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Another well-known approach for estimating the probability distribution of a
random variable with insufficient information is entropy maximization [8], which
prescribes to choose distribution P (x) maximizing the Shannon entropy

H(P ) = −
∫

P (x) ln(P (x))dx

subject to any given information / constraints on P (x). This approach yields distri-
butions with exponentially decreasing tails. In particular, if the constraints depend
only on distribution of the random variable, then any solution to Shannon entropy
maximization problem must have log-concave density [7].

However, in several applications, e.g., financial engineering, reliability theory and
climatology [1, 2, 13], the probability density functions of corresponding random
variables have heavy tails, for example, as in power-law distributions that maximize
Rényi (or Tsallis) entropy [16]. In particular, Rényi entropy maximization subject to
a constraint on the expected value yields a generalized Pareto distribution (GPD) [2],
and the same problem with an additional constraint on a deviation measure, e.g.,
standard deviation and mean-absolute deviation, was solved in [3, 6, 9].

The contribution and organization of this work are as follows. Section 2 solves
Rényi entropy maximization subject to constraints on generalized moments: a so-
lution has heavy tails and, as a particular case, includes GPD. Section 3 proposes
harmonic method for estimating GPD parameters and shows how conditional tail
GPD can be estimated based on quantile and CVaR regressions. As an illustration,
Section 4 tests the harmonic method on artificial data and estimates conditional
tail GPD for the return of the Fidelity Magellan fund that consists of different
stock indices. Section 5 concludes the work. Appendix 6 presents the proof of the
theorem establishing solution for Rényi entropy maximization subject to moment
constraints.

2. Estimation of probability distributions with heavy tails

Let R = (−∞,∞) be the real line, R+ = [0,∞) the set of nonnegative real
numbers, and R = R ∪ {±∞} the extended real line, and let [x]+ = max{x, 0} for
any x ∈ R.

Let (Ω,Σ,P) be a probability space, where Ω denotes the designated space of
future states ω, Σ is a σ-algebra of sets in Ω, and P is a probability measure on
(Ω,Σ). A random variable (r.v.) is any measurable function from Ω to R. An
r.v. X is continuously distributed if there exists a Lebesgue integrable function

fX : R → R+ such that P[a < X < b] =
∫ b
a fX(t)dt for all a, b ∈ R with a < b.

The function fX is called the probability density function (PDF) of X. We assume
that the probability space (Ω,Σ,P) is atomless, i.e., there exists a continuously
distributed r.v. X : Ω → R.

A continuously distributed r.v. X has support (a, b), −∞ ⩽ a < b ⩽ ∞, if

P[a < X < b] =
∫ b
a fX(t)dt = 1. Let L1

+(a, b) be the set of all functions f : (a, b) →
R+ such that

∫ b
a f(t)dt < +∞. Given f ∈ L1

+(a, b), there exists a continuously

distributed r.v. X with support (a, b) and PDF fX = f if and only if
∫ b
a f(t)dt = 1.
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For any continuously distributed r.v. X with support (a, b), its Rényi differential
entropy of order κ is defined by [14]:

Hκ(fX) =
1

1− κ
ln

∫ b

a
(fX(t))κdt, κ > 0, κ ̸= 1.

Let l(a, b) be the set of locally integrable functions ϕ : (a, b) → R, i.e., such that∫
K |ϕ(x)|dx < +∞ for any compact subset K of (a, b). Entropy maximization with

the Renyi entropy subject to moment constraints is formulated1 as [17, §5.3]:

(2.1) max
f∈L1

+(a,b)
Hκ(f) subject to

∫ b

a
ϕk(t)f(t) dt = µk, k = 0, 1, . . . ,m,

where −∞ ⩽ a < b ⩽ +∞, ϕ0(t) = 1, µ0 = 1, ϕk(t) ∈ l(a, b), k = 1, . . . ,m, µk ∈ R,
k = 1, . . . ,m.

Proposition 2.1. If a solution to (2.1) has a finite Rényi entropy, then it is unique.

Proof. Let f1 and f2 be two different solutions to (2.1) such that −∞ < Hκ(f1) =
Hκ(f2) < +∞, or, equivalently,

0 <

∫ b

a
(f1(t))

κdt =

∫ b

a
(f2(t))

κdt < +∞.

Since g(y) = yκ is strictly concave on R+ for 0 < κ < 1 and is strictly convex for
κ > 1, this implies that∫ b

a
(f(t))κdt ≶ 1

2

∫ b

a
(f1(t))

κdt+
1

2

∫ b

a
(f2(t))

κdt =

∫ b

a
(f1(t))

κdt, 1 ≶ κ,

where f = (f1 + f2)/2. Consequently, Hκ(f) > Hκ(f1). Since f satisfies all the
constrains in (2.1), this contradicts the optimality of f1. □
Theorem 2.2. Let κ > 0 and κ ̸= 1. If there exist real numbers λ∗

0, . . . , λ
∗
m such

that

(2.2) f0(t) =

[
m∑
k=0

λ∗
k ϕk(t)

] 1
κ−1

+

, a < t < b,

is finite on (a, b) and satisfies the constraints in (2.1), then f0 solves (2.1).

Proof. See Appendix 6. □

In [6, Appendix B], (2.2) is obtained by the Lagrange multipliers technique.
If
∑m

k=0 λ
∗
k ϕk(t) > 0, a < t < b, (2.2) simplifies.

Corollary 2.3. Let κ > 0 and κ ̸= 1. If there exist real numbers λ∗
0, . . . , λ

∗
m such

that

(2.3)

m∑
k=0

λ∗
k ϕk(t) > 0, a < t < b,

1If the integral
∫ b

a
ϕk(t)f(t) dt does not exist for some k, then f does not satisfy the corresponding

constraint.
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and function

(2.4) f0(t) =

(
m∑
k=0

λ∗
k ϕk(t)

) 1
κ−1

, a < t < b,

satisfies the constraints in (2.1), then f0 solves (2.1).

With (2.4), the constraints in (2.1) yield a system for λ∗
0, . . . , λ

∗
m:

(2.5)

∫ b

a

(
m∑
k=0

λ∗
kϕk(t)

) 1
κ−1

ϕi(t)dt = µi, i = 0, 1, . . . ,m.

Example 2.4 (generalized Pareto distribution (GPD)). Let a ∈ R be arbitrary,
b = ∞, m = 1, ϕ1(t) = t, µ1 = µ > a, and 1

2 < κ < 1. Then the solution of (2.1) is
determined by (see [2])

(2.6) f(t) =
κ

2κ − 1

1

µ− a

(
1 +

1− κ
2κ − 1

t− a

µ− a

) 1
κ−1

, a < t.

Detail. Substitution t = s + a reduces the problem to (2.1) with a′ = 0, b = ∞,
m = 1, ϕ1(s) = s, and µ1 = µ− a. In this case, condition (2.3) simplifies to

λ0 + λ1s > 0, 0 < s,

which holds provided that λ0 ⩾ 0 and λ1 > 0. System (2.5) takes the form

1− κ
κλ1

λ
κ

κ−1

0 = 1,
(1− κ)2

λ2
1κ(2κ − 1)

λ
2κ−1
κ−1

0 = µ− a,

which has a closed-form solution:

λ0 =

(
κ

(2κ − 1)(µ− a)

)κ−1

, λ1 =
1− κ
κ

(
κ

(2κ − 1)(µ− a)

)κ
,

and (2.4) yields (2.6). □

3. Parameter estimation for generalized Pareto distribution

GPD PDF (2.6) has three parameters: a, µ , and κ. While input parameters a
and µ can be readily estimated from observations, κ can be estimated by likelihood
maximization. Suppose there is a sample x1, . . . , xn of n independent and identically
distributed observations drawn from the PDF (2.6), in which a and µ are given. The
likelihood function with (2.6) is determined by

ℓ(κ;x1, . . . , xn) =
n∏

i=1

f(xi|κ)

=

(
1

µ− a

)n( κ
2κ − 1

)n n∏
i=1

(
1 +

1− κ
2κ − 1

xi − a

µ− a

) 1
κ−1

,

and κ is estimated by the solution of likelihood maximization

κ̂ ∈ arg max
1
2
<κ<1

ℓ(κ;x1, . . . , xn).
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3.1. Harmonic method. Another approach to estimating κ is to find κ from the
condition

(3.1)

∫ ∞

a
ln(t− a)f(t)dt = C,

where C is estimated from observations as the expected value of ln(t − a). In this
case, let η = µ− a, s = t− a, and

g(s) = f(s+ a) =
κ

2κ − 1

1

η

(
1 +

s

z η

) 1
κ−1

, z =
2κ − 1

1− κ
,

where f(t) is given by (2.6). If η > 0 and 1
2 < κ < 1, then z ∈ (0,+∞) and

F (κ, η) ≡
∫ ∞

0
g(s) ln s ds = −Hz + ln z + ln η, Hz =

∫ 1

0

1− tz

1− t
dt,

where Hz is the harmonic number [4]. The condition (3.1) can be written as

(3.2) p(z) = C̃,

where
p(z) = Hz − ln z, C̃ = ln η − C.

Proposition 3.1. Equation (3.2) has a unique solution with respect to z if and only

if C̃ > γ, where γ = limz→∞(Hz − ln z) = 0.57721566 is the Euler constant [11].

Proof. Since
d

dz
Hz =

∫ 1

0

−tz ln t

1− t
dt <

∫ 1

0
tz−1dt =

1

z
,

p′(z) < 0 on (0,∞), and p(z) is a strictly decreasing function on (0,∞): it decreases
from limz→0 p(z) = +∞ to limz→∞ p(z) = γ. □

Thus, κ can be found from (3.2) as follows: for a sample x1, . . . , xn, calculate

C̃ = ln
(
1
n

∑n
i=1 xi

)
− 1

n

∑n
i=1 lnxi, and if C̃ > γ = 0.57721566, ẑ is a solution of

Hz− ln z = C̃ and κ is estimated by κ̂ = 1+ẑ
2+ẑ . This will be called harmonic method.

If C̃ < γ, then estimate does not exist. In this case, C̃ can be increased by dropping
some of x1, . . . , xn.

2

3.2. Parameter estimation of conditional tail distribution. The GPD is of-
ten used to model a distribution tail. A conditional tail distribution can be modeled
by the GPD estimated for positive residuals of either quantile regression

(3.3) Y = c⊤X + e, Qα(e) = 0,

or CVaR regression

(3.4) Y = c⊤X + e, CVaRα(e) = 0,

whereX and Y are independent and dependent random vector and random variable,

respectively. Let matrix X̂ and vector Ŷ be realizations of X and Y , respectively:

2The procedure is as follows. Let C̃i1,...,im correspond to the set x1, . . . , xn without xi1 , . . . , xim ,

and let (i∗1, . . . , i
∗
m) ∈ argmaxi1,...,im

C̃i1,...,im . Set m = 1. If C̃i∗1 ,...,i
∗
m

> γ then stop, otherwise

increase m by 1 and so on.
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(Ŷ, X̂) is called an extended design matrix. In the α-CVaR regression, the right tail
of the distribution of residuals is assumed to start from residuals’ α-quantile, so that
α-quantile must be subtracted from the residuals of α-CVaR regression to calculate
positive right tail (the GPD is estimated for positive samples). The procedure for
estimating a conditional tail GPD based on either (3.3) or (3.4) is as follows.

(1) Find c by minimizing the Koenker and Basset error [10] of e in (3.3) and by
minimizing the Rockafellar error [5, 15, mixed-quantile quadrangle] of e in
(3.4). Let ĉ be the corresponding solution and let e = Y− ĉ⊤X be residuals.
For (3.4), define adjusted residuals to be ẽ = e − Qα(e).

(2) Estimate µ in the GPD as the average value of positive residuals of e for
(3.3) and as the average value of positive adjusted residuals of ẽ for (3.4).
Let µ̂ denote the corresponding estimate.

(3) Use MLE or harmonic method to estimate κ in the GPD for positive resid-
uals of e for (3.3) and for positive adjusted residuals of ẽ for (3.4). Let κ̂
denote the corresponding estimate.

(4) For some observationX0 ofX, calculate conditional α-quantile, Qα(Y |X0) =
ĉ⊤X0, for (3.3) and conditional α-CVaR, CVaRα(Y |X0) = ĉ⊤X0, for (3.4).
Conditional tail GPD with (µ̂, κ̂) starts from the conditional estimate of the
quantile, â = ĉ⊤X0, for (3.3) and from â = CVaRα(Y |X0)−Qα(e) for (3.4).

4. Case study: Numerical experiments

The α-quantile regression (3.3) and α-CVaR regression (3.4) are implemented
with AORDA Portfolio Safeguard (PSG) package (http://www.aorda.com/).3

4.1. Parameter estimation with artificial data. This section illustrates the
approach for estimating parameter κ of GPD suggested in §3. We generated 100
samples with size of n = 1250 and 100 samples with n = 12500 from GPD with
a = 0, µ0 = 0.7778, κ0 = 0.9091. In this case, µ is estimated as the average value
of each sample, whereas κ is estimated as the solution of (3.2) (harmonic method).
For comparison, κ is also estimated with the standard maximum likelihood (ML)
method. Table 1 shows minimum, mean and maximum values, as well as the devia-
tion ∆ = (maximum − minimum) of the relative errors (κ0−κ̂)/κ0 and (µ0−µ̂)/µ0

between the true and estimated values of κ and µ over 100 samples.
Relative errors in Table 1 show that the harmonic method estimates are better

on average than the ML estimates, although they have a larger deviation. The
harmonic method uses only two characteristics of the sample: the logarithm of the
average sample and the average of the logarithms of the sample, and, in contrast
to the ML method, it does not require solving an optimization problem. Both
harmonic and ML methods yield similar results with low relative errors.

4.2. Conditional tail parameter estimation with artificial data: quantile
regression. Samples of Y and X in the α-quantile regression (3.3) are generated
as follows:

3For the case study data, codes, and solutions, see http://uryasev.ams.stonybrook.edu/index.
php/research/testproblems/advanced-statistics/case-study-renyi-entropy-maximization/
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Table 1. Minimum, mean and maximum values and the deviation
of the relative error between the true and estimated values of κ for
100 samples with n = 1250 and for 100 samples with n = 12500
drawn from a GPD with a = 0, µ = 0.7778, κ = 0.9091.

method sample size parameter min (%) mean (%) max (%) ∆ (%)
1250 µ −10.82 −0.28 5.49 16.32

ML 1250 κ −8.9 −0.36 8.81 17.71
harmonic 1250 κ −8.61 −0.27 11.51 20.13

12500 µ −2.42 −0.08 2.01 4.44
ML 12500 κ −1.79 −0.03 1.98 3.78

harmonic 12500 κ −2.91 −0.02 2.86 5.77

(1) Generate n random samples X = {Xi, i = 1, . . . , n} from the uniform
normal distribution U(0, 1).

(2) Generate random samples e = {ei, i = 1, . . . , n} from the standard normal
distribution N(0, 1).

(3) For α = 0.75, calculate quantile qα for e and the set G1 = {ei : ei < qα, i =
1, . . . , n}. Let n1 be the number of elements in G1.

(4) With PDF (2.6) and parameters a = 0, µ0 = 0.7778, κ0 = 0.9091 generate
samples ν1, . . . , νn−n1 .

(5) Combine generated data: Ω = G1
⋃
{qα, ν1, . . . , νn−n1}.

(6) Randomly mix elements in the set Ω.
(7) Use Yi = 5 + 4Xi + ωi, ωi ∈ Ω, i = 1, . . . , n to generate Y = {Yi, i =

1, . . . , n}.
GPD parameters are then estimated based on generated 100 samples with the

sample size of n = 5000 and 100 samples with n = 50000. The four-step procedure
from §3.2 then uses a 0.75-quantile regression, which yields 1250 positive residuals
for n = 5000 and 12500 for n = 50000. Table 2 shows the minimum, mean and
maximum values as well as the deviation ∆ = (maximum − minimum) of the
relative errors (κ0 − κ̂)/κ0 and (µ0 − µ̂)/µ0 between the true and estimated values
of κ and µ over 100 samples for the corresponding sample size. Results in Table 2
are similar to those in Table 1.

4.3. Tail parameter estimation for Fidelity Magellan fund: quantile and
CVaR regressions. As yet another illustration, parameters of conditional tail
GPD are estimated based on 0.75-quantile and 0.75-CVaR regressions for 1264 daily
returns (N = 1264) of the Fidelity Magellan fund regressed against four factors:
the Russell Value Index (RUJ), RUSSELL 1000 VALUE INDEX (RLV), Russell
2000 Growth Index (RUO) and Russell 1000 Growth Index (RLG). The four-step
procedure from §3.2 uses the harmonic method for positive residuals (n = 316) and
yields µ̂ = 0.0041 and κ̂ = 0.791 for the 0.75-quantile regression and µ̂ = 0.0040
and κ̂ = 0.859 for the 0.75-CVaR regression, where in the latter, the residuals
are shifted by Qα(e) = 0.0041. Conditional 0.75-quantile and conditional 0.75-
CVaR, calculated for some observations of the four factors, are then â = 0.0217 and
CVaR0.75(Y |X0) = 0.026, respectively. In the 0.75-CVaR regression, the estimated
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Table 2. Minimum, mean and maximum values and the standard
deviation of the relative error between the true and estimated values
of µ and κ over 100 samples for corresponding sample size, where
samples are generated through the 0.75-quantile regression (3.3) with
the four-step procedure from §3.2.

method sample size parameter min, % mean (%) max (%) ∆ (%)
5000 µ −11.05 −0.41 5.64 16.7

ML 5000 κ −9.19 −0.51 8.39 17.58
harmonic 5000 κ −8.86 −1.22 8.54 17.41

50000 µ −2.38 −0.11 1.59 4.33
ML 50000 κ −1.86 −0.06 1.95 3.81

harmonic 50000 κ −2.89 −0.18 2.6 5.5

0.75-quantile of residuals is 0.0041, i.e., Q0.75(e) = 0.0041, and the conditional tail
starts from â = 0.026−0.0041 = 0.0219. Figure 1 shows bar-charts of residuals and
probability densities for conditional tail GPD estimated based on the 0.75-quantile
and 0.75-CVaR regressions.

5. Summary

This work obtains a general solution of the Rényi entropy maximization problem
with moment constraints and proposes novel methods for estimating parameters of
a generalized Pareto distribution (GPD), which is a particular case of that solution.
For example, GPD’s parameter κ can be estimated by the harmonic method, which
requires solving a transcendental equation—conditions guaranteeing existence and
uniqueness of a solution to that equation are provided. This work also shows how
conditional tail GPD can be estimated based on quantile and CVaR regressions.
As an illustration, it estimates conditional tail GPD for the Fidelity Magellan fund
return with Portfolio Safeguard (PSG) package, which has precoded error functions
for quantile and CVaR regressions.

6. Appendix: Proof of theorem 2.2

Let f be an arbitrary PDF with support (a, b) satisfying the constraints in (2.1).
Then ∫ b

a
ϕk(t)f(t) dt = µk =

∫ b

a
ϕk(t)f0(t)dt, k = 0, 1, . . . ,m.

By multiplying k-th equation by λ∗
k and adding the equations, we obtain∫ b

a
g(t)f(t) dt =

∫ b

a
g(t)f0(t)dt,

where g(t) =
∑m

k=0 λ
∗
kϕk(t). Let J

+ and J− be subsets of (a, b) on which g(t) > 0,
g(t) ⩽ 0, respectively. Note that if 0 < κ < 1, then f0 is finite-valued on (a, b) only
if J− is an empty set. If κ > 1, then J− may be non-empty, and f0(t) = 0, t ∈ J−.
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Figure 1. Estimation of conditional tail GPD with (a) the quantile
regression (3.3) and (b) CVaR regression (3.4): histograms of (a) pos-
itive residuals of 0.75-quantile regression and (b) positive adjusted
residuals of 0.75-CVaR regression both starting from 0.75-quantile
of historical return of the Magellan fund (dependent variable), the
GPD fitted to (a) positive residuals and (b) positive adjusted resid-
uals (continuous curve), and the conditional tail GPD starting from
the quantile estimate for a new observation of independent factors
(dotted curve).

We obtain∫ b

a
g(t)f0(t)dt =

∫
J+

g(t)f0(t)dt+

∫
J−

g(t)f0(t)dt =

∫ b

a
[g(t)]+f0(t) dt+ 0.
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and consequently,∫ b

a
[g(t)]+f(t) dt =

∫
J+

g(t)f(t) dt ⩾
∫ b

a
g(t)f(t) dt =

∫ b

a
[g(t)]+f0(t) dt.

This inequality can be rewritten as∫
R
fκ−1
0 (t)f(t)dt ⩾

∫
R
fκ−1
0 (t)f0(t) dt,

where we have used the definition of f0. If κ > 1, this is equivalent to

(6.1)

(∫
R
fκ−1
0 (t)f(t)dt

)1/(1−κ)
⩽
(∫

R
fκ
0 (t)dt

)1/(1−κ)
.

If 0 < κ < 1, then J− is an empty set, and consequently, (6.1) holds as equality.
Lutwak et al. [12, Lemma 1] showed that inequality

(6.2)

(∫
R gκ−1(t)f(t)dt

)1/(1−κ) (∫
R gκ(t)dt

)1/κ(∫
R fκ(t)dt

)1/(κ(1−κ)) ⩾ 1

holds for all densities f and g for which the integrals exist and finite. If f and g

have support (a, b) then all integrals
∫
R in (6.2) can be replaced by

∫ b
a . By applying

(6.2) with g = f0, we obtain(∫ b

a
fκ(t)dt

)1/(κ(1−κ))

⩽
(∫ b

a
fκ−1
0 (t)f(t)dt

)1/(1−κ)(∫ b

a
fκ
0 (t)dt

)1/κ

⩽
(∫ b

a
fκ
0 (t)dt

)1/(κ(1−κ))

,

where the second inequality follows from (6.1). This implies that Hκ(f0) ⩾ Hκ(f).
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