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condition. Therefore, such an optimization problem is called a conditional vector
optimization problem in this paper.

The class of conditional vector optimization problems is not large, but there are
important applications leading to conditional nonlinear vector optimization prob-
lems. For instance, conditional vector optimization problems occur in structural
optimization [1, Example 1] and image registration of medical data [12], [4, Subsec-
tion 1.3.1]; and Achtziger and Kanzow speak of vanishing constraints [1].

This paper is organized as follows: Section 2 gives the problem formulation and
basic definitions. Optimality conditions for nonlinear vector optimization problems
with variable orderings are presented in Section 3 as necessary and sufficient con-
ditions. These conditions are also specialized to problems with only one objective
function. In Section 4 these optimality conditions are applied to conditional vector
optimization problems.

2. Problem formulation

For the problem investigated in this paper we have the following standard as-
sumption.

Assumption 2.1. Let X, Y and Z be real linear spaces, and let Ŝ be a nonempty
subset of X. Let f : Ŝ → Y and g : Ŝ → Z be given vector functions. Let
Cf : Ŝ ⇒ Y and Cg : Ŝ ⇒ Z be set-valued maps so that for every x ∈ Ŝ the image
sets Cf (x) and Cg(x) are convex cones in Y and Z, respectively. Let the constraint
set

S :=
{
x ∈ Ŝ | g(x) ∈ −Cg(x)

}
be nonempty.

The set-valued maps Cf and Cg define a variable ordering structure in the real
linear spaces Y and Z, respectively. We use these variable ordering structures as
introduced by Eichfelder [3, 4]. In the following we define the order relations ≤f

and ≤g, i.e. for arbitrary x1, x2 ∈ Ŝ we define

f(x1) ≤Cf
f(x2) :⇐⇒ f(x2)− f(x1) ∈ Cf (x1)

and
g(x1) ≤Cg g(x2) :⇐⇒ g(x2)− g(x1) ∈ Cg(x1)

(for simplicity we only use this way for the definition of the variable ordering struc-

ture [4, p. 5]). For an arbitrary x ∈ Ŝ the constraint g(x) ∈ −Cg(x) is then
equivalent to the inequality constraint g(x) ≤Cg 0Z .

The use of the superset Ŝ has the advantage that we can also treat functions,
which are not defined on the whole space X. Since Ŝ may also be a discrete set,
discrete vector optimization problems are also covered by this problem class.

Under Assumption 2.1 we investigate the vector optimization problem with vari-
able orderings

(2.1)

minCf (x) f(x)

subject to

g(x) ∈ −Cg(x)

x ∈ Ŝ.
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Minimal solutions of this vector optimization problem with variable orderings are
understood in the following sense.

Definition 2.2. Let Assumption 2.1 be satisfied. A feasible element x̄ ∈ S is called
a minimal solution of the vector optimization problem with variable orderings (2.1),
if the image f(x̄) is a nondominated element of the image set f(S), i.e.

(2.2) ∄ x ∈ S : f(x̄) ∈ {f(x)}+
(
Cf (x)\{0Y }

)
.

For a better understanding of the condition (2.2) notice the equivalences (for an
arbitrary x ∈ S)

f(x̄) ∈ {f(x)}+
(
Cf (x)\{0Y }

)
⇔ f(x̄)− f(x) ∈ Cf (x) and f(x) ̸= f(x̄)

⇔ f(x) ≤Cf
f(x̄) and f(x) ̸= f(x̄).

Hence, the condition (2.2) is equivalent to the condition

∄ x ∈ S : f(x) ≤Cf
f(x̄) and f(x) ̸= f(x̄).

This condition is an extension of the well-known Edgeworth-Pareto optimality con-
cept ( [8, Definition 11.3]) to variable ordering structures ( [4, Definition 2.7, (a)]).
In order to have a unified approach to constraints and objectives we restrict our-
selves to the concept of nondominated elements (formally, the notion of minimal
elements with respect to an ordering map (see [4, Definition 2.7, (b)]) could also be
used).

It is well-known that there are various applications which lead to a vector op-
timization problem with variable orderings (e.g. compare [4]). For instance, such
problems may appear in image registration of medical data [4, Subsection 1.3.1].

3. Optimality conditions

In this section we present necessary and sufficient optimality conditions for the
vector optimization problem with variable orderings (2.1). In general, the known
standard approach of optimality conditions cannot be extended to variable orderings
but a new theory is needed for this general case. We begin with a simple multiplier-
free necessary optimality condition.

Lemma 3.1. Let Assumption 2.1 be satisfied. If x̄ is a minimal solution of the
vector optimization problem with variable orderings (2.1), then we have

(3.1) (0Y , 0Z) /∈
⋃
x∈Ŝ

f(x) ̸=f(x̄)

{(
f(x)− f(x̄)

g(x)

)}
+ Cf (x)× Cg(x).

Proof. We prove this result by contraposition. Assume that the condition (3.1) is

not true. Then there exist some x ∈ Ŝ, f(x) ̸= f(x̄), and vectors y(x) ∈ Cf (x) and
z(x) ∈ Cg(x) with

(3.2) f(x)− f(x̄) + y(x) = 0Y

and

(3.3) g(x) + z(x) = 0Z .
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The equation (3.3) implies

g(x) = −z(x) ∈ −Cg(x),

which means that x is feasible. The equation (3.2) implies

f(x̄) = f(x) + y(x) ∈ {f(x)}+ Cf (x)

and with f(x) ̸= f(x̄) we then get

f(x̄) ∈ {f(x)}+
(
Cf (x)\{0Y }

)
.

Hence, x̄ is not a minimal solution of problem (2.1). □

Now we formulate a necessary optimality condition with an extension of the
known theory of Lagrange multipliers.

Theorem 3.2. Let Assumption 2.1 be satisfied, and in addition, let Y and Z
be locally convex spaces. If x̄ is a minimal solution of the vector optimization
problem with variable orderings (2.1), then for every x ∈ Ŝ with f(x) ̸= f(x̄),
Cf (x) ̸= Y and closed sets Cf (x) and Cg(x) there are continuous linear functionals

ℓfx ∈ C∗
f (x)\{0Y ∗} and ℓgx ∈ C∗

g (x) (C∗
f (x) and C∗

g (x) denote the dual cone in the

topological dual space Y ∗ and Z∗, respectively) with

(3.4) ℓfx
(
f(x)− f(x̄)

)
+ ℓgx

(
g(x)

)
> 0.

Proof. Let x̄ be a minimal solution of the vector optimization problem with variable
orderings (2.1), and choose an arbitrary x ∈ Ŝ with f(x) ̸= f(x̄), Cf (x) ̸= Y and
closed sets Cf (x) and Cg(x). By Lemma 3.1 we then get

(0Y , 0Z) /∈
{(

f(x)− f(x̄)
g(x)

)}
+ Cf (x)× Cg(x).

The product cone Cf (x)×Cg(x) is closed and convex. By a strict separation theorem

(compare [8, Theorem 3.18]) there exist continuous linear functionals ℓfx ∈ Y ∗ and

ℓgx ∈ Z∗ with
(
ℓfx, ℓ

g
x

)
̸=

(
0Y ∗ , 0Z∗

)
and

(3.5)
ℓfx
(
f(x)− f(x̄)

)
+ ℓfx

(
y(x)

)
+ ℓgx

(
g(x)

)
+ ℓgx

(
z(x)

)
> 0

for all y(x) ∈ Cf (x) and z(x) ∈ Cg(x).

We now show that ℓfx ∈ C∗
Y (x). If we choose z(x) = 0Z , we obtain from the

inequality (3.5)

ℓfx
(
y(x)

)
> −ℓfx

(
f(x)− f(x̄)

)
− ℓgx

(
g(x)

)
for all y(x) ∈ Cf (x),

which means that ℓfx
(
y(x)

)
has a lower bound for all y(x) ∈ Cf (x). Since Cf (x) is

a cone, this implies

ℓfx
(
y(x)

)
≥ 0 for all y(x) ∈ Cf (x),

i.e. ℓfx ∈ C∗
f (x). With the same arguments one gets ℓgx ∈ C∗

g (x).

If ℓfx ̸= 0Y ∗ , another part of the assertion is shown. Otherwise, if ℓfx = 0Y ∗ , we
conclude from the inequality (3.5)

ℓgx
(
g(x)

)
> 0.
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Since Cf (x) ̸= Y , by a strict separation theorem there exists some continuous linear

functional ℓ̄fx ∈ C∗
f (x)\{0Y ∗} (compare the proof of [8, Lemma 3.21,(a), p. 78]). For

a sufficiently small λx > 0 we then have

λxℓ̄
f
x

(
f(x)− f(x̄)

)
> −ℓgx

(
g(x)

)︸ ︷︷ ︸
<0

,

or

λxℓ̄
f
x

(
f(x)− f(x̄)

)
+ ℓgx

(
g(x)

)
> 0.

Consequently, the inequality (3.4) is shown with the continuous linear functional

λxℓ̄
f
x ∈ C∗

f (x)\{0Y ∗} instead of ℓfx. □

A strict separation theorem is the fundamental tool for the proof of Theorem 3.2.
In duality theory such an approach was already used in [10, Section 5].

Remark 3.3. There are significant differences between the necessary optimality
condition of vector optimization problems with variable orderings given in Theorem
3.2 and those in standard nonlinear optimization:

(a) Theorem 3.2 gives necessary optimality conditions without convexity
assumptions on f and g.

(b) These new necessary optimality conditions are shown without any constraint
qualification (CQ) because the inequality (3.4) is strict, which opens up
topological possibilities.

(c) The “Lagrange multipliers” depend on x ∈ Ŝ, f(x) ̸= f(x̄), and these are
functions of x. Since the union of translated convex cones in (3.1) is gen-
erally nonconvex, a separation of (0Y , 0Z) and this union of sets can be
achieved by using a nonlinear separating functional.

(d) The nonlinear “Lagrange multipliers” make the theory much more
complicated in practice.

In general, the number of Lagrange multipliers may be infinite. But for numerical
methods one is actually interested in a finite number of multipliers. So, one could
start an iteration process with a small number of multipliers and then one could
increase this number from step to step. In this case the inequality (3.4) could be
helpful from a numerical point of view.

Next, we specialize Theorem 3.2 to the case that the objective function is real-
valued with the standard ordering in R.

Corollary 3.4. Let Ŝ be a nonempty subset of a real linear space X, and let Z be
a locally convex space. Let f : Ŝ → R be a real-valued function and let g : Ŝ → Z
be a vector function. Let Cg : Ŝ ⇒ Z be a set-valued map so that for every x ∈ Ŝ
the image set Cg(x) is a closed convex cone in Z. If x̄ is a minimal solution of the
optimization problem with variable ordering

(3.6)

min f(x)

subject to

g(x) ∈ −Cg(x)

x ∈ Ŝ,
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then for every x ∈ Ŝ with f(x) ̸= f(x̄) and a closed set Cg(x) there is a continuous
linear functional ℓgx ∈ C∗

g (x) with

(3.7) f(x̄) < f(x) + ℓgx
(
g(x)

)
.

Proof. For the application of Theorem 3.2 we set Y := R and Cf (x) := R+ for all

x ∈ Ŝ. If x̄ is a minimal solution of the optimization problem with variable ordering
(3.6), then for every x ∈ Ŝ with f(x) ̸= f(x̄) and a closed set Cg(x) there are a
positive real number µx and a continuous linear functional ℓgx ∈ C∗

g (x) with

(3.8) µx

(
f(x)− f(x̄)

)
+ ℓgx

(
g(x)

)
> 0.

If we set ℓ̄gx := 1
µx

ℓgx ∈ C∗
g (x) , the inequality (3.8) implies

f(x̄) < f(x) + ℓ̄gx
(
g(x)

)
,

which has to be shown. □

Corollary 3.4 can also be proved by considering the cases that x ∈ Ŝ is feasible,
i.e. g(x) ∈ −Cg(x), or not.

If the optimization problem with variable orderings (2.1) is a discrete problem

with a finite number of elements of the set Ŝ, the necessary optimality condition
can be simplified.

Corollary 3.5. Let Assumption 2.1 be satisfied and, in addition, let Y and Z be
locally convex spaces, let Ŝ := {x1, . . . , xn} with n ∈ N and x1, . . . , xn ∈ X be given,
and for every j ∈ {1, . . . , n} let Cf (x

j) ̸= Y and let Cf (x
j) and Cg(x

j) be closed
sets. If x̄ is a minimal solution of the optimization problem with variable orderings
(2.1), then for every xj, j ∈ {1, . . . , n}, with f(xj) ̸= f(x̄) there are continuous

linear functionals ℓf
xj ∈ C∗

f (x
j)\{0Y ∗} and ℓg

xj ∈ C∗
g (x

j) so that the inequality

(3.9) min
j∈{1,...,n}
f(xj) ̸=f(x̄)

{
ℓf
xj

(
f(xj)− f(x̄)

)
+ ℓg

xj

(
g(xj)

)}
> 0

is fulfilled.

Proof. This result immediately follows from Theorem 3.2 because in this special
case the inequality (3.9) is equivalent to the inequalities (3.4) for every xj , j ∈
{1, . . . , n}, with f(xj) ̸= f(x̄). □

This corollary shows that we get a finite number of Lagrange multipliers in this
special discrete case. Hence, this necessary optimality condition is much simpler
than in the general continuous case. The following theorem shows under special
assumptions that even in the continuous case Lagrange multipliers remain constant
within a small neigborhood.

Theorem 3.6. Let Assumption 2.1 be satisfied and, in addition, let X be a real
normed space, let Y and Z be real reflexive Banach spaces, and for every x ∈ Ŝ
let Cf (x) ̸= Y and let the sets Cf (x) and Cg(x) be closed. Let x̄ be a minimal

solution of the optimization problem with variable orderings (2.1). Let x ∈ Ŝ with
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f(x) ̸= f(x̄) be arbitrarily chosen and let there exist a closed ball B(x, δ) around x
with radius δ > 0 so that

(3.10) Cf (x̃)× Cg(x̃) = Cf (x)× Cg(x) for all x̃ ∈ B(x, δ).

Let (f, g) be locally Lipschitz continuous at x. Then there are continuous linear
functionals ℓf ∈ C∗

f (x)\{0Y ∗}, ℓg ∈ C∗
g (x) and a closed ball B(x, ε) around x with

radius ε > 0 so that the inequality (3.4) holds with the continuous linear functionals

(3.11) ℓfx̃ = ℓf and ℓgx̃ = ℓg for all x̃ ∈ B(x, ε).

Proof. Let x̄ be a minimal solution of the optimization problem with variable
orderings (2.1), and choose an arbitrary x ∈ Ŝ with f(x) ̸= f(x̄) so that the equality
(3.10) holds. By Lemma 3.1 we obtain

(0Y , 0Z) /∈
{(

f(x)− f(x̄)
g(x)

)}
+ Cf (x)× Cg(x).

Because of the closedness of the product cone Cf (x) × Cg(x) there is some µ > 0
with

(0Y , 0Z) /∈ B

((
f(x)− f(x̄)

g(x)

)
, µ

)
+ Cf (x)× Cg(x).

The ball in this condition is weakly compact and the product cone Cf (x) × Cg(x)
is weakly closed. Consequently, the algebraic sum of these two sets is weakly closed
and closed as well because this set is convex. Hence, the origin (0Y , 0Z) and the set

B

((
f(x)− f(x̄)

g(x)

)
, µ

)
+ Cf (x) × Cg(x) can be strictly separated by a nonzero

continuous linear functional (ℓf , ℓg) ∈ C∗
f (x) × C∗

g (x). With an argument used in

the proof of Theorem 3.2 one can assume that ℓf ̸= 0Y ∗ . Since (f, g) is locally
Lipschitz continuous at x, there are some α,L > 0 with∥∥∥∥( f(x̃)− f(x)

g(x̃)− g(x)

)∥∥∥∥
Y×Z

≤ L∥x̃− x∥X for all x̃ ∈ B(x, α).

And this implies∥∥∥∥( f(x̃)− f(x̄)
g(x̃)

)
−

(
f(x)− f(x̄)

g(x)

)∥∥∥∥
Y×Z

≤ L∥x̃− x∥X for all x̃ ∈ B(x, α).

With the equation (3.10) there is some ε ∈ (0, δ] so that(
f(x̃)− f(x̄)

g(x̃)

)
∈ B

((
f(x)− f(x̄)

g(x)

)
, µ

)
for all x̃ ∈ B(x, ε).

Hence we obtain{(
f(x̃)− f(x̄)

g(x̃)

)}
+ Cf (x̃)︸ ︷︷ ︸

=Cf (x)

×Cg(x̃)︸ ︷︷ ︸
=Cg(x)

⊂ B

((
f(x)− f(x̄)

g(x)

)
, µ

)
+ Cf (x)× Cg(x) for all x̃ ∈ B(x, ε).

Since the continuous linear functional (ℓf , ℓg) strictly separates the origin and the
set on the right hand side, it also strictly separates the origin and the set on the
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left hand side. This proves the equation (3.11). □

Finally we show that the necessary optimality condition of Theorem 3.2 is also
sufficient under weaker assumptions. This sufficient optimality condition does not
need any topological assumptions.

Theorem 3.7. Let Assumption 2.1 be satisfied. Let x̄ be a feasible point of the op-
timization problem with variable orderings (2.1). For every x ∈ Ŝ with f(x) ̸= f(x̄)

let there exist linear functionals ℓfx ∈ C
′
f (x) and ℓgx ∈ C

′
g(x) so that the inequality

(3.4) is satisfied (C
′
f (x) and C

′
g(x) denote the dual cone in the algebraic dual space

Y
′
and Z

′
, respectively). Then x̄ is a minimal solution of the optimization problem

with variable orderings (2.1).

Proof. Let some x ∈ S with f(x) ̸= f(x̄) be arbitrarily chosen. Then the inequality
(3.4) implies

(3.12) ℓfx
(
f(x̄)− f(x)

)
< ℓgx

(
g(x)︸︷︷︸

∈−Cg(x)

)
≤ 0.

Assume that

f(x̄) ∈ {f(x)}+
(
Cf (x)\{0Y }

)
,

i.e.

f(x̄)− f(x) ∈ Cf (x)\{0Y }.

Because of ℓfx ∈ C
′
f (x) we then obtain

ℓfx
(
f(x̄)− f(x)

)
≥ 0,

which contradicts the inequality (3.12). Therefore, we conclude

f(x̄) /∈ {f(x)}+
(
Cf (x)\{0Y }

)
.

Since x ∈ S with f(x) ̸= f(x̄) is arbitrarily chosen, the element x̄ ∈ S is a minimal
solution of the optimization problem with variable orderings (2.1). □

In analogy to Corollary 3.4 we specialize Theorem 3.7 to the simpler case of a
real-valued objective function with the standard ordering in R.

Corollary 3.8. Let Assumption 2.1 be satisfied, and let f : Ŝ → R be a real-valued
function (i.e. Y := R). Let x̄ ∈ S be a feasible point of the optimization problem

with variable orderings (2.1). For every x ∈ Ŝ with f(x) ̸= f(x̄) let there exist a

linear functional ℓgx ∈ C
′
g(x) so that the inequality (3.7) is satisfied. Then x̄ is a

minimal solution of the optimization problem with variable orderings (2.1).

Proof. It is evident that the condition (3.7) can also be written as

f(x)− f(x̄) + ℓgx
(
g(x)

)
> 0

and then Theorem 3.7 is applicable. □
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4. Application to conditional vector optimization problems

The optimality conditions presented in the previous section are now applied to
vector optimization problems with objectives and constraints, which are only valid
under a condition. If this condition is not fulfilled, then the corresponding constraint
or objective vanishes. We call this type of problems conditional vector optimization
problems.

For the problem investigated in this section we have the following standard as-
sumption.

Assumption 4.1. Let X be a real linear space, and for k,m ∈ N, let F1, . . . , Fk,
G1, . . . , Gm and Ŝ be nonempty subsets of X. Let Y1, . . . , Yk, Z1, . . . , Zm be real
linear spaces, and let f1 : Ŝ → Y1, . . . , fk : Ŝ → Yk, g1 : Ŝ → Z1, . . . , gm : Ŝ →
Zm be given vector functions. Let KY1 , . . . ,KYk

,KZ1 , . . . ,KZm be convex cones in
Y1, . . . , Yk and Z1, . . . , Zm, respectively. Let the constraint set

S :=
{
x ∈ Ŝ | g1(x) ∈ −KZ1 , iff x ∈ G1

...

gm(x) ∈ −KZm , iff x ∈ Gm

}
be nonempty.

Under this assumption we formulate the conditional vector optimization problem
in a first and more conceptual form

(4.1)

min

 f1(x), iff x ∈ F1
...

fk(x), iff x ∈ Fk


subject to

g1(x) ∈ −KZ1 , iff x ∈ G1
...

gm(x) ∈ −KZm , iff x ∈ Gm

x ∈ Ŝ.

This is not a standard vector optimization problem because one or more objec-
tives/constraints may vanish at some x ∈ Ŝ. Since there is no unique image space
of the objective map, the standard optimality notions in vector optimization cannot
be used.

Notice that for Ŝ ⊂ Gi (for any i ∈ {1, . . . ,m}) the condition x ∈ Gi can be
dropped and then the conditional inequality constraint in problem (4.1) reduces to
a standard inequality constraint, i.e.

gi(x) ∈ −KZi .

Hence, problem (4.1) may contain a mixture of standard inequality constraints and
conditional inequality constraints. In the same way an objective fi (for an arbitrary
i ∈ {1, . . . , k}) may be fixed without considering a condition.
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Problems with vanishing constraints can be found in structural optimization [1,
Example 1]. Achtziger and Kanzow have been the first who investigated optimal-
ity conditions and constraint qualifications for this problem class. Mathematical
programs with switching constraints are also related to problems with vanishing
constraints, e.g. see Mehlitz [11] and the references therein. Conditional objectives
appear in image registration of medical data [4, Subsection 1.3.1]. Wacker [12] (see
also [14]) was the first who investigated such problems with a weighting approach
where the nonnegative weights may change during the iteration process. Since the
weight of an objective may also be zero, this means that the corresponding objective
vanishes. Based on these concrete applications in medical technology Eichfelder [3,4]
has developed a theory of variable ordering structures in vector optimization. Vari-
able ordering structures are the right tool for the investigation of problem (4.1).

If the sets G1, . . . , Gm are described by inequalities, then the conditional con-
straints in (4.1) can be transformed to constraints of a mathematical program with
vanishing constraints (MPVC), which is closely related to a mathematical program
with equilibrium constraints (MPEC) (for details see [1]). In this paper we do not
assume that the sets G1, . . . , Gm have a special structure. This is possible because
we work with variable ordering structures.

Using the sets G1, . . . , Gm and the convex cones KZ1 , . . . ,KZm for every i ∈
{1, . . . ,m} we define the set-valued map Cgi : Ŝ ⇒ Zi with

(4.2) Cgi(x) :=

{
KZi , if x ∈ Gi

Zi, if x /∈ Gi

}
for all x ∈ Ŝ.

For every i ∈ {1, . . . ,m} and every x ∈ Ŝ the set Cgi(x) is a convex cone. The map
Cgi defines a variable ordering structure in Zi. For arbitrary i ∈ {1, . . . ,m} and

x ∈ Ŝ we then have the equivalence

gi(x) ∈ −KZi , iff x ∈ Gi ⇐⇒ gi(x) ∈ −Cgi(x)

So, the constraints in problem (4.1) can be written as normal inequality constraints
with respect to a variable ordering. In other words, the complexity of the constraints
has been transformed to the ordering structure.

If K
′
Zi

for any i ∈ {1, . . . ,m} denotes the dual cone of KZi in the algebraic dual

space Z
′
i , then for any x ∈ Ŝ the dual cone C

′
gi(x) can be written as

C
′
gi(x) :=

{
K

′
Zi
, if x ∈ Gi

{0
Z

′
i
}, if x /∈ Gi.

The objectives in problem (4.1) can be treated in a similar way. For every i ∈
{1, . . . , k} we define the set-valued map Cfi : Ŝ ⇒ Yi by

(4.3) Cfi(x) :=

{
KYi , if x ∈ Fi

Yi, if x /∈ Fi

}
for all x ∈ Ŝ.

Finally we extend Assumption 4.1.

Assumption 4.2. Let Assumption 4.1 be satisfied, and let the set-valued maps
Cf1 , . . . , Cfk , Cg1 , . . . , Cgm be defined by (4.3) and (4.2), respectively. For every
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feasible x ∈ S let at least one objective function remain in the list of objectives
(i.e., objectives do not vanish all together). Let KYi ̸= Yi for all i ∈ {1, . . . , k}.

Under this extended assumption we now ask for minimal solutions of the condi-
tional vector optimization problem

(4.4)

minCf1
(x)×...×Cfk

(x)

 f1(x)
...

fk(x)


subject to

g1(x) ∈ −Cg1(x)
...

gm(x) ∈ −Cgm(x)

x ∈ Ŝ.

Although constraints and objectives do not vanish in problem (4.4), the complexity
of problem (4.1) is now hidden in the variable ordering structures.

The conditional vector optimization problem (4.4) is a special vector optimization
problem with variable orderings as given in (2.1). Here we set the product spaces
Y := Y1 × . . .× Yk and Z := Z1 × . . .×Zm, we define the objective vector function
f : Ŝ → Y by f := (f1, . . . , fk) and the constraint vector function g : Ŝ → Z by

g := (g1, . . . , gm), and the set-valued maps Cf : Ŝ ⇒ Y and Cg : Ŝ ⇒ Z are given
by

Cf (x) := Cf1(x)× . . .× Cfk(x) for all x ∈ Ŝ

and

Cg(x) := Cg1(x)× . . .× Cgm(x) for all x ∈ Ŝ.

The necessary optimality condition given in Theorem 3.2 can be easily applied
to the conditional vector optimization problem (4.4).

Corollary 4.3. Let Assumption 4.2 be satisfied, and in addition, let Y1, . . . , Yk,
Z1, . . . , Zm be locally convex spaces and let KY1 , . . . ,KYk

,KZ1 , . . . ,KZm be closed.
If x̄ is a minimal solution of the conditional vector optimization problem (4.4),

then for every x ∈ Ŝ with f(x) ̸= f(x̄) there are continuous linear functionals

ℓf1x ∈ C∗
f1
(x), . . . , ℓfkx ∈ C∗

fk
(x), ℓg1x ∈ C∗

g1(x), . . . , ℓ
gm
x ∈ C∗

gm(x) with
(
ℓf1x , . . . , ℓfkx

)
̸=(

0Y ∗
1
, . . . , 0Y ∗

k

)
and

(4.5)
k∑

i=1

ℓfix
(
fi(x)− fi(x̄)

)
+

m∑
i=1

ℓgix
(
gi(x)

)
> 0.

Moreover, for x ∈ Ŝ\Fi (with i ∈ {1, . . . , k}) we have ℓfix = 0Y ∗
i
and for x ∈ Ŝ ∩ Fi

it holds ℓfix ∈ K∗
Yi
; and for x ∈ Ŝ\Gi (with i ∈ {1, . . . ,m}) we have ℓgix = 0Z∗

i
and

for x ∈ Ŝ ∩Gi it holds ℓgix ∈ K∗
Zi
.
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Proof. The first part of this corollary follows from Theorem 3.2, if we notice that

the continuous linear functional ℓfx ∈ C∗
f (x)\{0Y ∗} can be written as

ℓfx(y1, . . . , yk) =

k∑
i=1

ℓfix (yi) for all (y1, . . . , yk) ∈ Y1 × . . .× Yk

with appropriate ℓf1x ∈ C∗
f1
(x), . . . , ℓfkx ∈ C∗

fk
(x) with

(
ℓf1x , . . . , ℓfkx

)
̸=

(
0Y ∗

1
,

. . . , 0Y ∗
k

)
. In analogy, the Lagrange multipliers of the constraints are treated.

It remains to prove the additional part of the assertion. If x ∈ Ŝ\Fi for i ∈
{1, . . . , k}, we have Cfi(x) = Yi implying C∗

fi
(x) =

{
0Y ∗

i

}
. Hence, we have ℓfix = 0Y ∗

i
.

For the case x ∈ Ŝ ∩ Fi we conclude Cfi(x) = KYi and ℓfix ∈ K∗
Yi
. In analogy, one

gets the corresponding result for the constraints. □

Corollary 3.4 already presents an optimality condition in the case of only one
real-valued objective function. This result can be easily specialized to a conditional
optimization problem with only one real-valued objective function with the standard
ordering in R.
Corollary 4.4. Let X be a real linear space, and for m ∈ N let G1, . . . , Gm and
Ŝ be nonempty subsets of X. Let Z1, . . . , Zm be locally convex spaces, and let f :
Ŝ → R, g1 : Ŝ → Z1, . . . , gm : Ŝ → Zm be given functions. Let KZ1 , . . . ,KZm be
closed convex cones in Z1, . . . , Zm, and let Cg1 , . . . , Cgm be defined by (4.2). If x̄ is
a minimal solution of the conditional optimization problem

min f(x)

subject to

g1(x) ∈ −Cg1(x)
...

gm(x) ∈ −Cgm(x)

x ∈ Ŝ,

then for every x ∈ Ŝ with f(x) ̸= f(x̄) there are continuous linear functionals
ℓg1x ∈ C∗

g1(x), . . . , ℓ
gm
x ∈ C∗

gm(x) with

f(x̄) < f(x) +
m∑
i=1

ℓgix
(
gi(x)

)
.

Moreover, for x ∈ Ŝ\Gi (with i ∈ {1, . . . ,m}) we have ℓgix = 0Z∗
i
and for x ∈ Ŝ ∩Gi

it holds ℓgix ∈ K∗
Zi
.

Now we apply Corollary 4.4 to a very simple example.

Example 4.5. We investigate the conditional integer optimization problem

min sinx

subject to

1 ≤ x ≤ 2π
cosx ≥ 0.4, iff x ∈ (π, 2π)

x ∈ Z.
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Here we set Ŝ := Z, G3 := (π, 2π),

f(x) := sin x for all x ∈ Z,

g1(x) := 1− x and Cg1(x) := R+ for all x ∈ Z,

g2(x) := x− 2π and Cg2(x) := R+ for all x ∈ Z,

and

g3(x) := 0.4− cosx and Cg3(x) :=

{
R+, if x ∈ (π, 2π)
R, if x /∈ (π, 2π)

}
for all x ∈ Z.

It is obvious that the set S of feasible points is given as S := {1, 2, 3, 6}, and x̄ := 6
is the only minimal solution of this problem (compare Figure 1). By Corollary 4.4,

Figure 1. Illustration of the objective function values at the four
feasible points in Example 4.5.

for every x ∈ Z with sinx ̸= sin 6 there exist nonnegative real numbers ℓg1x , ℓg2x and
ℓg3x with ℓg3x = 0, if x /∈ (π, 2π), and

sin 6 < sinx+ ℓg1x · g1(x) + ℓg2x · g2(x) + ℓg3x · g3(x)
< sinx+ ℓg1x · (1− x) + ℓg2x · (x− 2π) + ℓg3x · (0.4− cosx).(4.6)

This inequality is fulfilled, if for x ∈ Z with x < 1 one chooses the multipliers
ℓg1x := 1 and ℓg2x := ℓg3x := 0. However, if x ∈ Z with x > 2π, then we set
ℓg2x := 1 and ℓg1x := ℓg3x := 0 and the inequality (4.6) is fulfilled. If one checks the
sign of the expression on the right side in (4.6) for the points x = 1, 2, 3 with the
multipliers ℓg1x := ℓg2x := ℓg3x := 0, we see that the necessary optimality condition
given in Corollary 4.4 is satisfied. For the remaining points x = 4 and x = 5 the
inequality (4.6) is satisfied for ℓg1x := ℓg2x := 0, ℓg3x := 1 and ℓg1x := ℓg2x := 0, ℓg3x := 6,
respectively. Hence, the necessary optimality condition in Corollary 4.4 is fulfilled.

In Example 4.5 it is shown that the inequality (4.6) is fulfilled for all x ∈ Z with
sinx ̸= sin 6. With Corollary 3.8 we then get that x̄ := 6 is a minimal solution of
the conditional integer optimization problem in Example 4.5.
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Conclusion

Vector optimization problems with variable orderings constitute an interesting
class of vector optimization problems, which are hard to handle. In the case of
discrete vector optimization problems with variable orderings and finitely many
feasible points, one has only finitely many Lagrange multipliers and it would be
interesting to see how standard Karush-Kuhn-Tucker (KKT) conditions look like.
For problems with continuous variables Lagrange multipliers are not constants but
functions. Therefore, KKT conditions are much more complicated to formulate.
Such a KKT theory is still an open problem.
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