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INVERSE PROBLEM OF ESTIMATING THE STOCHASTIC FLEXURAL
RIGIDITY IN FOURTH-ORDER MODELS

WILFRIED GRECKSCH, BAASANSUREN JADAMBA, AKHTAR A. KHAN,
MIGUEL SAMA, AND CHRISTIANE TAMMER

ABSTRACT. This work focuses on the inverse problem of estimating a stochastic
parameter in fourth-order partial differential equations with random data. In
the setting of stochastic Sobolev spaces, we establish the Lipschitz continuity of
the solution map and give a new derivative characterization. We investigate the
inverse problem in a stochastic optimization framework using the output least-
squares (OLS) functional and a new energy least-squares (ELS) functional. We
develop a regularization framework and give existence results for the regular-
ized stochastic optimization problems. We also prove the smoothness and the
convexity of the ELS objective functional. For the OLS-based stochastic opti-
mization problem, we develop an adjoint approach to compute the derivative of
the OLS-functional. In the finite-dimensional noise setting, we give a parameter-
ization of the inverse problem. We develop a computational framework using the
stochastic-Galerkin discretization scheme and derive explicit discrete formulas
for the considered objective functionals and their gradient. We provide compu-
tational results to illustrate the feasibility and efficacy of the developed inversion
framework.

1. INTRODUCTION

Our focus is on the inverse problem of estimating a random coefficient in the
stochastic fourth-order boundary value problem (BVP). Assume that (€2, F, ) is
a probability space, and D C R’ is a bounded domain and 9D is its sufficiently
smooth boundary. Given random fields ¢ : @ x D — R and f : 2 x D — R, the
direct problem in this work consists of finding a random field u : 2 x D — R that
almost surely satisfies the following BVP:

(1.1a) A(q(w,z)Au(w,x)) = f(w,z), in D,
(1.1b) u(w,z) =0, on 9D,
(1.1c) Opu(w,z) =0, on 0D,

where A is the Laplace operator and d,u is the normal derivative.
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Fourth-order BVPs, such as (1.1), model the pure bending of a Kirchhoff plate
occupying the region D and have been extensively explored in the deterministic
setting, see [5,17]. The parameter ¢ is the flexural rigidity and the solution w is
the lateral deflection under the force f per unit area. The parameter ¢ is associated
with the thickness of the plate, Young’s modulus of elasticity, and the Poisson ratio
of the material. Boundary conditions (1.1b) and (1.1c) are the so-called clamped
boundary conditions. However, the identification process that we develop in this
work can easily be extended to the following pinned boundary conditions:

u(w,x) = Au(w,z) =0, on 9D.

In this work, we propose two stochastic optimization formulations for the inverse
problem. The first one is the output least-squares formulation, which is the most
commonly used optimization strategy. The second one is an energy norm-based
optimization formulation. However, before presenting an outline of our main contri-
butions, we briefly summarize some related research. We begin by noting that in one
of the earlier works, Narayanan and Zabaras [2]| investigate the inverse problem in
the presence of uncertainties in the material data and devise an adjoint-based identi-
fication framework. They compute the gradient of the OLS-type objective functional
and use a conjugate gradient method to give promising numerical results. In [39],
the authors develop a scalable methodology for the stochastic inverse problem using
a sparse grid collocation approach. In [35], the authors devise a robust approach by
employing generalized polynomial chaos expansion for identifying uncertain elastic
parameters from experimental modal data. Morzfeld, Tu, Wilkening, and Chorin [27]
study an implicit sampling approach for parameter identification. Warner, Aquino,
and Grigoriucite [38] propose an abstract framework for solving inverse problems
under uncertainty using the stochastic reduced-order models, and as an applica-
tion, identify random material parameters in elasto-dynamical systems. Rosic and
Matthies [33] study identification problems in a Bayesian setting for the elastoplastic
problem. In [21], the authors focus on determining the optimal thickness subjected
to stochastic force. In [1], the authors investigate the impact of errors and uncertain-
ties of the conductivity on the electrocardiography imaging (ECGI) solution. Some
of the related developments are available in [3,4,7,10-12,20,22,23,26,28,29,34,36,37|.
For an overview of common techniques for inverse problems, see [6,8,9,13-15,18,19].
Interesting results for more general stochastic variational inequalities can be found
in the recent papers Rockafellar and Sun [30,31] and Rockafellar and Wets [32].

The main contributions of this work are as follows: We study the topological
properties of the parameter-to-solution map. In particular, we establish its Lipschitz
continuity and give a new derivative characterization. We propose two stochastic
optimization formulations for the inverse problem. The first one is an analog of the
classical OLS objective, which is typically nonconvex, and the second one is a new
convex objective functional. We provide a regularization framework and give exis-
tence results for stochastic optimization problems. We develop a stochastic adjoint
approach for the efficient derivative computation of the OLS objective. Assuming
the finite-dimensional noise, we give a parameterization of the stochastic variational
problem and the optimization problems. We provide a Stochastic-Galerkin-based
discretization scheme for the direct and the inverse problem. We provide explicit
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discrete formulas for the OLS and the ELS functionals and their gradients. We
provide detailed computational results.

We divide the contents of this paper into eight sections. Section 2 describes the
variational formulation of the PDE with random data. In Section 3, we discuss the
properties of the solution map. Section 4 is devoted to the stochastic optimization
formulations of the inverse problem. We parameterize the stochastic inverse problem
and present the adjoint approach in Section 5. We develop the computational frame-
work in Section 6 and give numerical examples in Section 7. The paper concludes
with some general remarks and future research goals.

2. INVERSE PROBLEM FORMULATION

A convenient analytical setting to study variational problems emerging from BVPs
with random data is provided by Bochner spaces, for details see [16,25]. Given a
real Banach space X, a measure space (€2, F, ), and an integer p € [1,+00), the
Bochner space LP(2, X) consists of Bochner integrable functions u :  — X with
finite p-th moment, that is,

1/p
ol o= ([ Tuldat) = [l du@)’ < +oc.

If p = 400, then L>(£2, X) is the space of Bochner integrable functions u : Q — X
such that

ess sup,,eq|lu(w)| x < +oo.

Useful properties of LP(D) spaces of Lebesgue integrable functions extend naturally
to Bochner spaces LP(£2, X). It is known that L>°(Q, L*>°(D)) C L>*(Q x D), but
L>(Q,L>®(D) # L>®(2x D)), in general. Furthermore, the space LP(£2, L1(D)), for
p,q € [1,+00), is isomorphic to

{U:QxD—wRﬂ/Q</D|u(w,g;)|qu>p/qdu(w)<+oo}.

For the variational form of BVP (1.1), we will use V := L(Q, H2(D)) which is a
Hilbert space with the inner product defined by

(00) = | {uleo ). v(e,2)) 10y )

To incorporate the boundary conditions, we will use V = L?(Q, H3(Q)) C V.

A derivation of the variational formulation is similar to the deterministic case.
If we take u € L%(Q, H*(D)) and multiply (1.1) by a test function v € V and by
integrating the product on both sides, invoking the Green’s identity twice, and using
the boundary conditions, we obtain

(2.1) /Q/D q(w, z) Au(w, z) Av(w, x)dzdu(w)

://f(w,:n)v(w,:n)dmdu(w), for everywv € V.
QJp

Therefore, we are looking for elements u € V' such that (2.1) holds for all v € V.
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Given constants kg and k1, we introduce the set of feasible parameters:
(2.2) K :={qw,z) e L x D) | 0< ko <qw,z) <K <—+00}.

Remark 2.1. In (2.2), the feasible random parameters are bounded above and below
by constants. Consequently, many results from the deterministic framework extend
naturally to the stochastic framework. The drawback, however, is that andom Log-
normal fields are not bounded on 2 x D, and hence it would be of interest to relax
this condition to cover more general random variables.

We have the following existence result:
Theorem 2.2. There is a unique solution of (2.1) in V.

Proof. We introduce the following notation

(2.3) s(u,v) = / / g(w, 2) Au(w, z) Av(w, ) drdp(w),
(2.4) //fw 2)o(w, z) dedp(w),

and, for a fixed g(w, x), write (2.1) as the problem of finding u € V' with
(2.5) s(u,v) = m(v), for every v e V.
Since q(w,z) € L®(Q x D) and V C L%(Q, L?(D)) = L*(Q x D), by the Cauchy-

Schwartz inequality, for every u,v € V', we have

/ lg(w, z) Au(w, z) Av(w, )| dedu(w)
QxD

< [lg(w, z) | L (ax Dy | Aulw, 2) (| 20, L2 (@) | Av(w, 2) | L2 (0, 22( D))

implying ¢(w, z)Au(w, ) Av(w,z) € L*( x D). Then, Fubini’s theorem for iterated
integrals yields

|s(u, v)| =

q(w, ) Au(w, ) Av(w, x) d:zdu(w)‘

/QXD ¢(w, ) Au(w, z) Av(w, x) dwd,u(w)’ .

Using repeatedly Cauchy-Schwartz inequality, we obtain

15(u,v)] < /Q laleo, ) Mo, ) Ao, )| dd)

<l )l [ [Aulw,0)Av(w, )| dudu(o)

QxD
< llg(w, @)l Lo @x p) lu(w, ) lv [[o(w, z) v,
which proves the continuity of the bilinear form s.
By using Fubini’s theorem once again, we obtain

s(v,v):/Q/Dq(w,x)Av(w,x)Av(w,x)dxdu(w)

:/ q(w, ) Av(w, ) Av(w, z) dedu(w).
QxD
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Since ¢(w, x) is bounded from below by kg, almost surely, we have
s(v,v) > Ko Av(w, x)Av(w, ) dedp(w) = K,o/ | Av(w )HLQ ydp(w),
QxD Q

which, due to the fact that the map v(w,-) — |Av(w,-)| defines a norm which is
equivalent to the original norm of H?(D), further implies that for some constant
¢ > 0, we have

s(v,v) > ero /Q (e, 2) 2, oy () = emollow, )3

which proves the coercivity of s.
Analogously, for the given f(w,x) € L*(Q; H2(D)*) and for any v(w,x) € V, for
the functional

m(v) :/Q<f(w,'),v(w, Ndp(w),

we have
o) = [ (f(w-')av(w»'»d/l(w)'

< |[f(w, @) 20,12 (D)) v (@, ©) || L2 (012 (D) *) s
which proves the continuity of m.

Consequently, the unique solvability of (2.1) ensues from the Lax-Milgram lemma
(see [24, Remark 2.2]). O

3. LIPSCHITZ CONTINUITY AND SMOOTHNESS OF THE SOLUTION MAP

We begin with the following assertion, where, for ¢(w,z) € K, uy(w,z) € V
denotes the solution of (2.1).

Theorem 3.1. The map K 3 q(w, z) — ug(w, x) is Lipschitz continuous.

Proof. For ¢1(w, ), g2(w,x) € K, let ug, (w,z),uq(w,z) € V be the corresponding
solutions of (2.1). Then, for every v € V, we have

// 01 (@, ) Ay, (@, ) Av(w, 2) dadp(w // F(w, 2)o(w, 7) dedu(w),
// 4200, 2) Aty (w0, ) Av(w, ) dadpu(w // F(w, 2)0(w, 7) dadp(w).

We rearrange the above equations to get that for every v € V, we have

//ql(w,:n)Auql(w,x)Av(w,x)dwdu(w)
QJD
—//qg(w,x)Aqu(w,x)Av(w,x)dazdu(w):0.
QJbD

We rearrange the above equation as follows

/Q/Dql(w, ) Aug, (W, ) — ugy (w, ) Av(w, z) dedp(w)
+ /Q /D(ql(w, z) — @(w, x))Aug, (w, ) Av(w, z) dedp(w) = 0,
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which holds for all v € V, and by taking v = ug, (w, ) — ug, (w, x), we obtain
0 [ 180y, =t o Dl )

< /Q/D q1(w, ©)A(ug, (w, ) — ugy (w, 7)) Aug, (W, ¥) — Ug, (W, T))dzdu(w)

o /Q /D“l(“”‘”) ~ 42(w, 2)) Mtigy (@, 2)Aug, (w, ) — g, (w, 2))drdps(w)

< [ leo.) = aa(,2) Aty (0 ) = s 02) ] ()
< |lgi(w,z) — g2(w, @) || Lo (ax D)
<[ 180, 2) Ay 2) = (0,2 A
< g1 (w, ) = @2(w, )| Lo (x Dy [ tge (W, ) [[v [ g, (W, ) — gy (w, )|,
and by evident inequality ||ug, (w,z)|v < Hf(w,x)HLz(QHz(D)*), we obtain

[ugy (w; ) = gy (w, 2) v < ellqr(w, ) = g2(w, @) || Lo (2x D)

for a constant ¢ > 0. The proof is complete. Il

We now provide a derivative characterization of the solution map. In some of our
assertions, we are dealing with the interior of K in L>°(£2 x D) with respect to the
norm topology.

Theorem 3.2. Let q(w,x) be in the interior of K. Then, the derivative duqg(w, ) =
Duy(6q(w, x)) of ug(w,x) in the direction 6q(w,x) is the unique solution of the sto-
chastic variational problem: Find duy(w,z) € V such that

(3.1) /Q/Dq(w,x)Aduq(w,x)AU(w,x)dx dp(w)

= —/ / 0qAuy(w, ) Av(w, x) dedp(w),  for every v € V.
QJD

Proof. The existence of duqy(w,x) € V satisfying (3.1) is a direct consequence of
Theorem 2.2. For ¢(w, x) belonging to the interior of K, let dg(w, x) be sufficiently
small so that ¢(w, z) + dq(w, z) € K. Consequently, the quantity

dw(w, ) = Ugqsq(w, ) — ug(w, ),

is well-defined.
By the definition of uy(w,x) and ugys5q(w, z), for every v € V, we get

/Q /D 4(w, 2) Mg (w0, 2) Av(w, @) der dja(w)

= / / f(w, z)v(w, x) dz du(w), for every v €'V,
QJD

and

//(q(w,:c) + 6q(w, z)) Atgysq(w, ) Av(w, x)dz dp(w)
QJD
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= / / f(w, z)v(w, x) de du(w), for every v € V.
QJD
We combine the above identities to obtain

(3.2) /Q/D(q(w,x) + dq(w, z)) Adw(w, ) Av(w, z)dz dp(w)

_ /Q /D 5q(w, @) Aug(w, ) Av(w, x)dz dp(w),

and by subtracting (3.1) from (3.2), we get

// q(w,2)A (dw(w, z) — dug(w, z)) Av(w, z)dr du(w)
QJp

:—//5q(w,x)Aéw(w,x)Av(w,x)dmdu(w).
QJD

We now choose v = dw(w, x) — duy(w, x), in the above equation, and obtain
/ / q(w,z)A (dw(w, z) — dug(w,z)) A (dw(w, x) — dug(w, )) de dp(w)
QJD

= —/ / 0q(w, 2) Adw(w, ) A (dw(w, ) — dug(w, x)) de dp(w),
aJp
and the above identity confirms that there is a constant ¢ > 0, such that
[6w(w, x) = dug(w, z)[lv < clldw(w, 2)[l|6g(w, 2)l| = @x D)
< ¢[|8g(w, 2)[| 200 (ax Dy
where we employed the Lipschitz continuity of the solution map. Therefore,
|tgtsq(w, x) — ug(w, x) — du(w, z)||v _
||5Q(w795)||L°°(QxD)

and by taking [6q(w, )|/ @xp)y — 0, we confirm that du(w, ) is the sought de-
rivative and that (3.2) holds. The proof is complete. O

o ([16g(w, )|l L @x D)) ;

4. OPTIMIZATION FRAMEWORK FOR THE INVERSE PROBLEM

We first define the output least-squares (OLS) functional:

Tay =5 [ [ Jualera) = (. 0) Pda due).

where u,(w, x) solves (2.1) and z(w, x) € L?(, L?(D)) is the data. In the numerical
experiments, besides the L?-norm, we will also use the H?-norm.
We next define the energy least-squares (ELS) functional

J(q) = ;/Q/Dq(w,x)A(uq(w,x) — 2(w, 2))A(ug(w, x) — 2(w, z))dz du(w),

where ug(w, z) solves (2.1) and z(w,z) € L?(Q, H3(D)) is the data.

Remark 4.1. Note that the ELS functional requires higher regularity on the data as
it is defined by using the energy associated to the variational problem. For a noisy
data set, this might cause a problem, and some data smoothing might be necessary
to alleviate it.
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One of the major deficiencies of the OLS formulation is its nonconvexity, which
results in theoretical and computational challenges and poses the risk of locating
only local solutions of the OLS-based stochastic optimization problem. The ELS-
functional, on the other hand, is convex:

Theorem 4.2. Let q(w,x) be an element in the interior of K. Then:
(1) The ﬁrst derivative of J at q is given by

DJ(q)

/ / dq(w, ) A(ug(w, z) + 2(w, z)) A(ug(w, ) — 2(w, x))dx dp(w).

(2) The second derivative of J at q is given by

D?J(q)(6q,0q) = / / q(w, ) Adug(w, z) Adug(w, z)dz dp(w).
QJD
The ELS functional is convex in the interior of the set K.

Proof. We proceed by to compute the first derivative by the chain rule
DJ(q)(dq

-5/ / 5w, D) A(u(w, ) — 2w, ) Aulw, 2) - 2(w, 2))dw du(w)
+5 [ 0(0,2) Aduy .00 (u(g.0) = (0 2)) o du(v)
+5 [ 0(0,2) Ay 0. 2)A (u(w,2) = (o0, ) dpf)
=5 | [ dalw. A, 0) = 20D Alu ) = 2. 0)do du(e)
[ [ a1 s 00 (0(e0) = (o ) d).

where duy(w, z) is the derivative of u,(w, z) in the direction dq.
Since,

[ [ a0 800, ,2) Ao 2) = 20,2 d)
——//(5q(w,:c)Auq(w,33)A(uq(w,x)—z(w,x))dxdu(w),
QJp

we obtain

DJ(q)(dq)

— ;/Q/DM(Q),&:)A(UQ(Q),J;) — 2(w, ) A(ug(w, z) — z(w, z))dz dp(w)
_/ / dq(w, ) Aug(w, ) A(ug(w, ) — 2(w, z))dx dp(w)
QJD
1
=3 /Q /D 0q(w, ) A(ug(w, ) + 2(w, 2)) A(ug(w, ) — 2(w, 2))dz dp(w).
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For the second-order derivative, we continue as follows:

D2J(q)(5q,5q):—;/Q/D(5q(w,x)A5uq(w,x)A(uq(w,x)—z(w,x))dajdu(w)
1
_2/Q/D(Sq(w,x)A(uq(w,x)—i—z(w,x))Aduq(w,x)da:du(w)
—//5q(w,x)Au(q)(w,x)A5uq(w,x)d:cd,u(w)
QJp
://q(w,x)A(Suq(w,a:)Aéuq(w,x)dxd,u(w),
QJbp

where we used Theorem 3.2.
For convexity of the ELS, we note that there is a constant o > 0 such that the
following inequality holds for all ¢(w, z) in the interior of K

(4.1) D?J(q)(8q,0q) = al|duq(w, )7,
and consequently J is a convex functional. O

Since the inverse problems are severely ill-posed, some type of regularization is
essential. For this, we introduce the following admissible set:

K:={qe H=L*Q,H(D)): 0<ro < q(w,z) <k as. Qx D},

where H is a Hilbert space compactly embedded into B := L*>(€, L>*(Q)), and
H(D) is continuously embedded in L*(£2).

Remark 4.3. Note that the random parameters above satisfy the same bounds as
n (2.2), but have higher regularity dictated by the space H. As a slight abuse of
notation, we denote both sets by K.

We introduce the following optimization problems:
1. Solve the following regularized OLS-based optimization problem:
@2 minde) = [ [l ) = 2(0,0) P dufe) + rla(e,0)

qeK

where ug(w, z) solves (2.1) for g(w, ), z(w,z) € L*(Q, L?(D)) is the data, k > 0 is
a fixed regularization parameter, and || - |3 is the regularizer.
2. Solve the following regularized ELS-based optimization problem:

ml}r{lJ / / w, ) Aug(w, x) — 2(w, ) A(ug(w, ) — 2(w, x))dz dp(w)

q€
(4.3) + fillg(w, 2)7,
where ug(w, z) solves (2.1) for ¢(w, z), z(w,z) € L*(Q, H*(D)) is the data, x > 0 is

a fixed regularization parameter, and || - ||% is the regularizer.
We have the following existence result:

Theorem 4.4. For k > 0, optimization problem (4.3) has a unique solution.
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Proof. Since J,(q) > 0, for every q € K, there is a minimizing sequence {g,(w, )}
in K such that

lim Ji(gn) = inf{Jx(¢)| ¢(w,z) € K}.

n—oo

Therefore, {J.(¢n)} is bounded, and hence {g,} is bounded in || - ||g. Since H is
reflexive, {¢,(w, z)} has a subsequence, which weakly converges to some g(w, x) € K.
Retaining the same notation for subsequences, let u,(w,z) be the solution of the
variational problem for to ¢, (w,x). That is,

/Q /D o (00, 2) At (0, 2) Av(w, ) dp(w)
_ /Q/Df(w,x)v(w,m) de du(w), for allv € V.

We take v = u,(w, z) and obtain

// 4 (0, 2) At (w0, 7) A (w0, ) dp( / / F(w, @) n(w, ) da dpa(w),

which leads to the boundedness of u,(w,z) = ug, (w, z). Therefore, {u,(w,x)} has
a subsequence that converges weakly to some u(w,z) € V. We claim that a(w,z) =
ug(w, z). The equation
[ [ anler )8 )80, ) dpe)
oJp
= / / f(w,z)v(w, x) dedu(w), for every v € K,
QJD

after a simple rearrangement of terms, implies that
/Q/ [G(w, z)At(w, z)Av(w, x) — f(w,z)v(w, ) du(w) dz]
/ / an(w, ) — q(w, ) Aup (w, ) Av(w, x)) dz du(w)
(4.4) - /Q/D G(w, ) A(up(w, z) — w(w, x))Av(w, x) dx du(w).

Notice that

[ [ () = s ) 0080, x))dwdu(W)'

1

<(/ /D i (612) )] |y 0,0 do ) )

< ([ [ lante.) - g 180t ) dodu))

—0

=

by the Dominated Convergence Theorem. Since the second term on the right-hand
side of (4.4) also converges to zero, we have

/ / (w, ) At(w, ) Av(w, x) — f(w, z)v(w, z) du(w)] = 0.
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Since v € V is arbitrary, and the variational problem is uniquely solvable, we get
(w, z) = ug(w, z).
We claim that J(g,) — J(g). The identities
[ anle )8 n(w2) = 200 2) A (0,3) — 2(0,2)) v dp(w)
QJD
— [ [ ) un(o,0) — ) dw duo)
QJD
— / / Gn(w, ) Az(w, ) A(up(w, ) — z(w, x))dz du(w),
QJD

and

/ / 1w, 2)A((w, 7) — 2(w, 2)Ali(w, 7) — (w0, 2))dz dpu(w)
= [ [ ) @e.0) - 2(w,2)dedue)
—/Q/Dq w0, 2) Az (w, 2)AlT(w, 7) — 2(w, 2))dz d(w),

in view of the rearrangement
[ [ anler )85 00 12) — 20, 0)) e ()
0Jp
- [ [ aton)asen)Aaw,a) - 2(w,2)ds du(w)
0Jp
://(Qn(w’ﬂf)—Q(W,ﬂf))AZ(w,ﬂf)A(un(w,x)—z(w,x))dmd,u(w)
oJp
—//q(w,x)Az(w,x)A(un(w,x)—u(w,x))dmd,u(w),
QJp

imply that

[ o)) = 200 0)) a1 2) = 2,2 df)
—>/Q/D(j(w,x)A(ﬁ(w,x)—z(w,x))A(a(w,x)—z(w,x))dmd,u,(w),

and consequently,

) = 1// 1w, ) A((w, ) — 2(w, 2))A((w, ) — 2(w, 2))dz d(w)

+ #illg(w, o)1

< lim — / / In(w, ) A(ug, (w, ) — 2(w, ) A(ug, (W, ) — 2(w, x))dz dp(w)

’I’L—)OO

+ lim inf &||gn (w, 7)||%
n—oo

o 1
< lim inf {2 /Q /D qn(w, 2)A(ug, (w, ) — 2(w, ) A(ug, (W, ) — 2(w, x))dz dp(w)

n—o0

+hllan(w, 2)|17 }
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= inf {JH(Q) | Q(waw) € K}7

confirming that g is a solution of (4.3). Taking into account (4.1), the solution of
(4.3) is unique such that the proof is complete. O

5. FINITE-DIMENSIONAL NOISE

An essential aspect of the study of stochastic PDEs and stochastic optimization
problems is the representation of the random fields by a finite number of mutually
independent random variables. For this, we recall [25]:

Definition 5.1. Let & : Q — I'y C R, for k = 1,..., M, be real-valued random
variables with M < co. A functionv € L?(Q, L*(D)) of the form v(&é(w), x) forx € D
and w € Q, where &€ = (€1,&2,...,60) Q=T CRM and T :=T1 xg--- x 'y is
called a finite-dimensional noise.

If a random field v(&, z) is finite-dimensional noise, a change of variable can be
made for computing expectations. For instance, denoting by o, the joint density of
&, we have

”’UH%Q(QLQ(D)) :/Q”UH%Q(D) dp(w) :/FU(Z/)HU(Z/V)\%?(D)CZZJ-

Consequently, by defining yi, := £,(Q2) and setting y = (y1, 2, - .., Yynm), we associate
a random field v(z,§) with a finite-dimensional noise by a function v(x,y) in the
weighted L? space

LAT, L*(Q)) = {v OxI = R: /F

Py, )22y < +oo} |
where p is a nonnegative and bounded function.
In what follows, we assume that g and f are finite dimensional noise and given
through the expansions:
P
a(w,7) = Bla)(z) + 3 ael()éx(w),

k=1
N

flw,z) = E[f](@) + Y frl@)é(w),
k=1

where the real-valued functions ¢ and f; are uniformly bounded.

It follows from the Doob-Dynkin lemma that a solution of (2.1) is finite-dimensional
noise and w is a function of & where £ = (&1,&2,...,&m) : @ — ' and M =
max{P, N}.

Then, variational problem (2.1) reduces to the parametric deterministic varia-
tional problem: Find u € V, := L2(T', H3(D)) such that

(5.1) /F o(y) /D 4(y, ) Duly, 2) Avly, z)dz dy

:/U(y)/ fly,x)v(y,x)dxdy, for every v € V.
r D
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For the inverse problem, we will assume that the data z depends, via £, on the
finite-dimensional noise variables {fl}lj\il Therefore, we will assume that the pa-
rameter ¢ is also the function of the variables {¢;}},. That is,

4(@,6) = 4(2,61(0), W), ... &n(W)) € H(Q) = LT, H(D)).
The finite-dimensional noise variants of the OLS/ELS objectives read:

j(q) = /Fa(y) /D (ug(y, x) — 2(y,2)) - (ug(y, x) — zn(y, x)) da dy,

J(q) :Z/Fa(y)/DQ(y,w)A(uq(y,w)—Z(y,a?))A(uq(y,:v)—Z(y,x))dfcdy,

where u4(y, z) solves (5.1) and z(y, x) is the finite-dimensional noise data.
Following Theorem 3.2, we get a derivative characterization of the finite-dimensional
noise solution map and the derivative of the ELS functional:

Theorem 5.2. Let 6q be in the interior of K. Then, the derivative duy := Dug(dq) of
uq in the direction dq is the unique solution of the following parameterized variational
problem:

/ o(y) / 4(y,2) Adug(y, ) Ao(y, z)dz dy
N D

= — / U(y)/ 0qAua(y, x)Av(y, x) dx dy, for allv € V.
r D

Furthermore, the derivative of the finite-dimensional noise ELS reads:

DI@60) =5 [ o) [ daug + Ay — 2)dady

For a derivative characterization for the OLS objective, it follows from

Ta) =5 [ o) [ (ulo2) = 2(0.2)ddy,

by a direct computation that

~

DI (q)(69) = / o(y) /D Su(uly, 2) — 2(y, ))dz dy,

where the derivative du = Du(q)(dq) can be computed by Theorem 5.2.
By using the adjoint approach, it can be shown

(5.2) D (a)(6a) = / o(y) /D 5q(y, ) Auly, ) Aw(y, 2)dz dy,

where w = w(y, x) € V, is such that for every v € V; :
63 [ o) [ atwa)dun) oty )dsdy
= [o) [ (.0) = w0ty o) dy.
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Remark 5.3. In the following section, we discretize the finite-dimensional noise prob-
lems by using the Stochastic Galerkin approach. However, in this work, we con-
fine to giving discrete formulae only and don’t study the convergence of the finite-
dimensional problems. The critical ideas of such convergence theory are similar to
those used in (3,25, 28| and would be studied in a future work via developing errors
estimates.

6. COMPUTATIONAL FRAMEWORK

In the following, we will use Stochastic Galerkin approach for providing discrete
formulae for the direct problem, the OLS and the ELS functionals, and their gra-
dients. The variational problem that needs to be discretized reads: Find u € V' :=
L2(T, H3(D)) such that

[ o [ aw.2)8uty, )00, 2)dzdy
r D
:/J(y)/ fly,x)v(y, x)dzdy, forallveV.
r D

Let V. be a finite-dimensional subspace of V. An element up; € V. is the stochastic
Galerkin solution, if

(6.1) /Fa(y) /Dq(y,:B)Auhk(y,:p)Av(y,:v)dxdy

= /Fa(y) /D fly, x)v(y, x)dzdy, for every v € Vi.
Let V}, be a N-dimensional subspace of HZ(£2) and Sy be a G-dimensional subspace
of L2(T") with
Vi, = span{®, ®y,..., Py},
Sk = span{W¥q, Uy, ..., Us}.
We assume that {¥y, Uy, ..., ¥q} is orthogonal with respect to o, that is,

/F (Y)Y (Y) Vo (y) dy=0nm,

where dy,, stands for the Kronecker delta, d,,m = 1 for n = m, dpm = 0 for n # m.
We construct a finite-dimensional subspace of V' by tensorising the basic functions ®;
and ;. That is, the following NG-dimensional space will be the finite-dimensional
test space for the discrete variational problem:

Vi =V, ® Sk := span{@,-\llj| 1=1,...,N, j = 1,...,G}.
Therefore, any v € V;, ® Sy has the representation

N G G N G
o(y,) = 3 V@@ W) = 3 |S V(@) | 9) = 3 vus),
=1 j=1 7j=1 Li=1 7j=1

N
with Vj(z) = Z Vij®i(x).
1=1
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It is convenient to introduce the following notation

Vi

Vs Y
(6.2) V=vec(Vy)=| | eRYY  where Vj(z)=| :

o s

We will assume that the random field has a finite linear expansion:

M
(6.3) q(y, z) = qo(x) + Z Ysqs(®) = > ysgs()
s=0

where, by convention, yop = 1. The spatlal components g5 are discretized by using
another P-dimensional space Qp, = span{, ..., pp}. Therefore,

P M P M
-7;) = Z QOZ(PZ(x) + Z (Z Qsz%pz(x)> Ys = Z stsa
i=1 s=0

s=1 \i=l1
where the vectors Qs(z) = (Q4) € R for s =0, ..., M,

Qo

Q= 1 € RP(M+1)x1.

Qm
will be the unknowns for the optimization problems.
Using (6.1), for every i =1,...,N,n=1,...,G, we have

N G
[ owwato) ( | aa (Z 3 Ukmcbk(:c)wm(y)) Acbz-(x)dx) dy

k=1m=1

foomsn ([ i)

or equivalently, and hence for every ¢t =1,...,N, n=1,...,G, we have

2; > Ukm/rff(y)‘l’n(y)‘l’m(y) </D q(y, x)A@k(x)q)i(x)dx> dy

= [ o) ( /| f<y,x><1>i<x>d:c) dy.

We define K(Qs) € RV*Y and ¢2,, € R, for each s € {0,..., M}, by
K@i = [ Qu0)A0(w)A®i(2)da,
D

G = /F 0 () () Vo (4l

Therefore, for each s € {0, ..., M}, we have
G = (gzm) e RGXG’
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where, for s = 0, in view of the orthogonality, we get

G" = < /F J(y)‘lfn(y)‘lfm(y)dy> =
We also define

(Fn)i = / / f(y,2)®;(z)dzdy, foreveryn=1,...,G.

Summarizing, we obtain the following form of the discrete system:

M
(K(QOHZgan( )U +ZZgnm Q) U = Fp,
s=1

m#n s=1
for every n =1,..., G, which can also be written as
K(@Q)U = F,
where
K(Q) =
- M M M .
K@)+ L ohK@Q) X opKQ) - L aicK(Q)
M M
21921K(Q s) K(Qo) + ZlgzzK(Q s) Zlgch(QJ
Mo Mo
> 0t K(Q) K@)+ X g (Q),
and
Ux Fy
Us Fy
U=1| .|, and F
Ua Fa

M
By using Kronecker product ®, K(Q) = Y  G°* ® K(Qs) and we can express this
s=0

system in the following form

(6.4)

M
> G K(Qs)
s=0

6.1. Discrete ELS. The ELS-based optimization problem reads

win Ju(0) = 5 [ o) [ al.2)A(uy — A, — 2)dady

qgeK 2 T D
K
+f / () / la(y, @) 121 ) dady,
T D
1)

where u,(y, x) is the solution to (5.
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For simplicity, we set v(y,x) := u(y, z) — z(y, ), and by using (6.3), we obtain
| M
=53 [ o [ a0 0)50(yx) dody.
2 s=07T Q

N G

Taking v(y,x) = >, > Vim®Pr(z)¥n(y), and using the notation (6.2), it can be
k=1m=1

shown that

J(Q) = (U z)" <ZG5®KQS)>(U—Z).
s=0

Moreover,
K
R(Q) =5Q" (Y& (Hg + Kq))Q,
where by ¥ € RIM+DxM+D) "k H € RPXF are given by
U= / o(y)ysyrdy for every s,t =0..., M,
r
(Hg), ; = / @j(x)pi(x)dx for every i,j =1,..., P,

)

(KQ); / Vj(x)Vyi(z)dx for every i,5 =1,...,P.
Summarizing, we have
M
Do e K@)
s=0

We recall that the continuous derivative formula is given by

DJ(q)(6q) = / / dq(y, x) A(ug + 2) A(ug — 2)dzdy.

Q) =3 (U-2)+5 QT (¥ (Hg +KQ)) Q.

By employing the same reasoning for discretization, we have

(6.5) DJ(Q)(6Q) = (U +2)" Z G* @ K(6Qs)

s=0

U - 2).

For an explicit gradient formula, we will use the notion of the adjoint matrix. We
recall that a matrix L(V) € RV*F is called adjoint stiffness matrix if

L(V)B = K(B)V, forevery BeRY V eRY,
Then, it can be shown that
1
—[U+2)T (C°®In) LU - 2)

VI(Q) = 9
~(U+2) (GMoIn) LU - 2)],
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where we used the following vectorized notation:

LU, — Zy)
LU 27) = L(Uy :— Z3)
L(Ug - Za)

Summarizing,
V(@) = —%[(U +2) (" In) LU - 2)
U+ 2)T (GM @ Iy) (U~ 2)+8Q" (¥ @ (Hg + Kg)) -

6.2. Discrete OLS. For the numerical experiments, we will consider the following
variant of the OLS:

min J.(g) = = / o(y) /D (uly, z) — 2(y, 2))*dedy+

qeK 5
1 K
5 [0 [ 18 o)~ sty Pdody+ 5 [ o) [ vl dods
2 Jr D 2 Jr D
Setting v = u(y, z) — z(y, =), the discrete OLS (without the regularizer) is:
J(Q) =V (Ig® (Ku + Ku)) V,
where,
(HU)i,j = / ®;(2)®i(z)dz,
D
D
Consequently, adding the discrete regularizing term, we obtain
~ 1 K
Ji(Q) = 5(U = 2)" (Ig® (Ky + Hy)) (U = Z) + 50 (¥ ® (Kq + Hq))Q-
By using the adjoint approach, the continuous derivative is given by

(6.6) DJ(q)(69) = /F o(y) /D 5q(y, ) Auly, 2) Aw(y, z)dzdy,

where w € V is the adjoint solution so that for every v € V, we have

/ o(y) / oy, @) Aw(y, 2) Av(y, 2)dady
T D
— / o) / (2(y,2) — uly, @) + A (2(y, ) — uly, 2))) o(y, 2)dedy.
N D

As before, the discrete adjoint equation can be shown to be

M
> G ®K(Qs)] W =P,
s=0
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where W is the discrete adjoint solution and
Py
P=|:|eRN¢
Pg
for every n € {1, ..., G}, is given by

(Pn)i=/Fa(y)‘lin(y)/Q(Z(yva)—U(y,w)JrA(Z(y,x)—U(yw)))@i(w)dﬂ:dy.

By a standard discretization,
N

(&L=§:<L¢A@@@Mw+A¥EM@A®@M{N%m—%m,

k=1
implying that
P, = (Qu + Ku) (Zn — Uy).
Denoting this by P = (Iy ® (Qu + K,,))(Z — U), we obtain

M
360w K(Qs)

s=0

W =lIy® (Qu + K,)| (Z - U).

Analogously as in (6.5), the discrete version of (6.6) is given by

M Q
DI@Q)(Q) => | Y 95U+ 2) ' LU; - Z;) | 6Qs,
s=0 \i,j=1

while, the corresponding gradient, by

VIQ) =[U"(G°®@IN)LW) - U (GM®IN)L(W) ].
Summarizing, we have
VIQ) =[UT (@ In) LW) - U (GM@Iy)L(W) ]

+rQ" (V@ (Hg + Kg)).

7. NUMERICAL EXAMPLES

Following (6.3), we assume that ¢ admits a finite linear combination:
M
(7.1) g(w,z) = qo(x) + Y gi(x)Yi(w).
i=1

In the examples below, the distribution of random variables {Yl(w)}?:1 is assumed
to be known a priori. We consider piecewise linear elements for Vj, and @), over
the same nodes, where V}, is defined on interior nodes and @}, also incorporates the
boundary nodes.

We test two different optimization approaches, the ELS and the OLS objectives.
In the examples, we consider exact data z = 4. All the experiments were carried
out on a computer with Intel(R) Core(TM) i5-8250U CPU at 1.60GHz and 8 GB of
memory by using Matlab (2019). In particular, each optimization problem is solved
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by using interior point algorithm implementation provided by Matlab fmincon rou-
tine (Matlab 2019).

We measure the expectation and variance of the identification (relative) error
functional. For example, for the particular case of the ELS objective, we measure
the identification error by the quantities

. (\/Ip(@n(w. 2) — @) (w, 2))dz) |

Mean NS

Var (/o (@(w, @) - g}l (w,x)da))
Var( fth(w,x)de)

where q}l\f corresponds with the estimated parameter using the ELS-approach. Sim-
ilarly, we measure the simulated data error by the quantities

_ B (Tt ) —wiaghe n i)
E ( Ip ah(w,:v)2d:n)
M _ Var <\/fD(gh(w733> - uh(q}y{)(w,x))de))

var (4) = v ( \/m) ,

where ¢, and @, corresponds with the interpolants of parameter ¢ and « .

e

M
Evar (C] =

Emean (1) ,

S

Example 1. For D = (0,1), we take
J(w,z) =14+ Y (w),
(w,7) = 2*(1 — 2)* + V1 (w)(1 — cos(2mz)),

Sl

which correspond to

2 2

F(@2) = o5 (14 Vi) 7 (71 = 2)? + ¥i(w) (1~ cos(2mz))

= — (167"Y1(w) cos 27z — 24) (Y (w) + 1),

where Y)(w) ~ U|[0, 1] is uniformly distributed over interval [0, 1].

Since we only have one dimension of stochasticity, we consider o(y) = 1 and
take orthonormal Legendre polynomials on [0,1]. As mentioned above, we use the
Stochastic-Galerkin method for discretization. In Table 1, we check its accuracy on
(6.4) for exact interpolated g and f.

We fix k =1e-06, which gives a stable reconstruction for the considered discretiza-
tion levels. In general, reconstruction is excellent for both approaches, ELS and
H?-OLS, and both are comparable, as we can see in Tables 2 and 3. We can visually
check the quality of reconstruction in Figures 1 and Figures 2. The samples of the
estimated parameter were randomly generated by taking into account representation
(7.1). Reconstruction in simulated data is visually nearly flawless, see Figures 3 and
4.
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Remark 7.1. We chose the value of the regularization parameter x based on extensive
but heuristic computational experimentation. However, it is of interest to conduct a
systematic regularization parameter search by employing specially designed methods
such as the L-curve or the Morozov principle. However, it should be noted that a
precise theory for choosing a regularization parameter for nonlinear inverse problems,
such as ours, is somewhat limited (as opposed to the linear inverse problems), and
most selection criteria remain largely heuristic.

TABLE 1. Stochastic-Galerkin discretization Error for Example 1.

E (\/fD (u(w,x)—1p (y,x))Qd:r) Var (\/fD (a(w,x)—1p (w,x)de)>

dim V IE( I (ﬁ(w,m)zdm) Var( In ﬂ(w,:p))2dx>
50 3.8294e-04 7.6832e-04
100 5.1911e-05 1.0391e-04
150 1.5808e-05 3.1619e-05
200 6.7612e-06 1.3519e-05

TABLE 2. Example 1. Numerical errors for k = le — 06 (ELS).

dim Vj, E}\n/[ean(a’) EvMar<a) ggean (u) Exl\z/almr(u) CPU time
50 6.7654e-04 | 2.0241e-03 | 4.2899e-07 | 9.9110e-07 | 0.95 s.
100 1.2484e-04 | 3.7481e-04 | 2.2944e-08 | 2.9078e-08 1.97 s.
150 | 4.5998e-05 | 1.3841e-04 | 8.8905e-09 | 1.3484e-08 | 4.28 s.
200 | 2.2681e-05 | 7.2722e-05 | 8.1806e-09 | 1.8736e-08 | 7.31 s.

TABLE 3. Example 1. Numerical errors for x = le — 06 (H?-OLS).

dim Vj, | eL°-OLS(g) | cH*~OLS () | (H°~OLS (y) [ (H°~OLS CPU time
50 6.7650e-04 | 2.0240e-03 | 4.2884e-07 | 9.9307e-07 1.04 s.
100 1.2483e-04 | 3.7481e-04 | 2.3690e-08 | 2.9018e-08 2.56 s.
150 4.6009e-05 | 1.3837e-04 | 1.1723e-08 | 1.0608e-08 5.24 s.
200 2.2660e-05 | 6.8360e-05 | 1.1375e-08 | 9.4175e-09 104 s.

Example 2. We take D = (0,1) and consider the parameter two degrees of stochas-
ticity
q(w, ) = 3 + 22 + Y} (w) cos(mz) + Ya(w) sin(2mz),
and the solution
u(w,z) = 2%(1 — 2)?Y1(w)
where Y7 (w), Ya(w) ~ U0, 1] are uniformly distributed over [0, 1], and

Fly1,y2,2) = p1(2)Yi(w) + p2(2) Y1 (w) Ya(w) + p3(2) Y5 (w)
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A) Real parameter B) Estimated parameter
(A) P P

1 0.1
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(c) Expected value comparison (D) Variance comparison

FIGURE 1. Example 1. Comparison between the exact and the esti-
mated parameter (ELS). M=100 samples.

where
p1(z) = 76 — 72z 4 14422,
po(z) = 24sin(2mz) — 872 sin(2mz) — 487 cos(2mx) + 4872 sin(27x)
— 4872x% sin(2nx) + 967z cos(27x),
p3(x) = 24 cos T + 247 sin mx — 27% cos mx — 127222 cos T
— 487z sin x + 12722 cos (7).

Here the stochastic domain is given by I' = [0, 1] x [0, 1]. We have o(y1,y2) = 1, and
orthonormal Legendre polynomials on [0, 1] x [0, 1], which are defined as tensorial
product of the one dimensional ones. In Table 4 we show the accuracy of the
stochastic Galerkin approach. .

We again choose the regularization parameter x =le-06. Numerical results are
given in Tables 3 and 5. In this case, for the parameters and optimization solver
considered, both approaches give very good reconstruction for the parameter, check
Figures 5 and 6, and nearly perfect for the simulated data, see Figures 7 and 8.

Summarizing, for these two examples, both the ELS and the H2-OLS are quite
comparable, but the ELS approach gives a slightly better reconstruction and signif-
icantly faster.

Remark 7.2. However, we should emphasize that the experiments are synthetic,
and the data vector are computed and measured. In other words, there is some
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E (@)
|= =E(@)+Var@,)

—_

(c) Expected value comparison

FIGURE 2. Example 1. Comparison between the exact and the esti-

mated parameter (H2-OLS). M=100 samples.

F1cURE 3. Example 1. Comparison between the exact and the sim-
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ulated data (ELS).

(D) Variance comparison
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modeling error in the data but no measurement error. It would be of interest to
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FIGURE 4. Example 1. Comparison between the exact and the sim-
ulated data (H2-OLS).

conduct detailed numerical experimentation using noisy data.

TABLE 4. Stochastic-Galerkin discretization Error for Example 2.

dim V, IE<\/fD (ﬂ(w,x)—ﬂh(y,r))zdx) Var(\/fD (ﬂ(w,x)—ﬂh(w,x)de))
eV Tp ) Var (T e
50 1.3079e-03 3.4486e-03
100 3.0580e-04 8.3439%¢-04
150 1.3220e-04 3.6552e-04
200 7.3253e-05 2.0397e-04

TABLE 5. Example 2. Numerical errors for k =1-e06 (ELS).

dim Vj, 8Meaun(a) E%r(a) E%ean (u) Exlgr (u) CPU time
50 2.2279e-03 | 2.1234e-02 | 4.4820e-05 | 1.1115e-04 12.8 s.
100 2.3245e-03 | 1.5148e-02 | 4.6350e-05 | 1.2426e-04 8.4 s.
150 | 2.3953e-03 | 1.5834e-02 | 4.9231e-05 | 1.4682e-04 19.2 s.
200 | 2.4360e-03 | 1.7765e-02 | 5.2233e-05 | 1.6908e-04 | 32.4 s.
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TABLE 6. Example 2. Numerical errors for x =1e-06 (H?-OLS).

dim Vi, | eféam(a) | ear®(a) | epim(uw) | eGr(uw) | CPU time
50 | 4.6957¢-03 | 3.3054c-02 | 1.8273¢-04 | 3.3926¢-04 | 11.3s.
100 | 4.9910e-03 | 2.80966-02 | 1.9164e-04 | 3.9573¢-04 | 105 s.
150 | 5.0516-03 | 2.9961¢-02 | 2.0315e-04 | 4.6662e-04 | 18.7 s,
200 | 5.1228¢-03 | 3.4130e-02 | 2.13766-04 | 5.2858¢-04 | 35.2 s.

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

(A) Real parameter (B) Estimated parameter

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

(c) Expected value comparison (D) Variance comparison

FIGURE 5. Example 2. Comparison between real and estimated pa-
rameter (ELS). M=100 samples.

8. CONCLUDING REMARKS

We investigated the inverse problem of estimating the stochastic flexural rigidity
in the fourth-order boundary-value problems. It is of evident significance to derive
error estimates for the inverse problem and, as a result, prove the convergence of
the discrete problems to the continuous ones.

REFERENCES

[1] R. Aboulaich, N. Fikal, E. El Guarmah and N. Zemzemi, Stochastic finite element method for
torso conductivity uncertainties quantification in electrocardiography inverse problem, Math.
Model. Nat. Phenom., 11 (2016), 1-19.

[2] V. A. Badri Narayanan and N. Zabaras, Stochastic inverse heat conduction using a spectral
approach, Internat. J. Numer. Methods Engrg. 60 (2004), 1569-1593.



1298

W. GRECKSCH, B. JADAMBA, A. A. KHAN, M. SAMA, AND C. TAMMER

—EG)

= =E(@)+ /Var (@)

(c) Expected value comparison

(D) Variance comparison

FIGURE 6. Example 2. Comparison between the exact and the esti-

mated parameter (H2-ELS). M=100

0035
e B[]
O Blu(ay?™)

——EDu,]

)
O EDuy(a}'o))

samples.

%10

35

06 07 08 09 1

3
35 x10
— TN
O Var[Du (a}'95s)]
3
25
2
15
1
0.5

FIGURE 7. Example 2. Comparison between real and simulated data

(ELS).



3]
(4]
5]

6

(7]

(8]

(9]

[10]

[11]

[12]

ESTIMATING THE STOCHASTIC FLEXURAL RIGIDITY 1299

s 0
0 0.1 0.2 03 04 05 0.6 07 0.8 0.9 1 0 0.1 0.2 03 04 05 0.6 07 08 09 1

%10

# o o
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

FIGURE 8. Example 2. Comparison between the exact and the sim-
ulated data (H2-OLS).

J. Borggaard and H.-W. van Wyk, Gradient-based estimation of uncertain parameters for
elliptic partial differential equations, Inverse Problems 31 (2015): 065008.

J. Breidt, T. Butler and D. Estep, A measure-theoretic computational method for inverse
sensitivity problems I: method and analysis, STAM J. Numer. Anal. 49 (2011), 1836-1859.

N. Bush, B. Jadamba, A. A. Khan, andF. Raciti, Identification of a parameter in fourth-
order partial differential equations by an equation error approach, Math. Slovaca 65 (2015),
1209-1221.

N. Cahill, B. Jadamba, A. A. Khan, M. Sama and B. Winkler, A first-order adjoint and a
second-order hybrid method for an energy output least squares elastography inverse problem of
identifying tumor Location, Boundary Value Problems 263 (2013), 1-14.

P. Chen, A. Quarteroni and G. Rozza, Multilevel and weighted reduced basis method for sto-
chastic optimal control problems constrained by Stokes equations, Numer. Math. 133 (2016),
67-102.

E. Crossen, M. S. Gockenbach, B. Jadamba, A. A. Khan and B. Winkler, An equation error
approach for the elasticity imaging inverse problem for predicting tumor location, Comput.
Math. Appl. 67 (2014), 122-135.

M. M. Doyley, B. Jadamba, A. A. Khan, M. Sama and B. Winkler, A new energy inversion for
parameter identification in saddle point problems with an application to the elasticity imaging
inverse problem of predicting tumor location, Numer. Funct. Anal. Optim. 35 (2014), 984-1017.
O. G. Ernst, A. Mugler, H.-J. Starkloff and E. Ullmann, On the convergence of generalized
polynomial chaos expansions, ESAIM Math. Model. Numer. Anal. 46 (2012), 317-339.

O. G. Ernst, B. Sprungk, H.-J. Starkloff, Bayesian inverse problems and Kalman filters, in:
Extraction of Quantifiable Information from Complex Systems, vol. 102 of Lect. Notes Comput.
Sci. Eng., Springer, Cham, 2014, pp. 133-159.

O. G. Ernst, B. Sprungk and H.-J. Starkloff, Analysis of the ensemble and polynomial chaos
Kalman filters in Bayesian inverse problems, SIAM/ASA J. Uncertain. Quantif. 3 (2015),
823-851.



1300 W. GRECKSCH, B. JADAMBA, A. A. KHAN, M. SAMA, AND C. TAMMER

[13] A. Gibali, B. Jadamba, A. A. Khan, F. Raciti and B. Winkler, Gradient and extragradient
methods for the elasticity imaging inverse problem wusing an equation error formulation: a
comparative numerical study, in: Nonlinear Analysis and Optimization, vol. 659 of Contemp.
Math., Amer. Math. Soc., Providence, RI, 2016, pp. 65-89.

[14] M. S. Gockenbach and A. A. Khan, An abstract framework for elliptic inverse problems: Part
1. an output least-squares approach, Mathematics and Mechanics of Solids 12 (2007), 259-276.

[15] M. S. Gockenbach and A. A. Khan, An abstract framework for elliptic inverse problems. II.
An augmented Lagrangian approach, Math. Mech. Solids 14 (2009), 517-539.

[16] T. Hyt’onen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach spaces. vol. 1.
Martingales and Littlewood-Paley theory, vol. 63 of Ergebnisse der Mathematik und ihrer
Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics
and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics|, Springer, Cham,
2016.

[17] B. Jadamba, R. Kahler, A. A. Khan, F. Raciti and B. Winkler, Identification of flezural rigidity
in a Kirchhoff plates model using a convexr objective and continuous Newton method, Math.
Probl. Eng. (2015) Art. ID 290301.

[18] B. Jadamba, A. A. Khan, A. Oberai and M. Sama, First-order and second-order adjoint
methods for parameter identification problems with an application to the elasticity imaging
inverse problem, Inverse Problems in Science and Engineering 25 (2017), 1768-1787.

[19] B. Jadamba, A. A. Khan, G. Rus, M. Sama and B. Winkler, A new conver inversion frame-
work for parameter identification in saddle point problems with an application to the elasticity
imaging inverse problem of predicting tumor location, STAM J. Appl. Math. 74 (2014), 1486—
1510.

[20] B. Jadamba, A. A. Khan, M. Sama, C. Tammer and H.-J. Starkloff, A convezr optimization
framework for the inverse problem of identifying a random parameter in a stochastic partial
differential equation, STAM Uncertainty 9 (2021), 922-952.

[21] M. Keyanpour and A. M. Nehrani, Optimal thickness of a cylindrical shell subject to stochastic
forces, J. Optim. Theory Appl. 167 (2015), 1032-1050.

[22] D. P. Kouri, M. Heinkenschloss, D. Ridzal and B. G. van Bloemen Waanders, A trust-region
algorithm with adaptive stochastic collocation for PDE optimization under uncertainty, STAM
J. Sci. Comput. 35 (2013), A1847—-A1879.

[23] H.-C. Lee and M. D. Gunzburger, Comparison of approaches for random PDE optimization
problems based on different matching functionals, Comput. Math. Appl. 73 (2017), 1657-1672.

[24] J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Translated
from the French by S. K. Mitter. Die Grundlehren der mathematischen Wissenschaften, Band
170, Springer-Verlag, New York-Berlin, 1971.

[25] G. J. Lord, C. E. Powell and T. Shardlow, An Introduction to Computational Stochastic PDEs,
Cambridge Texts in Applied Mathematics, Cambridge University Press, New York, 2014.

[26] J. Martin, L. C. Wilcox, C. Burstedde and O. Ghattas, A stochastic Newton MCMC method
for large-scale statistical inverse problems with application to seismic inversion, STAM J. Sci.
Comput. 34 (2012), A1460-A1487.

[27] M. Morzfeld, X. Tu, J. Wilkening and A. J. Chorin, Parameter estimation by implicit sampling,
Commun. Appl. Math. Comput. Sci. 10 (2015), 205-225.

[28] A. Mugler and H.-J. Starkloff, On elliptic partial differential equations with random coefficients,
Stud. Univ. Babe s-Bolyai Math. 56 (2011), 473-487.

[29] A. Mugler, H.-J. Starkloff, On the convergence of the stochastic Galerkin method for random
elliptic partial differential equations, ESAIM Math. Model. Numer. Anal. 47 (2013), 1237-1263.

[30] R. T. Rockafellar and J. Sun, Solving monotone stochastic variational inequalities and com-
plementarity problems by progressive hedging, Math. Program. Ser. B. 174 (2019), 453-471.

[31] R. T. Rockafellar and J. Sun, Solving Lagrangian variational inequalities with applications to
stochastic programming, Math. Program. Ser. B 181 (2020), 435-451.

[32] R. T. Rockafellar and R. J.-B. Wets, Stochastic variational inequalities: single-stage to multi-
stage, Math. Program. Ser. B 165 (2017), 331-360.



ESTIMATING THE STOCHASTIC FLEXURAL RIGIDITY 1301

[33] B. V. Rosi¢ and H. G. Matthies, Identification of properties of stochastic elastoplastic systems,
in: Computational methods in stochastic dynamics. Volume 2, vol. 26 of Comput. Methods
Appl. Sci., Springer, Dordrecht, 2013, pp. 237-253.

[34] E. Rosseel and G. N. Wells, Optimal control with stochastic PDE constraints and uncertain
controls, Comput. Methods Appl. Mech. Engrg. 213/216 (2012), 152-167.

[35] K. Sepahvand and S. Marburg, On construction of uncertain material parameter using gener-
alized polynomial chaos expansion from experimental data, Procedia IUTAM 6 (2013), 4-17.

[36] R. E. Tanase, Parameter estimation for partial differential equations using stochastic methods,
ProQuest LLC, Ann Arbor, MI, thesis (Ph.D.)-University of Pittsburgh, 2016.

[37] H. Tiesler, R. M. Kirby, D. Xiu and T. Preusser, Stochastic collocation for optimal control
problems with stochastic PDE constraints, STAM J. Control Optim. 50 (2012), 2659-2682.

[38] J. E. Warner, W. Aquino and M. D. Grigoriu, Stochastic reduced order models for inverse
problems under uncertainty, Comput. Methods Appl. Mech. Engrg. 285 (2015), 488-514.

[39] N. Zabaras and B. Ganapathysubramanian, A scalable framework for the solution of stochastic
inverse problems using a sparse grid collocation approach, J. Comput. Phys. 227 (2008), 4697—
4735.

Manuscript received April 30 2020
revised April 29 2021

W. GRECKSCH
Institute of Mathematics, Martin-Luther-University of Halle-Wittenberg, Theodor-Lieser-Str. 5,
D-06120 Halle-Saale, Germany.

E-mail address: wilfried.grecksch@mathematik.uni-halle.de

B. JapamBa
School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive,
Rochester, New York, 14623, USA.

E-mail address: bxjsma@rit.edu

A. A. KHan
School of Mathematical Sciences, Rochester Institute of Technology, 85 Lomb Memorial Drive,
Rochester, New York, 14623, USA.

E-mail address: aaksma@rit.edu

M. Sama
Departamento de Matematica Aplicada, Universidad Nacional de Educaciéon a Distancia, Calle
Juan del Rosal, 12, 28040 Madrid, Spain.

E-mail address: msama@ind.uned.es

C. TAMMER
Institute of Mathematics, Martin-Luther-University of Halle-Wittenberg, Theodor-Lieser-Str. 5,
D-06120 Halle-Saale, Germany.

E-mail address: christiane.tammer@mathematik.uni-halle.de



