a closed ball centered at the origin,
and a “correcting set” U ⊂ X × Y × R (having the appearance U = (UX , UY , UR))
such that for each t ∈ [0, δ] we have

epi φ ∩
(
(x̄, ȳ, φ(x̄, ȳ)) + δB̄

)
+ t

(
B̄X,0, 0

)
⊂ epi φ+ tU + tD .

(A2) “measure of noncompactness condition”: The set UR ⊂ R is bounded
and

µ (UX − L(UY )) < 1
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where µ denotes the ball measure of noncompactness (in X).

Theorem 4.3 (Lagrange multiplier rule). Let (x̄, ȳ) be a solution of the problem
(4.1). Let the Assumptions (A1) and (A2) hold true. Then for each ε > 0 there
exists η > 0 such that for every closed convex cone Cepi φ(x̄, ȳ, φ((x̄, ȳ)) which is
contained in the cone Dη(x̄, ȳ, φ(x̄, ȳ)) there exists a triple (ξ1, ξ2, ξ3) ∈ X∗×Y ∗×R
such that

(i) ∥(ξ1, ξ2, ξ3)∥ = 1, hence it is not trivial;
(ii) ξ3 ≥ 0;
(iii) ⟨ξ1, u⟩ + ⟨ξ2, v⟩ = 0 for every (u, v) ∈ S;
(iv) ⟨ξ1, u⟩ + ⟨ξ2, v⟩ + ξ3w ≥ 0 for every (u, v, w) ∈ Cepi φ(x̄, ȳ, φ((x̄, ȳ));

(v) ⟨ξ1, u⟩ + ⟨ξ2, v⟩ + ξ3w ≥ −ε for every (u, v, w) ∈ T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ B̄.

Proof. Let us assume that there exists R1 > 0 and η1 > 0 such that the set

Dη1(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ R1 B̄− S × (−∞, 0]

is dense in the closed unit ball B̄ and η1 > 0 is so small that

η1 <
1

(1− q)−1(1 + ∥L∥)(1 +M + ∥L∥M + q)(1 + (1 + ∥L∥)R1)
,

where M := 2 sup{∥z∥ : z ∈ U ∪D} + 1. Applying Theorem 3.2, we obtain that
the sets epi φ and S × (−∞, φ(x̄, ȳ)] are tangentially transversal at (x̄, ȳ, φ((x̄, ȳ))
with constants δ > 0, α > 0 and Ω > 0.

If there exist R2 > 0 and η2 > 0 such that η2 > 0 is so small that

η2

(
1 +

α

2Ω
+ (1 + ∥L∥)2R2

)
<

α

2Ω

and the set

Dη2(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ R2 B̄− S × (−∞, 0]

is dense in the closed unit ball B̄, then according to Lemma 4.1, there exist

p̃ = (ũ, ṽ, w̃) ∈ Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ 2R B̄

and s̃ = (L(q̃), q̃, r̃) ∈ S × (−∞, 0] with unit norm such that

∥p̃− s̃∥ <
α

2Ω
and ∥ũ− L(ṽ)∥ <

α

2Ω
.

Applying Lemma 4.2, we obtain that the sets epi φ and S×(−∞, φ(x̄, ȳ)] can not be
locally separated at (x̄, ȳ, φ(x̄, ȳ)). But this contradicts the assumption that (x̄, ȳ)
is a solution of the problem (4.1).

The obtained contradiction shows that at least one of the above written assump-
tions is wrong. Since the nature of these assumptions is very similar, we derive the
conclusion: For each R > 0 there exists η > 0, such that the set

Dη(x̄, ȳ, φ(x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ R B̄− S × (−∞, 0]

is NOT dense in the closed unit ball B̄.
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We fix R :=
1

ε
and η > 0 with the above property. Let Cepi φ(x̄, ȳ, φ((x̄, ȳ)) be

an arbitrary closed convex cone contained in Dη(x̄, ȳ, φ(x̄, ȳ)). It is straightforward
that

Cepi φ(x̄, ȳ, φ((x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ R B̄− S × (−∞, 0]

is not dense in the closed unit ball B̄. Then there exist (x0, y0, z0) ∈ X × Y × R
and ε > 0 such that

Q := (x0, y0, z0) + εB̄ ⊂ B̄

and(
Cepi φ(x̄, ȳ, φ((x̄, ȳ)) + T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ RB̄− S × (−∞, 0]

)
∩Q = ∅ .

Clearly, P and Q can be strongly separated because Q has nonempty interior.
Hence, there exists a non-zero triple (ξ1, ξ2, ξ3) ∈ X∗ × Y ∗ × R and a real α such
that

⟨ξ1, u1⟩ + ⟨ξ2, v1⟩ + ξ3w1 ≥ α > ⟨ξ1, u2⟩ + ⟨ξ2, v2⟩ + ξ3w2

for all (u1, v1, z1) ∈ P and (u2, v2, w2) ∈ Q. Clearly, without loss of generality we
may think that ∥(ξ1, ξ2, ξ3)∥ = 1. Since (0,0, 0) lies in P , we have that α ≤ 0.
Hence,

(4.2) ⟨ξ1, u′ + d1 − u′′⟩+ ⟨ξ2, v′ + d2 − v′′⟩+ ξ3(w
′ + d3 − w′′) ≥ α

for all (u′, v′, w′) ∈ Cepi φ(x̄, ȳ, φ((x̄, ȳ)), (d1, d2, d3) ∈ T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ B̄ and
(u′′, v′′, w′′) ∈ S×(−∞, 0]. By taking d1 = u′ = u′′ = 0, d2 = v′ = v′′ = 0, d3 = w′ =
0 and w′′ < 0 we obtain that ξ3 ≥ 0. By taking (u, v, w) ∈ Cepi φ(x̄, ȳ, φ((x̄, ȳ)) and
(d1, d2, d3) = (u′′, v′′, w′′) = 0X×Y×R, we obtain (iv). We take an arbitrary element

(u, v, w) ∈ T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ B̄ and (u′, v′, w′) = (u′′, v′′, w′′) = 0X×Y×R. Then

R(u, v, w) ∈ T̂epi φ(x̄, ȳ, φ(x̄, ȳ)) ∩ R B̄ and we obtain

⟨ξ1, Ru⟩ + ⟨ξ2, Rv⟩ + ξ3Rw ≥ α hence ⟨ξ1, u⟩ + ⟨ξ2, v⟩ + ξ3w ≥ αε

which implies (v) because

α ≥ ⟨ξ1, x0⟩ + ⟨ξ2, y0⟩ + ξ3z0 ≥ −∥(ξ1, ξ2, ξ3)∥ · ∥(x0, y0, z0)∥ > −1.

By taking (u, v, 0) ∈ S × (−∞, 0] and (u′, v′, w′) = (d1, d2, d3) = 0X×Y×R, we
obtain

⟨ξ1, u⟩ + ⟨ξ2, v⟩ ≥ α.

Because S is a linear space, the last inequality implies (iii). This completes the
proof. □
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