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and/or nonsmooth functions with their simple (say, piecewise-linear and/or smooth)
approximations, and the set-valued mapping G with a sequence of its single-valued
approximations, etc. For this reason, we have to develop methods for limit (or non-
stationary) problems, where only sequences of approximations are known instead of
the exact values.

There exist a number of methods for limit optimization and variational inequality
problems, but they are based essentially upon convexity / monotonicity assumptions
and restrictive concordance rules for accuracy, approximation, penalty, and iteration
parameters, which creates serious difficulties for their implementation; see e.g. [1,2,
5, 8, 19] and the references therein.

In [11–13, 15], several penalty based methods for limit optimization and varia-
tional inequality problems were suggested. They do not require special concordance
of parameters and their convergence was established under coercivity conditions
without any monotonicity assumptions. However, the main problem consists in cre-
ation of implementable iterative methods within this approach. They should utilize
only approximate solutions within some evaluated accuracy and generate sequences
tending to a solution of the initial limit problem. A two-level iterative method based
on inexact solutions of approximate problems was suggested in [15]. However, it
involves exact solution of an auxiliary problem, which is implicit with respect to
the penalty function of the feasible set, which may be too difficult for many ap-
plications. Besides, its convergence is derived from rather complicated coercivity
conditions.

In this paper, we intend to create a simple iterative method, which is easily
implementable, for limit problems of form (1.1)–(1.2). Its convergence it proved
under rather simple coercivity conditions. This method also involves an inexact
solution of approximate problems and does not require special concordance of the
parameters or monotonicity assumptions.

More precisely, we intend to describe an iterative method for the case when we
have only some sequences, i.e.

(i) sets {Vl} approximate the set V ;
(ii) auxiliary penalty functions Pl : Vl → R approximate some penalty function

P : V → R for the set W ;
(iii) single-valued gradient mappings {Gl} approximate the mapping G.

Therefore, we consider VI (1.1)–(1.2) as an unknown limit problem. Besides,
the precision of the above approximation is not known. We also notice that the
approximation condition (iii) implies certain potentiality properties of the mapping
G, but no monotonicity will be assumed.

We first suggest to find for each l an inexact solution of the auxiliary penalized
mixed variational inequality (MVI, for short): find z̃l ∈ Vl such that

(1.3) 〈Gl(z̃
l), v − z̃l〉+ τl[Pl(v)− Pl(z̃

l)] ≥ 0 ∀y ∈ Vl,

where τl > 0, with a descent method in a finite number of inner iterations. Clearly,
any descent method for the above MVI will require either monotonicity or poten-
tiality of the mapping Gl for convergence; see e.g. [6,9]. However, we do not require
the monotonicity of Gl, hence G, in this work. Therefore, we impose the poten-
tiality condition on Gl, that is, our MVIs (1.3), hence (1.1), represent necessary



ADAPTIVE PENALTY METHOD 1349

optimality conditions for non-convex optimization problems, but the joint mono-
tonicity/convexity does not hold here. For this reason, the solution set of MVI
(1.3) need not be convex, but we suggest to utilize a gap function and show that
it enables one to evaluate a desired accuracy even in the non-monotone case that
yields the general convergence. At the same time, the direct solution of even the
partially linearized problem, which is implicit with respect to the penalty function
Pl, may be very expensive. For this reason, we deal with some simplified problem,
which still enables us to find an approximate solution of MVI (1.3). In such a way
we create a two-level convergent iterative method for the initial limit problem. In
addition, we give new weak conditions for existence of a solution for the limit VI
(1.1)–(1.2).

2. Auxiliary properties

This section presents some results from the theory of optimization and varia-
tional inequalities that will be used in the next sections. Let us consider first the
optimization problem

(2.1) min
x∈X

→ µ(x),

for some function µ : Rn → R and convex set X ⊆ Rn, the set of its solutions
is denoted by X∗(µ). If the function µ is non differentiable, we should use one of
various extensions of the gradient. Namely, we take the known concept proposed
by F.H. Clarke; see [4]. The upper sub-differential of the function µ at a point x is
then defined as follows:

∂↑µ(x) = {g ∈ Rn | 〈g, p〉 ≤ µ↑(x, p)},
where µ↑(x, p) is the proper upper derivative. It is known that

µ↑(x, p) = lim sup
y→x,α↘0

((µ(y + αp)− µ(y))/α)

in the case where µ is Lipschitz continuous in a neighborhood of x. By definition,
∂↑µ(x) is then convex and closed, so that we have

µ↑(x, p) = sup
g∈∂↑µ(x)

〈g, p〉.

If the upper derivative coincides with the usual directional derivative, i.e. µ↑(x; p) =
µ′(x; p) at each point x ∈ X and for any p, the function µ is called regular on X.
If µ is convex, then ∂↑µ(x) coincides with the sub-differential ∂µ(x) in the sense of
Convex Analysis, i.e.,

∂µ(x) = {g ∈ Rn | µ(y)− µ(x) ≥ 〈g, y − x〉 ∀y ∈ Rn},
besides, µ is then regular.

Together with problem (2.1) we consider the following set-valued VI: Find a point
x∗ ∈ X such that

(2.2) ∃g∗ ∈ ∂↑µ(x∗), 〈g∗, x− x∗〉 ≥ 0 ∀x ∈ X;

cf. (1.1). We denote by X0(µ) the solution set of VI (2.2). Solutions of VI (2.2) are
called stationary points of (2.1) due to the known necessary optimality condition;
see e.g. [4, 10].
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Lemma 2.1. Suppose that µ : X → R is a locally Lipschitz function. Then:

(i) X∗(µ) ⊆ X0(µ).
(ii) if µ is convex, then X∗(µ) = X0(µ).

Recall that a function f : X → R is said to be

(a) upper (lower) semicontinuous on K ⊆ X, if for each sequence {xk} → x̄,
xk ∈ K we have lim supk→∞ f(xk) ≤ f(x̄) (lim infk→∞ f(xk) ≥ f(x̄));

(b) coercive on K ⊆ X if f(x) → +∞ as ‖x‖ → ∞, x ∈ K.

Next, a sequence of sets {Xk} is said to be Kuratowski convergent to a set X (see
e.g. [16, p.145]) if and only if

(a) for each sequence {xks} → x̄, xks ∈ Xks we have x̄ ∈ X;
(b) for each point x̄ ∈ X there exists a sequence {xk} → x̄ with xk ∈ Xk.

Now we describe a general scheme of descent methods with an inexact Armijo
type line-search for problem (2.2) from [10, Section 9.3]. The general scheme uses
a mapping x 7→ y(x) which associates a point y(x) ∈ X to an arbitrary point
x ∈ X. Any particular method within the scheme is defined by a specialization of
this mapping.

General Scheme (GDS). We choose a point x0 ∈ X and numbers β ∈ (0, 1) and
γ ∈ (0, 1).

At the k-th iteration, k = 0, 1, . . . , we have a point xk ∈ X, find the point
yk = y(xk). If xk = yk, stop. Otherwise we set dk = yk − xk and find m as the
smallest non-negative integer for which the following inequality holds

µ(xk + γmdk)− µ(xk) ≤ −βγm‖dk‖2.

Afterwards we set λk = γm, xk+1 = xk + λkd
k, k = k + 1 and go to the next

iteration.

In order to justify convergence based on General Scheme (GDS) we give the
corresponding result from [10, Theorem 9.15].

Proposition 2.2. Let X be a convex and closed set in Rn and µ : X → R be a
coercive, locally Lipschitz, and regular function on X. Suppose that the iterative
process is created in accordance of the rules of General Scheme (GDS) and the
following conditions are fulfilled:

(a) the mapping x 7→ y(x) is continuous on the set X;
(b) any fixed point of the mapping x 7→ y(x) belongs to the set X0(µ);
(c) for any point x ∈ X the inequality is true

µ′(x; y(x)− x) ≤ −(1/α)‖y(x)− x‖2, where αβ < 1.

Then the following assertions are true.

(i) If a stop occurs, xk ∈ X0(µ).
(ii) The line-search procedure is finite at any iteration, i.e. λk > 0 for k =

0, 1, . . .



ADAPTIVE PENALTY METHOD 1351

(iii) The sequence {xk} has limit points, all of these points belong to the set
X0(µ), and

(2.3) lim
k→∞

‖y(xk)− xk‖ = 0.

3. Descent method for a stationary problem with composition of
functions

In this section, we create a method for solving the stationary VI (2.2), where the
function µ has the form:

(3.1) µ(x) = σ(x) + θ(B(x)),

where σ : Rn → R and θ : Rm → R are given functions and B : Rn → Rm is a given
mapping. In this case, we will use the following assumptions.

(A1) X is a nonempty, convex, and closed set in Rn.
(A2) σ : Rn → R is a differentiable function, θ : Rm → R is a differentiable,

convex, and isotone function on a convex set Y ⊇ B(X).
(A3) B : Rn → Rm is a continuous mapping with convex components Bi : Rn →

R, i = 1, . . . ,m.

Recall that the function θ : Rm → R is called isotone on the set Y , if for any
points u, v ∈ Y, u ≥ v it holds that θ(u) ≥ θ(v), hereinafter the inequalities for
vectors are understood coordinate-wise. Under these assumptions, the function
θ ◦ B is convex, but not necessarily differentiable, hence the function µ is regular.
Moreover, using the usual rules of differentiation of complex functions, one can
explicitly determine the upper sub-differential and the directional derivative of the
function µ; see, e.g. [4, Ch.2].

Lemma 3.1. Let conditions (A1)–(A3) be fulfilled. Then at any point x ∈ X
there is the upper sub-differential of the function µ, defined by the formula

(3.2) ∂↑µ(x) = σ′(x) + [∂B(x)]⊤θ′(B(x)),

where ∂B(x) is the generalized Jacobian of the mapping B at a point x, as well as
the derivative in any direction d:

(3.3) µ′(x; d) = 〈σ′(x), d〉+ max
F∈∂B(x)

〈F⊤θ′(B(x)), d〉.

Recall that rows of the generalized Jacobian ∂B(x) are sub-differentials ∂Bi(x)
of functions Bi, i = 1, . . . ,m. Then, the set-valued VI (2.2), (3.2) is equivalently
rewritten as follows: Find a point x∗ ∈ X such that

(3.4) ∃F ∗ ∈ ∂B(x∗), 〈σ′(x∗), y − x∗〉+ 〈θ′(B(x∗)), F ∗(y − x∗)〉 ≥ 0 ∀x ∈ X.

Under the above assumptions it is equivalent to the following MVI: Find a point
x∗ ∈ X such that

(3.5) 〈σ′(x∗), y − x∗〉+ θ(B(y))− θ(B(x∗)) ≥ 0 ∀y ∈ X;

see e.g. [10, Proposition 12.2]. Following the approach from [14], we define some
other MVI: Find a point x∗ ∈ X such that

(3.6) 〈σ′(x∗), y − x∗〉+ 〈θ′(B(x∗)), B(y)−B(x∗)〉 ≥ 0 ∀y ∈ X;
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the set of its solutions is denoted by X0. We now show equivalence of all these
problems.

Proposition 3.2. Let conditions (A1)–(A3) be satisfied. Then problems (3.4),
(3.5), and (3.6) are equivalent.

Proof. It is sufficient to show equivalence of problems (3.5) and (3.6). Let x∗ be
a solution of problem (3.6). We will choose arbitrarily a point y ∈ X and set
h∗ = B(x∗), h = B(y). Then, by virtue of convexity of the function θ, we have

0 ≤ 〈σ′(x∗), y − x∗〉+ 〈θ′(h∗), h− h∗〉 ≤ 〈σ′(x∗), y − x∗〉+ θ(h)− θ(h∗),

i.e. x∗ solves (3.5). Back, let x∗ be a solution of problem (3.5). Choose an arbitrary
point y ∈ X, a number λ ∈ (0, 1) and set x(λ) = λy + (1 − λ)x∗, h∗ = B(x∗),
h = B(y). Then we have

0 ≤ 〈σ′(x∗), x(λ)− x∗〉+ θ(B(x(λ)))− θ(B(x∗))

= λ〈σ′(x∗), y − x∗〉+ θ(B(x(λ)))− θ(B(x∗)).

Due to the convexity of each Bi we have

B(x(λ)) ≤ λB(y) + (1− λ)B(x∗),

hence

θ(B(x(λ))− θ(B(x∗)) ≤ θ (λh+ (1− λ)h∗)− θ(h∗).

It follows that

0 ≤ 〈σ′(x∗), y − x∗〉+ (1/λ) [θ (λh+ (1− λ)h∗)− θ(h∗)] .

Letting λ → 0 we obtain

0 ≤ 〈σ′(x∗), y − x∗〉+ 〈θ′(h∗), h− h∗〉
= 〈σ′(x∗), y − x∗〉+ 〈θ′(B(x∗)), B(y)−B(x∗)〉,

i.e. x∗ ∈ X0. □
Let’s fix a number α > 0 and consider the auxiliary optimization problem:

(3.7) min
y∈X

→
{
〈σ′(x), y〉+ 〈θ′(B(x)), B(y)〉+ (2α)−1‖y − x‖2

}
for some point x ∈ X. Under the assumptions made, the goal function in (3.7)
is continuous and strongly convex, so problem (3.7) has a unique solution which
we denote by y(x), thus defining the single-valued mapping x 7→ y(x). Instead of
problem (3.7) it will be convenient to use also its optimality condition:

(3.8)
〈σ′(x), z − y(x)〉+ α−1〈y(x)− x, z − y(x)〉
+〈θ′(B(x)), B(z)−B(y(x))〉 ≥ 0 ∀z ∈ X.

The equivalence of (3.7) and (3.8) under conditions (A1)–(A3) follows e.g. from
[18, Proposition 2.2.2].

Now we get a few basic properties of the mapping x 7→ y(x).

Lemma 3.3. Let conditions (A1)–(A3) be satisfied. Then the following statements
are true.

(i) The mapping x 7→ y(x) is continuous on the set X.
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(ii) At any point x ∈ X the inequality holds

(3.9) µ′(x; y(x)− x) ≤ −(1/α)‖y(x)− x‖2.
(iii) The set of fixed points of the mapping x 7→ y(x) on X coincides with the set

of solutions of problem (3.5).

Proof. Assertion (i) follows from the properties of the marginal mapping; see [7,
Corollaries 8.1 and 9.1]. Next, assuming z = x in (3.8), we obtain

(3.10) 〈σ′(x), y(x)− x〉+ 〈θ′(B(x)), B(y(x))−B(x)〉 ≤ −α−1‖y(x)− x‖2.
In addition, due to the convexity of the function Bi we have

〈si(x), y(x)− x〉 ≤ Bi(y(x))−Bi(x) ∀si(x) ∈ ∂Bi(x);

whence
S(x)(y(x)− x) ≤ B(y(x))−B(x) ∀S(x) ∈ ∂B(x).

Since the function θ is isotone, θ′(B(x)) ≥ 0, hence

〈θ′(B(x)), S(x)(y(x)− x)〉 ≤ 〈θ′(B(x)), B(y(x))−B(x)〉 ∀S(x) ∈ ∂B(x).

Using these relations in (3.10) and considering (3.3), we obtain (3.9). Assertion (ii)
is true.

Let x∗ = y(x∗), then x∗ ∈ X. From (3.8) with x = x∗ it now follows that
x∗ ∈ X0. Conversely, if x∗ ∈ X0, but x∗ 6= y(x∗), then from (3.9) with x = x∗ we
get

µ′(x∗; y(x∗)− x∗) < 0.

From (3.3) it now follows that x∗ is not a solution of problem (3.4). Due to Propo-
sition 3.2, problems (3.4), (3.5), and (3.6) are equivalent. Therefore, Assertion (iii)
is true. □

Now we can create a descent method with Armijo type line-search based on
General Scheme (GDS) for solving problem (3.5) or (3.6).

Method (CD). Choose a point x0 ∈ X and numbers α > 0, β ∈ (0, 1), and
γ ∈ (0, 1).

At the k-th iteration, k = 0, 1, . . . , we have a point xk ∈ X, calculate y(xk)
and set dk = y(xk) − xk. If dk = 0, stop. Otherwise we find m as the smallest
non-negative integer such that

µ(xk + γmdk) ≤ µ(xk)− βγm‖dk‖2,
set λk = γm, xk+1 = xk + λkd

k and go to the next iteration.

Due to utilization of the special auxiliary problem (3.7) for the direction finding,
where only the smooth function θ is linearized, the method can be called composite
descent one. This method was proposed in [14] for convex optimization problems.
Lemma 3.3 shows that all the conditions of Proposition 2.2 are satisfied, so conver-
gence properties of this method are obtained directly from Proposition 2.2.

Theorem 3.4. Let conditions (A1)–(A3) be fulfilled, the sequence {xk} be con-
structed by Method (CD), where β < α−1, and let µ : X → R be a coercive function.
Then the following statements are true.
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(i) If a stop occurs, xk ∈ X0.
(ii) The line-search procedure is finite at any iteration, i.e. λk > 0 for k =

0, 1, . . .
(iii) The sequence {xk} has limit points, and all of these points belong to the set

X0, and relation (2.3) holds true.

Note that the condition β < α−1 is not restrictive. For example, if one takes
α = 1, it can be simply removed.

We intend to find an approximate solution of problem (3.5) in a finite number of
iterations and to estimate the achieved precision via a suitable gap function. Let
us define the function

(3.11) φ(x) = max
y∈X

Φ(x, y),

where

(3.12) Φ(x, y) = 〈σ′(x), x− y〉+ 〈θ′(B(x)), B(x)−B(y)〉 − (2α)−1 ‖x− y‖2 .
Calculation of the value of φ(x) is obviously equivalent to the solution of auxiliary
problem (3.7), i.e.

φ(x) = Φ(x, y(x)).

We obtain the basic properties of this function. First of all, we note that, by
definition, φ(x) ≥ 0 for all x ∈ X.

Lemma 3.5. Let conditions (A1)–(A3) be fulfilled and let a point x ∈ X be fixed.
Then:

(i) it holds that

(3.13) φ(x) ≥ (2α)−1‖x− y(x)‖2;
(ii) the following relations are equivalent:

(a) φ(x) = 0,
(b) x = y(x),
(c) x is a solution of problem (3.5).

Proof. Indeed, using relation (3.8) with z = x, we have

φ(x) = Φ(x, y(x)) ≥ (2α)−1‖x− y(x)‖2,
that is, relation (3.13) is true. So from φ(x) = 0 it follows that x = y(x), hence,
(a) =⇒ (b). The inverse implication (b) =⇒ (a) follows from the definition because
Φ(x, x) = 0. The equivalence of (b) ⇐⇒ (c) has been shown in Lemma 3.3, part
(iii). □

Thus, the function φ is a gap function for problem (3.5), i.e. this problem is
equivalent to the optimization problem

min
x∈X

→ φ(x),

and the value φ(x) gives an error estimate at x ∈ X.

Corollary 3.6. Let all the conditions of Theorem 3.4 be satisfied. Then, for any
number ε > 0 there exists an iteration number k = k(ε) of Method (CD) such that
φ(xk) ≤ ε.
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Proof. According to Lemma 3.3, part (i), the function φ is continuous on the set
X under the conditions of the above theorem. Besides, the sequence {xk} is now
bounded. From Lemma 3.5 and Theorem 3.4, part (iii), it follows that

lim
k→∞

φ(xk) = 0.

Therefore, the assertion is true. □
We now obtain an error estimate with respect to problem (3.5).

Proposition 3.7. Let conditions (A1)–(A3) be fulfilled. Then the following in-
equality hold:

(3.14)
〈σ′(x), z − x〉+ θ(B(z))− θ(B(x)) + α−1〈y(x)− x, z − x〉
≥ −φ(x) + (2α)−1 ‖x− y(x)‖2 ∀z ∈ X.

Proof. From (3.8), (3.11), and (3.12), for any z ∈ X we have

0 ≤ 〈σ′(x), z − y(x)〉+ 〈θ′(B(x)), B(z)−B(y(x))〉
+α−1〈y(x)− x, z − y(x)〉

= 〈σ′(x), z − x〉+ 〈θ′(B(x)), B(z)−B(x)〉+ α−1〈y(x)− x, z − x〉
+〈σ′(x), x− y(x)〉+ 〈θ′(B(x)), B(x)−B(y(x))〉
+α−1〈y(x)− x, x− y(x)〉

= 〈σ′(x), z − x〉+ 〈θ′(B(x)), B(z)−B(x)〉+ α−1〈y(x)− x, z − x〉
+φ(x)− (2α)−1‖x− y(x)‖2.

It follows that

〈σ′(x), z − x〉+ 〈θ′(B(x)), B(z)−B(x)〉+ α−1〈y(x)− x, z − x〉
≥ −φ(x) + (2α)−1 ‖x− y(x)‖2 ∀z ∈ X.

Due to the convexity of the function θ, this inequality implies (3.14). □

4. Adaptive penalty method and its convergence

We now intend to describe a general iterative method for the limit set-valued VI
(1.1)–(1.2). First we introduce its basic approximation assumptions, which follow
(i)–(iii) of Section 1.

(B1) There exists a sequence of nonempty convex closed sets {Vl} which is Ku-
ratowski convergent to the set V ;

(B2) There exists a sequence of continuous mappings Gl : Vl → Rn, which are
the gradients of functions fl : Vl → R, l = 1, 2, . . . , such that the relations
{yl} → ȳ and yl ∈ Vl imply {Gl(y

l)} → ḡ ∈ G(ȳ).

Since the limit set-valued mapping G is approximated by a sequence of gradients
{Gl}, it must possess some properties of a generalized gradient set. Next, the set W
is also approximated with a sequence of sets {Wl}. The constraints of these sets will
be taken into account by a penalty function. For simplicity, let’s choose the most
known quadratic function. For a point u ∈ Rm we denote by [u]+ its projection
onto the non-negative orthant

Rm
+ = {v ∈ Rm | vi ≥ 0 i = 1, . . . ,m} .
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(B3) For each l = 1, 2, . . . , we define the penalty function

(4.1) Pl(x) = 0.5‖[Hl(x)]+‖2

for the set

(4.2) Wl = {x ∈ Rn | Hl(x) ≤ 0} ,

where Hl : Rn → Rm is a continuous mapping with convex components
Hl,i : Rn → R, i = 1, . . . ,m;

(B4) If vls ∈ Vls , {vls} → w̄, and lim inf
s→∞

Pls(v
ls) = 0, then w̄ ∈ W ;

(B5) For each point w̄ ∈ D there exist a number l′ and a sequence {vl} → w̄ with
vl ∈ Vl such that Pl(v

l) = 0 if l ≥ l′.

So, instead of VI (1.1)–(1.2) we have now in fact a sequence of single-valued VIs:
Find a point z̄l ∈ Dl = Vl

∩
Wl such that

(4.3) 〈Gl(z̄
l), y − z̄l〉 ≥ 0 ∀y ∈ Dl,

where Wl is defined in (4.2). However, the perturbed set Dl can be empty for some
l, although the limit feasible set D is usually supposed to be non-empty. By using
the penalty function Pl from (4.1), we replace each VI (4.3) with MVI (1.3). Then
(B4) and (B5) give a kind of the Kuratowski convergence of the sequence {Wl} to
W .

We now describe an adaptive penalty method (APM for short), which utilizes
approximate solutions of MVI (1.3). Denote by πX(x) the projection of a point x
onto a set X.

Method (APM). Choose a point z0 = z̃0 ∈ V0 and positive sequences {εl}, {τl}.
Fix α > 0.

At the l-th stage, l = 1, 2, . . ., we have a point zl−1 ∈ Vl−1 and a number εl. Set
z̃l−1 = πVl

(zl−1) and apply Method (CD) to problem (2.2), (3.2) with the starting
point x0 = z̃l−1, where we take

σ(x) = fl(x), B(x) = Hl(x), θ(u) = 0.5τl‖[u]+‖2, X = Vl,

φ(x) = φl(x), φl(x) = max
y∈Vl

Φl(x, y),

Φl(x, y) = 〈Gl(x), x− y〉+ τl〈[Hl(x)]+,Hl(x)−Hl(y)〉 − (2α)−1 ‖x− y‖2 ,

obtain a point x̃ = xk such that

φl(x̃) ≤ εl,

and set zl = x̃.

Remark 4.1. We can clearly remove the projection of the point zl−1 onto Vl above
in case of the inner approximation of V , i.e. when Vl ⊆ Vl+1. This condition should
be then inserted in (B1).

Since the feasible set may be unbounded, we introduce certain coercivity condi-
tions.

(B6) For each fixed l = 1, 2, . . . , the function fl is coercive on the set Vl.
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(B7) There exist a number α′ > 0 and a point ū ∈ D such that for any sequences
{ul} and {vl} satisfying the conditions:

ul ∈ Vl, v
l ∈ Vl, {ul} → ū, {‖vl‖} → +∞,

it holds that

(4.4) lim inf
l→∞

{
〈Gl(v

l), ul − vl〉/‖ul − vl‖
}
≤ −α′.

Clearly, (B6) presents a coercivity condition for each particular problem (1.3).
Obviously, (B6) holds if Vl is bounded. At the same time, (B7) gives a similar
coercivity condition for the whole sequence of these problems approximating the
limit VI (1.1)–(1.2).

The main element in the implementation of the above method is the solution of
the auxiliary problem (3.7) for direction finding at each iteration of Method (CD),
which takes the form:

(4.5) min
y∈Vl

→
{
〈Gl(x), y〉+ 〈[τlHl(x)]+,Hl(y)〉+ (2α)−1‖y − x‖2

}
for the current point x, which gives the point y(x). Observe that the streamlined
auxiliary problem based on MVI (1.2) is written as follows:

(4.6) min
y∈Vl

→
{
〈Gl(x), y〉+ 0.5τl‖[Hl(y)]+‖2 + (2α)−1‖y − x‖2

}
.

We give a simple example where solution of problem (4.5) is simpler essentially than
that of (4.6).

Example 4.2. Fix any l = 1, 2, . . . , and suppose that

Vl = Vl,1 × · · · × Vl,n,

where Vl,j = [alj , blj ], j = 1, . . . , n, and that each function Hl,i : Rn → R is convex
and separable, but not necessarily differentiable, i.e.

Hl,i(y) =

n∑
j=1

Hl,ij(yj),

for i = 1, . . . ,m. Then (4.6) is a convex (non-smooth) optimization problem whose
solution can be found approximately by special iterative methods. At the same time,
(4.5) clearly decomposes into n independent one-dimensional convex optimization
problems, each of them is very simple for solution.

We now establish the main convergence result.

Theorem 4.3. Suppose that assumptions (B1)–(B7) are fulfilled, the parameters
{εl} and {τl} satisfy

(4.7) {εl} ↘ 0, {τl} ↗ +∞,

and β < α−1 in Method (CD). Then:

(i) problem (1.3) has a solution for any τl > 0;
(ii) the number of iterations at each stage of Method (APM) is finite;
(iii) the sequence {zl} generated by Method (APM) has limit points and all these

limit points are solutions of VI (1.1)–(1.2).
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Proof. We first observe that (B6) implies that each MVI (1.3) has a solution since
the function

fl(x) + τlPl(x)

is coercive on the set Vl. In fact, then the optimization problem

min
x∈Vl

→ {fl(x) + τlPl(x)}

has a solution and so is MVI (1.3) due to Lemma 2.1 and Proposition 3.2. Hence,
assertion (i) is true. Next, from Corollary 3.6 we now have that assertion (ii) is also
true.

By (ii), the sequence {zl} is well-defined and Proposition 3.7 implies

(4.8)
〈Gl(z

l) + α−1(yl(zl)− zl), y − zl〉
+τl[Pl(y)− Pl(z

l)] ≥ −εl ∀y ∈ Vl,

We now proceed to show that {zl} is bounded. Conversely, suppose that {‖zl‖} →
+∞. By definition, zl ∈ Vl, besides, by (B5) and (B7) there exists a sequence
{ul} → ū such that ul ∈ Vl and Pl(u

l) = 0 for l large enough. Applying (4.8) with
y = ul, we have

0 ≤ 〈gl + wl, ul − zl〉+ τl[Pl(u
l)− Pl(z

l)] + εl

≤ 〈gl + wl, ul − zl〉+ εl

for l large enough. Here and below, for brevity we set gl = Gl(z
l) and wl =

α−1(y(zl) − zl). From (3.13) and (4.7) it follows that {‖wl‖} → 0 as l → +∞.
Then, by (4.4), we have

0 ≤ lim inf
l→∞

{
〈gl + wl, ul − zl〉/‖ul − zl‖

}
≤ −α′ < 0,

a contradiction. Therefore, the sequence {zl} is bounded and has limit points. Let
z̄ be an arbitrary limit point for {zl}, i.e.

z̄ = lim
s→∞

zls .

Since zl ∈ Vl, we have z̄ ∈ V due to (B1). From (4.8) it now follows that

0 ≤ Pls(z
ls) ≤ τ−1

ls
〈gls + wls , y − zls〉+ Pls(y) + τ−1

ls
εls ∀y ∈ Vls ,

note that the sequence {gls} is bounded due to (B2).
For any w ∈ D there exists a sequence {ul} → w with ul ∈ Vl and Pl(u

l) = 0 for
l large enough due to (B5). Taking y = uls above, we obtain

0 ≤ lim inf
s→∞

Pls(z
ls) ≤ lim sup

s→∞
Pls(z

ls)

≤ lim sup
s→∞

τ−1
ls

〈gls + wls , uls − zls〉 = 0

on account of (B2), i.e.

lim
s→∞

Pls(z
ls) = 0.

Due to (B4), this gives z̄ ∈ W , i.e., z̄ ∈ D.
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Take an arbitrary point w ∈ D. By (B5), there exists a sequence {ul} → w with
ul ∈ Vl and Pl(u

l) = 0 for l large enough. Using (4.8), we have

〈gls + wls , uls − zls〉+ τlsPls(u
ls) + εls ≥ 0.

It now follows from (B2) that lims→∞ gls = ḡ ∈ G(z̄) and

〈ḡ, w − z̄〉 = lim
s→∞

〈gls , uls − zls〉 = lim
s→∞

〈gls + wls , uls − zls〉 ≥ − lim
s→∞

εls = 0,

therefore z̄ solves VI (1.1)–(1.2) and assertion (iii) holds true. □
We observe that the above proof implies existence of a solution for the limit VI

(1.1)–(1.2).

Corollary 4.4. Suppose that assumptions (B1)–(B7) are fulfilled. Then VI (1.1)–
(1.2) has a solution.

5. Conclusions

We considered a limit variational inequality problem involving a set-valued non-
monotone potential mapping, where only approximation sequences are known in-
stead of exact values of the cost mapping and feasible set. In particular, the cost
mapping is approximated by a sequence of gradient mappings. We proposed to
apply a two-level approach with inexact solutions of each particular problem with
a descent method and partial penalization. Its convergence is attained without
concordance of penalty, accuracy, and approximation parameters under simple co-
ercivity conditions. This also yields give new weak conditions for existence of a
solution for the limit problem. We suggested to replace the auxiliary penalized
problem with its equivalent simplified one, which enables us to create an easily im-
plementable method and to find an approximate solution of the auxiliary penalized
problem. This approach gave a simple convergent iterative method for the initial
limit problem.
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