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the present paper, a finite horizon zero-sum linear-quadratic game with point-wise
and distributed state delays in the equation of dynamics is considered. It should be
noted that this equation is more general than the one considered in [12]. The cost
functional of the game, considered in the present paper, does not contain a control
cost of the minimizing player (the minimizer). This means that the game cannot
be solved by application of the Isaacs MinMax principle and by the Bellman-Isaacs
equation approach, i.e., this game is singular. Moreover, this game does not have, in
general, a saddle-point equilibrium in the class of regular functions. For this game,
we propose novel definitions of the saddle-point equilibrium and game value. We
solve this game by a regularization method, consisting in an approximate replacing
the original singular game with a new regular game. Namely, the dynamic equation
of the new game is the same as in the original game, while the cost functional in the
new game is the sum of the original cost functional and a finite horizon integral of the
square of the minimizer’s control with a small weight coefficient (a small positive
parameter). Due to the latter, the new game is a cheap control game. For this
new game, we derive solvability conditions, as well as a saddle-point equilibrium
and a game value. The derived solvability conditions reduce the solution of the
regular cheap control game to solution of a hybrid system of Riccati-type matrix
ordinary and partial differential equations subject to boundary conditions. The
matrix of the coefficients in the quadratic terms of these equations is symmetric but
indefinite. The system of the Riccati-type equations and the boundary conditions
(the boundary-value problem) are perturbed by the small parameter appearing in
the cost functional of the cheap control game. Subject to a proper assumption,
an asymptotic solution to this boundary-value problem is constructed and justified.
Using this asymptotic solution, the existence of the saddle-point equilibrium and the
value of the original singular game is established, and their expressions are derived.

The paper is organized as follows. In the next section, the game is rigorously
formulated, including main notions and definitions. Objectives of the paper are
outlined. In Section 3, some auxiliary results are obtained. The regularization of
the original singular game is carried out in Section 4, yielding a cheap control zero-
sum differential game with state delays in the dynamics. The solvability conditions
of this game in a class of state-feedback players’ controls are established. The
saddle-point equilibrium and the game value are derived. In Section 5, the zero-
order asymptotic solution of the hybrid system of the Riccati-type equations, arising
in the solvability conditions for the cheap control game, is constructed and justified
in the frames of the singular perturbations theory. In Section 6, the cheap control
game is transformed equivalently to a game with a singularly perturbed dynamics.
Based on the latter game, a reduced zero-sum differential game is derived. A saddle-
point state-feedback solution of the reduced game is obtained. In Section 7, using
the results of the previous sections, the existence of the saddle-point equilibrium
sequence and the game value in the original singular game is established. The
expressions of these sequence and value are derived. Conclusions are placed in
Section 8.



SINGULAR ZERO-SUM DIFFERENTIAL GAME WITH DELAYED DYNAMICS 1229

2. Game Formulation: Main Notions and Definitions

We consider the following differential time delay system describing the dynamics
of the game:

dx(t)

dt
= A11x(t) +A12y(t) +H11x(t− h)

+

∫ 0

−h
G11(η)x(t+ η)dη + C1v(t),(2.1)

dy(t)

dt
= A21x(t) +A22y(t) +H21x(t− h) +H22y(t− h)

+

∫ 0

−h

[
G21(η)x(t+ η) +G22(η)y(t+ η)

]
dη + u(t) + C2v(t),(2.2)

where t ∈ [0, tf ], (tf > 0 is a prescribed time instant); h > 0 is a given constant
time delay; x(t) ∈ Rn, y(t) ∈ Rm;

(
x(t), x(t + η)

)
,
(
y(t), y(t + η)

)
, η ∈ [−h, 0), are

state variables; u(t) ∈ Rm and v(t) ∈ Rs are players’ controls; Aij , Hi1, Ci, (i =
1, 2; j = 1, 2), and H22 are given constant matrices of corresponding dimensions;
Gi1(η), (i = 1, 2), and G22(η) are given matrix-valued functions of corresponding
dimensions continuous in the interval [−h, 0].

The system (2.1)-(2.2) is considered subject to the initial conditions

x(η) = φx(η), y(η) = φy(η), η ∈ [−h, 0);
x(0) = x0, y(0) = y0,(2.3)

where φx(η) ∈ L2[−h, 0;Rn] and φy(η) ∈ L2[−h, 0;Rm] are given vector-valued
functions; x0 ∈ Rn and y0 ∈ Rm are given vectors.

The cost functional of the game, to be minimized by the control u (the minimizer’s
control) and maximized by the control v (the maximizer’s control), is

J(u, v) =

∫ tf

0

[
xT (t)D1x(t) + yT (t)D2y(t)− vT (t)Mv(t)

]
dt,(2.4)

where D1, D2 and M are symmetric matrices of corresponding dimensions; D1 is
positive semi-definite, while D2 and M are positive definite.

Since a quadratic control cost of the minimizer does not appear in the functional
(2.4), the game (2.1)-(2.4) cannot be solved by the Isaacs’s MinMax principle and
by the Bellman-Isaacs equation method, i.e., it is singular. Moreover, this game
does not have, in general, a minimizer’s saddle-point control among regular (non-
generalized) functions. In what follows, the game (2.1)-(2.4) is called the Singular
Differential Game (SDG).

Denote:

(2.5) z
△
= col(x, y), z0

△
= col(x0, y0), φ(η)

△
= col

(
φx(η), φy(η)

)
,

where x ∈ Rn, y ∈ Rm, while x0, y0, φx(η), φy(η) are given in (2.3).
Let ψ(η) be any vector-valued function from the space L2[−h, 0;Rn+m]. For all

t ∈ [0, tf ], let us consider the t-parametric set Ut of all vector-valued continuous func-
tionals u

[
z, ψ(η), t

]
: Rn+m×L2[−h, 0;Rn+m] → Rm, and the t-parametric set Vt of
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all vector-valued continuous functionals v
[
z, ψ(η), t

]
: Rn+m × L2[−h, 0;Rn+m] →

Rs.

Definition 2.1. Let us denote by UV the set of all pairs
(
u[zt, t], v[zt, t]

)
, zt

△
={(

z(t), z(θ)
)
, θ ∈ [t− h, t)

}
, satisfying the following conditions: (i) for any fixed t ∈

[0, tf ],
(
z(t), z(t+η)

)
∈ Rn+m×L2[−h, 0;Rn+m] and u[zt, t] ∈ Ut, v[zt, t] ∈ Vt; (ii) the

initial-value problem (2.1)–(2.3) for u(t) = u[zt, t], v(t) = v[zt, t], t ∈ [0, tf ], and any
φx(η) ∈ L2[−h, 0;Rn], φy(η) ∈ L2[−h, 0;Rm], x0 ∈ Rn, y0 ∈ Rm has the unique ab-
solutely continuous solution zuv

(
t; z0, φ(η)

)
= col

(
xuv
(
t; z0, φ(η)

)
, yuv

(
t; z0, φ(η)

))
in the interval [0, tf ], where for any t ∈ [0, tf ], xuv

(
t; z0, φ(η)

)
∈ Rn and

yuv
(
t; z0, φ(η)

)
∈ Rm; (iii) the time realization u[zuv,t, t] of the control u[zt, t]

along the solution zuv
(
t; z0, φ(η)

)
belongs to L2[0, tf ;Rm]; (iv) the time realiza-

tion v[zuv,t, t] of the control v[zt, t] along the solution zuv
(
t; z0, φ(η)

)
belongs to

L2[0, tf ;Rs].
In what follows, UV is called the set of all admissible pairs of the players’ state-
feedback controls (strategies) in the SDG.

For any given u0[zt, t] ∈ Ut and v0[zt, t] ∈ Vt, t ∈ [0, tf ], we consider the sets

Fv

(
u0[zt, t]

) △
= {v[zt, t] ∈ Vt, t ∈ [0, tf ] :

(
u0[zt, t], v[zt, t]

)
∈ UV },

Fu

(
v0[zt, t]

) △
= {u[zt, t] ∈ Ut, t ∈ [0, tf ] :

(
u[zt, t], v0[zt, t]

)
∈ UV }.

(2.6)

Let

Hu
△
= {u[zt, t] ∈ Ut, t ∈ [0, tf ] : Fv

(
u[zt, t]

)
̸= ∅},

Hv
△
= {v[zt, t] ∈ Vt, t ∈ [0, tf ] : Fu

(
v[zt, t]

)
̸= ∅}.

(2.7)

Definition 2.2. For any prechosen u[zt, t] ∈ Hu, the value

Ju
(
u[zt, t]; z0, φ(η)

)
= sup

v[zt,t]∈Fv

(
u[zt,t]

) J(u[zt, t], v[zt, t])(2.8)

is called the guaranteed result of u[zt, t] in the SDG.

Definition 2.3. For any prechosen v[zt, t] ∈ Hv, the value

Jv
(
v[zt, t]; z0, φ(η)

)
= inf

u[zt,t]∈Fu

(
v[zt,t]

) J(u[zt, t], v[zt, t])(2.9)

is called the guaranteed result of v[zt, t] in the SDG.

Consider a sequence of the pairs
{(
u∗q [zt, t], v

∗
q [zt, t]

)}
∈ UV , (q = 1, 2, ...).

Definition 2.4. We call the sequence
{(
u∗q [zt, t], v

∗
q [zt, t]

)}+∞
q=1

a saddle-point

equilibrium sequence of the SDG if: (i) the limit value J∗(z0, φ(η)) △
=

limq→+∞ J
(
u∗q [zt, t], v

∗
q [zt, t]

)
exists and is finite; (ii) for any uq[zt, t] ∈

Fu

(
v∗q [zt, t]

)
and vq[zt, t] ∈ Fv

(
u∗q [zt, t]

)
, (q = 1, 2, ...), the following inequality is

satisfied:

lim sup
q→+∞

J
(
u∗q [zt, t], vq[zt, t]

)
≤ J∗(z0, φ(η))
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≤ lim inf
q→+∞

J
(
uq[zt, t], v

∗
q [zt, t]

)
.

(2.10)

The value J∗(z0, φ(η)) is called a value of the SDG.

In what follows, we are going:
(a) to establish conditions, subject to which the saddle-point equilibrium sequence
and the value of the SDG exist;
(b) to obtain expressions for these sequence and value.

3. Auxiliary Results

Let us introduce into the consideration the following block matrices:

(3.1) A =

(
A11 A12

A21 A22

)
, H =

(
H11 0
H21 H22

)
, G(η) =

(
G11(η) 0
G21(η) G22(η)

)
,

(3.2) B =

(
0
Im

)
, C =

(
C1

C2

)
, D =

(
D1 0
0 D2

)
.

The matrices A, H, G(η) and D are of the dimension (n+m)× (n+m), while the
matrices B and C are of the dimensions (n+m)×m and (n+m)× s, respectively.

Due to the notations (2.5) and (3.1),(3.2), the system (2.1)-(2.2), the initial con-
ditions (2.3) and the cost functional (2.4) can be rewritten in the equivalent form
as:

(3.3)
dz(t)

dt
= Az(t) +Hz(t− h) +

∫ 0

−h
G(η)z(t+ η)dη +Bu(t) + Cv(t), t ≥ 0,

(3.4) z(η) = φ(η), η ∈ [−h, 0); z(0) = z0,

(3.5) J(u, v) =

∫ tf

0

[
zT (t)Dz(t)− vTMv(t)

]
dt.

Thus, the SDG can be represented in the form (3.3)-(3.5).
In the SDG (3.3)-(3.5), consider the following state-feedback minimizer’s control

(3.6) u = uK [zt, t]
△
= K1(t)z(t) +

∫ 0

−h
K2(t, η)z(t+ η)dη, t ≥ 0,

whereK1(t) is a givenm×(n+m)-matrix-values function, continuous in the interval
[0, tf ]; K2(t, η) is a given m×(n+m)-matrix-valued function, continuous for (t, η) ∈
[0, tf ]× [−h, 0].

Also, consider the hybrid system of one ordinary and two partial differential equa-
tions of Riccati type with respect to unknown matrices P(t), Q(t, η) and R(t, η, ρ)

in the domain Ω
△
= {(t, η, ρ) : t ∈ [0, tf ], η ∈ [−h, 0], ρ ∈ [−h, 0]}:

dP(t)

dt
= −P(t)

(
A+BK1(t)

)
−
(
A+BK1(t)

)TP(t)

−P(t)CM−1CTP(t)−Q(t, 0)−QT (t, 0)−D,(3.7)
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∂

∂t
− ∂

∂η

)
Q(t, η) = −

(
A+BK1(t)

)TQ(t, η)

−P(t)CM−1CTQ(t, η)− P(t)
(
G(η) +BK2(t, η)

)
−R(t, 0, η),(3.8) (

∂

∂t
− ∂

∂η
− ∂

∂ρ

)
R(t, η, ρ) = −

(
G(η) +BK2(t, η)

)TQ(t, ρ)

−QT (t, η)
(
G(ρ) +BK2(t, ρ)

)
−QT (t, η)CM−1CTQ(t, ρ).(3.9)

The system (3.7)-(3.9) is subject to the boundary conditions

(3.10) P(tf ) = 0, Q(tf , η) = 0, R(tf , η, ρ) = 0, η ∈ [−h, 0], ρ ∈ [−h, 0],

Q(t,−h) = P(t)H,

R(t,−h, η) = HTQ(t, η), R(t, η,−h) = QT (t, η)H,

t ∈ [0, tf ], η ∈ [−h, 0].
(3.11)

Lemma 3.1. Let the problem (3.7)-(3.9),(3.10)-(3.11) have a continuous solution{
PK(t),QK(t, η),RK(t, η, ρ)

}
, (t, η, ρ) ∈ Ω, such that PT

K(t) = PK(t), RT
K(t, η, ρ) =

RK(t, ρ, η). Then,
(i) uK [zt, t] ∈ Hu;
(ii) the guaranteed result of uK [zt, t] in the SDG is

Ju
(
uK [zt, t]; z0, φ(η)

)
= zT0 PK(0)z0 + 2zT0

∫ 0

−h
QK(0, η)φ(η)dη

+

∫ 0

−h

∫ 0

−h
φT (η)RK(0, η, ρ)φ(ρ)dηdρ;(3.12)

(iii) this result is attained for the maximizer’s control

(3.13) v[zt, t] = vK [zt, t]
△
=M−1CT

[
PK(t)z(t) +

∫ 0

−h
QK(t, η)z(t+ η)dη

]
;

(iv) for any z0 ∈ Rn+m and any φ(η) ∈ L2[−h, 0;Rn+m], the guaranteed result of
uK [zt, t] in the SDG is nonnegative.

Proof. We start with the first item. To prove the item (i), it is sufficiently to show
the existence of v[zt, t] ∈ Vt for all t ∈ [0, tf ], such that

(
uK [zt, t], v[zt, t]

)
∈ UV . We

choose v[zt, t] = vK [zt, t]. For any t ∈ [0, tf ], the vector-valued functional vK [zt, t] is
linear with respect to the pair

(
z(t), z(t+η)

)
∈ Rn+m×L2[−h, 0;Rn+m]. Moreover,

since QK(t, η) is continuous with respect to η ∈ [−h, 0] for any t ∈ [0, tf ], this
vector-valued functional is continuous with respect to

(
z(t), z(t + η)

)
∈ Rn+m ×

L2[−h, 0;Rn+m] for any t ∈ [0, tf ].
Substitution of the control (3.6) into the original system in the form (3.3) instead

of u(t) yields

dz(t)

dt
= (A+BK1(t))z(t) +Hz(t− h)
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+

∫ 0

−h

(
G(η) +BK2(t, η)

)
z(t+ η)dη + Cv(t), t ≥ 0.(3.14)

By virtue of the results of [4], for any given vector z0 ∈ Rn+m and function φ(η) ∈
L2[−h, 0;Rn+m], the equation (3.14) for v(t) = vK [zt, t] and subject to the initial
conditions z(η) = φ(η), η ∈ [−h, 0), z(0) = z0 has the unique absolutely continuous
solution zK

(
t; z0, φ(η)

)
, t ∈ [0, tf ]. Hence, zK

(
t; z0, φ(η)

)
∈ L2[0, tf ;Rn+m] and

uK [zK,t, t] ∈ L2[0, tf ;E
m], vK [zK,t, t] ∈ L2[0, tf ;E

s]. Due to Definition 2.1, these
inclusions mean that(
uK [zt, t], vK [zt, t]

)
∈ UV . Thus, the item (i) is proven.

Proceed to the items (ii) and (iii). For any t ∈ [0, tf ], consider the Lyapunov-
Krasovskii-like functional

V [zt, t] = zT (t)PK(t)z(t) + 2zT (t)

∫ t

t−h
QK(t, τ − t)z(τ)dτ

+

∫ t

t−h

∫ t

t−h
zT (τ)RK(t, τ − t, θ − t)z(θ)dτdθ.(3.15)

For any given v[zt, t] ∈ Fv

(
uK [zt, t]

)
, and any given z0 ∈ Rn+m and φ(η) ∈

L2[−h, 0;Rn+m], we consider the solution zKv

(
t; z0, φ(η)

)
, t ∈ [0, tf ], of the problem

(3.3)-(3.4) with u(t) = uK [zt, t], v(t) = v[zt, t]. By VKv(t), let us denote the time

realization of the functional (3.15) along this solution, i.e., VKv(t)
△
= V [zKv,t, t].

Also, by v[zKv,t, t] and vK [zKv,t, t], we denote the time realizations of the controls
v[zt, t] and vK [zt, t], respectively, along the solution zKv

(
t; z0, φ(η)

)
.

Now, differentiating the function VKv(t), we obtain the following expression for
its derivative for all t ∈ [0, tf ] (in this expression for the sake of simplicity we omit
the designation of the dependence of zKv

(
t; z0, φ(η)

)
on z0 and φ(η)):

dVKv(t)

dt
= 2

(
dzKv(t)

dt

)T (
PK(t)zKv(t) +

∫ t

t−h
QK(t, τ − t)zKv(τ)dτ

)
+ zTKv(t)

dPK(t)

dt
zKv(t)

+ 2zTKv(t)

[
QK(t, 0)zKv(t)−QK(t,−h)zKv(t− h)

+

∫ t

t−h

(
∂

∂t
− ∂

∂η

)
QK(t, η)

∣∣∣∣
η=τ−t

zKv(τ)dτ

]
+ 2zTKv(t)

∫ t

t−h
RK(t, 0, θ − t)zKv(θ)dθ

− 2zTKv(t− h)

∫ t

t−h
RK(t,−h, θ − t)zKv(θ)dθ

+

∫ t

t−h

∫ t

t−h
zTKv(τ)

(
∂

∂t
− ∂

∂η
− ∂

∂ρ

)
RK(t, η, ρ)

∣∣∣∣
η=τ−t,ρ=θ−t

zKv(θ)dτdθ.

(3.16)
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Remember that zKv(t) satisfies the equation (3.14) for v(t) = v[zt, t] ∈ Fv

(
uK [zt, t]

)
.

Taking into account this fact, changing the variables τ − t = η, θ − t = ρ in
the integrals of the equation (3.16), and using the boundary-value problem (3.7)-
(3.9),(3.10)-(3.11), we can rewrite (3.16) as:

dVKv(t)

dt
= −zTKv(t)

(
D + PK(t)CM−1CTPK(t)

)
zKv(t)

+ 2
(
v[zKv,t, t]

)T
CT

(
PK(t)zKv(t) +

∫ 0

−h
QK(t, η)zKv(t+ η)dη

)
− 2zTKv(t)PK(t)CM−1CT

∫ 0

−h
QK(t, η)zKv(t+ η)dη

−
∫ 0

−h
zTKv(t+ η)QT

K(t, η)dηCM−1CT

∫ 0

−h
QK(t, ρ)zKv(t+ ρ)dρ,

t ∈ [0, tf ].

(3.17)

Finally, using (3.13), the equation (3.17) can be rewritten in the form

dVKv(t)

dt
= −zTKv(t)DzKv(t)

−
(
v[zKv,t.t]− vK [zKv,t, t]

)T
M
(
v[zKv,t, t]− vK [zKv,t, t]

)
+
(
v[zKv,t, t]

)T
Mv[zKv,t, t], t ∈ [0, tf ].(3.18)

Since the matrix M is positive definite, the equation (3.18) directly yields the in-
equality

dVKv(t)

dt
+ zTKv(t)DzKv(t)−

(
v[zKv,t, t]

)T
Mv[zKv,t, t] ≤ 0, t ∈ [0, tf ],

or

zTKv(t)DzKv(t)−
(
v[zKv,t, t]

)T
Mv[zKv,t, t] ≤ −dVKv(t)

dt
, t ∈ [0, tf ].

Let us integrate the latter with respect to t in the interval [0, tf ]. Then, using
the equations (3.5),(3.10),(3.15) and the absolute continuity of zKv(t) yield the
inequality

J
(
uK [zt, t], v[zt, t]

)
≤ zT0 PK(0)z0 + 2zT0

∫ 0

−h
QK(0, η)φ(η)dη

+

∫ 0

−h

∫ 0

−h
φT (η)RK(0, η, ρ)φ(ρ)dηdρ

∀ z0 ∈ Rn+m, φ(η) ∈ L2[−h, 0;Rn+m], v[zt, t] ∈ Fv

(
uK [zt, t]

)
.

(3.19)

Now, the substitution of v[zt, t] = vK [zt, t] into the equation (3.18) and the inte-
gration of the resulting equation in the interval [0, tf ] yield
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J
(
uK [zt, t], vK [zt, t]

)
= zT0 PK(0)z0 + 2zT0

∫ 0

−h
QK(0, η)φ(η)dη

+

∫ 0

−h

∫ 0

−h
φT (η)RK(0, η, ρ)φ(ρ)dηdρ

∀ z0 ∈ Rn+m, φ(η) ∈ L2[−h, 0;Rn+m].

This equality, along with the inequality (3.19), directly yields the validity of the
items (ii) and (iii).

Let us prove the item (iv). Consider the control v0[zt, t] ≡ 0. It is clear that
v0[zt, t] ∈ Vt for all t ∈ [0, tf ]. By virtue of the results of [4], for any given z0 ∈ Rn+m

and φ(η) ∈ L2[−h, 0;Rn+m], the equation (3.14) for v(t) = v0[zt, t] and subject to
the initial conditions z(η) = φ(η), η ∈ [−h, 0), z(0) = z0 has the unique absolutely
continuous solution zK0

(
t; z0, φ(η)

)
, t ∈ [0, tf ]. Therefore, v0[zt, t] ∈ Fv

(
uK [zt, t]

)
.

By VK0(t), we denote the time realization of the functional (3.15) along

zK0

(
t; z0, φ(η)

)
, i.e., VK0(t)

△
= V [zK0,t, t]. Replacing in (3.18) the control v[zt, t]

with the control v0[zt, t], we obtain

dVK0(t)

dt
= −

(
zK0

(
t; z0, φ(η)

))T
DzK0

(
t; z0, φ(η)

)
−
(
vK [zK0,t, t]

)T
MvK [zK0,t, t], t ∈ [0, tf ],

which yields the inequality

dVK0(t)

dt
≤ 0, t ∈ [0, tf ].

Integration of this inequality in the interval [0, tf ], and use of the equations (3.5),
(3.10), (3.15) and the absolute continuity of zK0

(
t; z0, φ(η)

)
yield the inequality

J
(
uK [zt, t], v0[zt, t]

)
≥ 0.

The latter, along with Definition 2.2, directly implies the validity of the item (iv).
Thus, the lemma is proven. □

4. Regularization of the SDG

4.1. Cheap Control Differential Game. We analyze the SDG by regularization
method. This method consists in replacing the original singular game with a reg-
ular differential game, which depends on a small positive parameter. When this
parameter is replaced with zero, the new game becomes the SDG. Based on this
observation, we construct the regular differential game, associated with the SDG,
in the following way. We keep for the new (regular) game the dynamics (3.3) and
the initial conditions (3.4) of the SDG, while the cost functional of the new game
has the regular form

(4.1) Jε(u, v) =

tf∫
0

[
zT (t)Dz(t) + ε2uT (t)u(t)− vT (t)Mv(t)

]
dt,

where ε > 0 is a small parameter.
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Remark 4.1. The regularization method was used in many works in the literature
for solution of singular optimal control problems with un-delayed and delayed dy-
namics (see e.g. [3, 9, 10, 16, 21] and references therein), and for solution of singular
differential games with un-delayed dynamics (see e.g. [11, 13–15, 25]). However, to
the best of our knowledge, a singular differential game with time delay dynamics
was studied only in a single work (see [12]) where an infinite horizon game was
considered.

Remark 4.2. Since the parameter ε > 0 is small, the game (3.3)–(3.4),(4.1) is a
differential game with a cheap control of the minimizer. In what follows, we call the
game (3.3)–(3.4),(4.1) the Cheap Control Differential Game (CCDG). Differential
games with a cheap control of at least one of the players and with un-delayed
dynamics were studied in the literature in a number of works (see e.g. [8,11,13–15,
23,25,27,30,31] ). However, to the best of our knowledge, a differential game with
a cheap control and with delays in the dynamics was studied only in the work [12].
Since for any ε > 0 the weight matrix for the minimizer’s control cost in the cost
functional (4.1) is positive definite, the CCDG is a regular differential game. The
set of all admissible pairs of players’ state-feedback controls (strategies) in this game
is the same as in the SDG, namely, it is UV .

4.2. State-Feedback Saddle-Point Equilibrium in the CCDG. Consider the
following hybrid system of Riccati-type ordinary and partial differential equations
with respect to unknown matrices P (t), Q(t, η) and R(t, η, ρ) in the domain Ω:

dP (t)

dt
= −P (t)A−ATP (t) + P (t)

(
Su(ε)− Sv

)
P (t)

−Q(t, 0)−QT (t, 0)−D,(4.2) (
∂

∂t
− ∂

∂η

)
Q(t, η) = −ATQ(t, η) + P (t)

(
Su(ε)− Sv

)
Q(t, η)

−P (t)G(η)−R(t, 0, η),(4.3) (
∂

∂t
− ∂

∂η
− ∂

∂ρ

)
R(t, η, ρ) = −GT (η)Q(t, ρ)−QT (t, η)G(ρ)

+QT (t, η)
(
Su(ε)− Sv

)
Q(t, ρ),(4.4)

where

Su(ε) =
1

ε2
BBT =

(
0 0
0 (1/ε2)Im

)
, Sv = CM−1CT =

(
Sv1 Sv2
ST
v2 Sv3

)
,

Sv1 = C1M
−1CT

1 , Sv2 = C1M
−1CT

2 , Sv3 = C2M
−1CT

2 .

(4.5)

We consider the following boundary conditions for the system (4.2)-(4.4):

(4.6) P (tf ) = 0, Q(tf , η) = 0, R(tf , η, ρ) = 0, (η, ρ) ∈ [−h, 0]× [−h, 0],

Q(t,−h) = P (t)H, R(t,−h, η) = HTQ(t, η), R(t, η,−h) = QT (t, η)H,

η ∈ [−h, 0].
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(4.7)

In what follows of this subsection, we assume:
A1. For a given ε > 0, the system (4.2)-(4.4) subject to the boundary conditions
(4.6)-(4.7) has a continuous solution

{
P ∗(t, ε), Q∗(t, η, ε), R∗(t, η, ρ, ε)

}
, (t, η, ρ) ∈

Ω, such that
(
P ∗(t, ε)

)T
= P ∗(t, ε),

(
R∗(t, η, ρ, ε)

)T
= R∗(t, ρ, η, ε).

For all t ∈ [0, tf ], consider the following t-dependent vector-valued functionals:

(4.8) u∗ε[zt, t]
△
= − 1

ε2
BT

(
P ∗(t, ε)z(t) +

∫ 0

−h
Q∗(t, η, ε)z(t+ η)dη

)
∈ Ut,

(4.9) v∗ε [zt, t]
△
=M−1CT

(
P ∗(t, ε)z(t) +

∫ 0

−h
Q∗(t, η, ε)z(t+ η)dη

)
∈ Vt.

Theorem 4.3. Let the assumption A1 be valid. Then:
(a) the pair

(
u∗ε[zt, t], v

∗
ε [zt, t]

)
∈ UV , i.e., it is admissible in the CCDG;

(b) for any u[zt, t] ∈ Fu

(
v∗ε [zt, t]

)
and any v[zt, t] ∈ Fv

(
u∗ε[zt, t]

)
, the admissible pair(

u∗ε[zt, t], v
∗
ε [zt, t]

)
satisfies the following inequality:

Jε
(
u∗ε[zt, t], v[zt, t]

)
≤ Jε

(
u∗ε[zt, t], v

∗
ε [zt, t]

)
≤ Jε

(
u[zt, t], v

∗
ε [zt, t]

)
,

i.e., this pair is a saddle-point equilibrium in the regular CCDG;
(c) the value of the CCDG is

J∗
ε

(
z0, φ(η)

) △
= Jε

(
u∗ε[zt, t], v

∗
ε [zt, t]

)
= zT0 P

∗(0, ε)z0

+2zT0

∫ 0

−h
Q∗(0, η, ε)φ(η)dη +

∫ 0

−h

∫ 0

−h
φT (η)R∗(0, η, ρ, ε)φ(ρ)dηdρ;

(4.10)

(d) for any z0 ∈ Rn+m and any φ(η) ∈ L2[−h, 0;Rn+m], the value of the CCDG is
nonnegative.

Proof. We start with the item (a). Let us substitute the controls (4.8) and (4.9) into
the equation (3.3) instead of u(t) and v(t), respectively. Due to this substitution,
the equation (3.3) becomes as:

dz(t)

dt
=
(
A−

(
Su(ε)− Sv

)
P ∗(t, ε)

)
z(t) +Hz(t− h)

+

∫ 0

−h

(
G(τ)−

(
Su(ε)− Sv

)
Q∗(t, τ, ε)

)
z(t+ τ)dτ, t ∈ [0, tf ].(4.11)

Since P ∗(t, ε) is a continuous function of t ∈ [0, tf ] and Q∗(t, τ, ε) is a continuous
function of (t, τ) ∈ [0, tf ] × [−h, 0], then for any φ(η) ∈ L2[−h, 0;Rn+m] and z0 ∈
Rn+m the linear time delay equation (4.11) subject to the initial conditions (3.4)
has the unique absolutely continuous solution in the interval [0, tf ]. This fact, along
with Definition 2.1, directly yields the validity of the item (a).

Proceed to the items (b) and (c). For any t ∈ [0, tf ], consider the Lyapunov-
Krasovskii-like functional
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Vε[zt, t] = zT (t)P ∗(t, ε)z(t) + 2zT (t)

∫ t

t−h
Q∗(t, τ − t, ε)z(τ)dτ

+

∫ t

t−h

∫ t

t−h
zT (η)R∗(t, τ − t, θ − t, ε)z(θ)dτdθ.(4.12)

For any given pair
(
u[zt, t], v[zt, t]

)
∈ UV , and any given function φ(η) ∈

L2[−h, 0;Rn+m] and vector z0 ∈ Rn+m, we consider the unique absolutely continu-
ous solution zuv

(
t; z0, φ(η)

)
, t ∈ [0, tf ] of the problem (3.3)-(3.4) with u(t) = u[zt, t],

v(t) = v[zt, t]. By Vε,uv(t), we denote the time realization of the functional (4.12)

along this solution, i.e., Vε,uv(t)
△
= Vε[zuv,t, t]. Also, by u[zuv,t, t] and v[zuv,t, t], let

us denote the time realizations of the controls u[zt, t] and v[zt, t], respectively, along
the solution zuv

(
t; z0, φ(η)

)
. Now, the calculation of the derivative dVε,uv(t)/dt,

t ∈ [0, tf ] yields the following expression (in this expression for the sake of simplic-
ity we omit the designation of the dependence of zuv

(
t; z0, φ(η)

)
on z0 and φ(η)):

dVε,uv(t)

dt
= 2

(
dzuv(t)

dt

)T (
P ∗(t, ε)zuv(t) +

∫ t

t−h
Q∗(t, τ − t, ε)zuv(τ)dτ

)
+ zTuv(t)

dP ∗(t, ε)(t)

dt
zuv(t) + 2zTuv(t)

[
Q∗(t, 0, ε)zuv(t)

−Q∗(t,−h, ε)zuv(t− h) +

∫ t

t−h

(
∂

∂t
− ∂

∂η

)
Q∗(t, η, ε)

∣∣∣∣
η=τ−t

zuv(τ)dτ

]
+ 2zTuv(t)

∫ t

t−h
R∗(t, 0, θ − t, ε)zuv(θ)dθ

− 2zTuv(t− h)

∫ t

t−h
R∗(t,−h, θ − t, ε)zuv(θ)dθ

+

∫ t

t−h

∫ t

t−h
zTuv(τ)

(
∂

∂t
− ∂

∂η
− ∂

∂ρ

)
R∗(t, η, ρ)

∣∣∣∣
η=τ−t,ρ=θ−t

zuv(θ)dτdθ.

(4.13)

Changing the variables τ − t = η, θ − t = ρ in the integrals in the equation (4.13),
and using the problem (4.2)-(4.4),(4.6)-(4.7), we can rewrite (4.13) as:

dVε,uv(t)

dt
= −zTuv(t)Dzuv(t) + zTuv(t)P

∗(t, ε)
(
Su(ε)− Sv

)
P ∗(t, ε)zuv(t)

+ 2
(
Bu[zuv,t, t] + Cv[zuv,t, t]

)T(
P ∗(t, ε)zuv(t)

+

∫ 0

−h
Q∗(t, η, ε)zuv(t+ η)dη

)
+ 2zTuv(t)P

∗(t, ε)
(
Su(ε)− Sv

) ∫ 0

−h
Q∗(t, η, ε)zuv(t+ η)dη

+

∫ 0

−h
zTuv(t+ η)

(
Q∗(t, η, ε)

)T
dη
(
Su(ε)− Sv

) ∫ 0

−h
Q∗(t, ρ, ε)zuv(t+ ρ)dρ.

(4.14)
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Using (4.8) and (4.9), we can rewrite the equation (4.14) it the form:

dVε,uv(t)

dt
= −zTuv(t)Dzuv(t)− ε2

(
u[zuv,t, t]

)T
u[zuv,t, t]

+
(
v[zuv,t, t]

)T
Mv[zuv,t, t]

+ ε2
(
u[zuv,t, t]− u∗ε[zuv,t, t]

)T (
u[zuv,t, t]− u∗ε[zuv,t, t]

)
−
(
v[zuv,t, t]− v∗ε [zuv,t, t]

)T
M
(
v[zuv,t, t]− v∗ε [zuv,t, t]

)
, t ∈ [0, tf ],

(4.15)

where u∗ε[zuv,t, t] and v
∗
ε [zuv,t, t] are the time realizations of the controls u∗ε[zt, t] and

v∗ε [zt, t], respectively, along zuv
(
t; z0, φ(η)

)
.

Integration of (4.15) in the interval [0, tf ], and use of the equations (3.5), (4.6),
(4.10) and (4.12) yield after a routine algebra the equation

Jε
(
u[zt, t], v[zt, t]

)
= J∗

ε

(
z0, φ(η)

)
+

∫ tf

0

(
ε2
(
u[zuv,t, t]− u∗ε[zuv,t, t]

)T (
u[zuv,t, t]− u∗ε[zuv,t, t]

)
−
(
v[zuv,t, t]− v∗ε [zuv,t, t]

)T
M
(
v[zuv,t, t]− v∗ε [zuv,t, t]

))
dt.

(4.16)

Taking into account the positive definiteness of the matrix M , the equation (4.16)
immediately yields the validity of the items (b) and (c).

Finally, proceed to the item (d). Consider the pair of the players’ controls,
consisting of u = u∗ε[zt, t] and v = v0[zt, t] ≡ 0. Similarly to the proof of the item (a),
it is proven the inclusion

(
u∗ε[zt], v0[zt]

)
⊂ UV . Let, for any φ(η) ∈ L2[−h, 0;Rn+m]

and z0 ∈ Rn+m, the function z∗ε0
(
t; z0, φ(η)

)
, t ∈ [0, tf ] be the solution of the

problem (3.3)-(3.4) with u(t) = u∗ε[zt, t], v(t) = v0[zt, t]. By Vε,u0(t), we denote the

time realization of the functional (4.12) along this solution, i.e., Vε,u0(t)
△
= Vε[z

∗
ε0,t, t].

Using these notations and the equation (4.15), we obtain the equation

dVε,u0(t)

dt
= −

(
z∗ε0
(
t; z0, φ(τ)

))T
Dz∗ε0

(
t; z0, φ(τ)

)
− ε2

(
u∗ε[z

∗
ε0,t, t]

)T
u∗ε[z

∗
ε0,t, t]

−
(
v∗ε [z

∗
ε0,t, t]

)T
Mv∗ε [z

∗
ε0,t, t], t ∈ [0, tf ],

(4.17)

where u∗ε[z
∗
ε0,t, t] and v

∗
ε [z

∗
ε0,t, t] are the time realizations of the controls u∗ε[zt, t] and

v∗ε [zt, t], respectively, along the solution z∗ε0
(
t; z0, φ(η)

)
.

The equation (4.17) yields the inequality dVε,u0(t)/dt ≤ 0, t ∈ [0, tf ]. Integration
of this inequality in the interval [0, tf ], and use of the equations (4.6), (4.10) and
(4.12) directly yield the validity of the item (d). Thus, the theorem is proven. □
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5. Asymptotic Analysis of the Problem (4.2)-(4.4),(4.6)-(4.7)

5.1. Transformation of (4.2)-(4.4),(4.6)-(4.7). Due to the structure of the ma-
trix Su(ε) (see the equation (4.5)), the equations (4.2), (4.3) and (4.4) have singu-
larities at ε = 0 in their right-hand sides. To remove these singularities, we look for
the solution {P (t, ε), Q(t, η, ε), R(t, η, ρ, ε)} of the problem (4.2)-(4.4),(4.6)-(4.7) in
the block form

(5.1) P (t, ε) =

(
P1(t, ε) εP2(t, ε)
εP T

2 (t, ε) εP3(t, ε)

)
,

(5.2) Q(t, η, ε) =

(
Q1(t, η, ε) Q2(t, η, ε)
εQ3(t, η, ε) εQ4(t, η, ε)

)
,

(5.3) R(t, η, ρ, ε) =

(
R1(t, η, ρ, ε) R2(t, η, ρ, ε)
RT

2 (t, ρ, η, ε) R3(t, η, ρ, ε)

)
,

where Pj(t, ε), Rj(t, η, ρ, ε), (j = 1, 2, 3) are matrices of the dimensions n×n, n×m,
m×m, respectively; Qi(t, η, ε), (i = 1, ..., 4) are matrices of the dimensions n× n,
n×m, m× n, m×m, respectively.

Substitution of (5.1)-(5.3) and the block representations for the matrices A, H,
G(τ), D, Su(ε), Sv (see the equations (3.1), (3.2), (4.5)) into (4.2)-(4.4),(4.6)-(4.7)
transforms this boundary-value problem to the following equivalent problem with
respect to Pj(t, ε), Qi(t, η, ε), Rj(t, η, ρ, ε), (j = 1, 2, 3; i = 1, ..., 4) (in this new
problem, for simplicity, we omit the designation of the dependence of the unknown
matrices on ε):

dP1(t)

dt
= −P1(t)A11 −AT

11P1(t)− εP2(t)A21 − εAT
21P

T
2 (t) + P2(t)P

T
2 (t)

−P1(t)Sv1P1(t)− εP2(t)S
T
v2P1(t)− εP1(t)Sv2P

T
2 (t)

−ε2P2(t)Sv3P
T
2 (t)−Q1(t, 0)−QT

1 (t, 0)−D1,(5.4)

ε
dP2(t)

dt
= −P1(t)A12 − εP2(t)A22 − εAT

11P2(t)− εAT
21P3(t) + P2(t)P3(t)

−εP1(t)Sv1P2(t)− ε2P2(t)S
T
v2P2(t)− εP1(t)Sv2P3(t)

−ε2P2(t)Sv3P3(t)−Q2(t, 0)− εQT
3 (t, 0),(5.5)

ε
dP3(t)

dt
= −εP T

2 (t)A12 − εAT
12P2(t)− εP3(t)A22 − εAT

22P3(t) +
(
P3(t)

)2
−ε2P T

2 (t)Sv1P2(t)− ε2P3(t)S
T
v2P2(t)− ε2P T

2 (t)Sv2P3(t)

−ε2P3(t)Sv3P3(t)− εQ4(t, 0)− εQT
4 (t, 0)−D2,(5.6) (

∂

∂t
− ∂

∂η

)
Q1(t, η) = −AT

11Q1(t, η)− εAT
21Q3(t, η) + P2(t)Q3(t, η)

−P1(t)Sv1Q1(t, η)− εP2(t)S
T
v2Q1(t, η)− εP1(t)Sv2Q3(t, η)

−ε2P2(t)Sv3Q3(t, η)− P1(t)G11(η)− εP2(t)G21(η)−R1(t, 0, η),(5.7)
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∂

∂t
− ∂

∂η

)
Q2(t, η) = −AT

11Q2(t, η)− εAT
21Q4(t, η) + P2(t)Q4(t, η)

−P1(t)Sv1Q2(t, η)− εP2(t)S
T
v2Q2(t, η)− εP1(t)Sv2Q4(t, η)

−ε2P2(t)Sv3Q4(t, η)− εP2(t)G22(η)−R2(t, 0, η),(5.8)

ε

(
∂

∂t
− ∂

∂η

)
Q3(t, η) = −AT

12Q1(t, η)− εAT
22Q3(t, η) + P3(t)Q3(t, η)

−εP T
2 (t)Sv1Q1(t, η)− εP3(t)S

T
v2Q1(t, η)− ε2P T

2 (t)Sv2Q3(t, η)

−ε2P3(t)Sv3Q3(t, η)− εP T
2 (t)G11(η)

−εP3(t)G21(η)−RT
2 (t, η, 0),(5.9)

ε

(
∂

∂t
− ∂

∂η

)
Q4(t, η) = −AT

12Q2(t, η)− εAT
22Q4(t, η) + P3(t)Q4(t, η)

−εP T
2 (t)Sv1Q2(t, η)− εP3(t)S

T
v2Q2(t, η)− ε2P T

2 (t)Sv2Q4(t, η)

−ε2P3(t)Sv3Q4(t, η)− εP3(t)G22(η)−R3(t, 0, η),(5.10) (
∂

∂t
− ∂

∂η
− ∂

∂ρ

)
R1(t, η, ρ) = −GT

11(η)Q1(t, ρ)−QT
1 (t, η)G11(ρ)

−εGT
21(η)Q3(t, ρ)− εQT

3 (t, η)G21(ρ) +QT
3 (t, η)Q3(t, ρ)

−QT
1 (t, η)Sv1Q1(t, ρ)− εQT

3 (t, η)S
T
v2Q1(t, ρ)

−εQT
1 (t, η)Sv2Q3(t, ρ)− ε2QT

3 (t, η)Sv3Q3(t, ρ),(5.11) (
∂

∂t
− ∂

∂η
− ∂

∂ρ

)
R2(t, η, ρ) = −GT

11(η)Q2(t, ρ)− εGT
21(η)Q4(t, ρ)

−εQT
3 (t, η)G22(ρ) +QT

3 (t, η)Q4(t, ρ)−QT
1 (t, η)Sv1Q2(t, ρ)

−εQT
3 (t, η)S

T
v2Q2(t, ρ)− εQT

1 (t, η)Sv2Q4(t, ρ)

−ε2QT
3 (t, η)Sv3Q4(t, ρ),(5.12)(

∂

∂t
− ∂

∂η
− ∂

∂ρ

)
R3(t, η, ρ) = −εGT

22(η)Q4(t, ρ)− εQT
4 (t, η)G22(ρ)

+QT
4 (t, η)Q4(t, ρ)−QT

2 (t, η)Sv1Q2(t, ρ)− εQT
4 (t, η)S

T
v2Q2(t, ρ)

−εQT
2 (t, η)Sv2Q4(t, ρ)− ε2QT

4 (t, η)Sv3Q4(t, ρ),(5.13)

Pj(tf ) = 0, Qi(tf , η) = 0, Rj(tf , η, ρ) = 0,

j = 1, 2, 3, i = 1, ..., 4,

(5.14)

(5.15) Q1(t,−h) = P1(t)H11 + εP2(t)H21, Q2(t,−h) = εP2(t)H22,

(5.16) Q3(t,−h) = P T
2 (t)H11 + P3(t)H21, Q4(t,−h) = P3(t)H22,

R1(t,−h, η) = HT
11Q1(t, η) + εHT

21Q3(t, η),

R1(t, η,−h) = QT
1 (t, η)H11 + εQT

3 (t, η)H21,
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(5.17)

R2(t,−h, η) = HT
11Q2(t, η) + εHT

21Q4(t, η),

R2(t, η,−h) = εQT
3 (t, η)H22,

(5.18)

(5.19) R3(t,−h, η) = εHT
22Q4(t, η), R3(t, η,−h) = εQT

4 (t, η)H22.

The problem (5.4)-(5.19) is a singularly perturbed boundary-value problem. In
order to construct its asymptotic solution, we apply in the next section the boundary
function method [32].

5.2. Asymptotic Solution of the System (5.4)-(5.19): Formal Construc-
tion. We look for the zero-order asymptotic solution of (5.4)-(5.19) in the form

(5.20) {Pj0(t, ε), Qi0(t, η, ε), Rj0(t, η, ρ, ε)}, j = 1, 2, 3, i = 1, ..., 4

where

(5.21) P10(t, ε) = P o
10(t), Pl0(t, ε) = P o

l0(t) + P t
l0(ξ), l = 2, 3, ξ = (t− tf )/ε,

Qk0(t, η, ε) = Qo
k0(t, η),

Qp0(t, η, ε) = Qo
p0(t, η) +Qt

p0(ξ, η) +Qη
p0(t, ζ) +Qt,η

p0 (ξ, ζ),

k = 1, 2, p = 3, 4, ζ = (η + h)/ε,

(5.22)

(5.23) Rj0(t, η, ρ, ε) = Ro
j0(t, η, ρ).

Here the terms with the superscript o are the so called outer solution terms, the
terms with the superscript t are the boundary layer correction terms in a neighbor-
hood of the boundary t = tf , the terms with the superscript η are the boundary
layer correction terms in a neighborhood of the boundary η = −h, and the terms
with the superscript t, η are the boundary layer correction terms in a neighborhood
of the boundary (t = tf , η = −h) of the domain Ω.

5.2.1. Outer Solution Terms. Equations and conditions for these terms are obtained
in the following way. First, we set formally ε = 0 in the problem (5.4)-(5.19) and re-
denote Pj(t), Qi(t, η), Rj(t, η, ρ) with P

o
j0(t), Q

o
i0(t, η), R

o
j0(t, η, ρ), (j = 1, 2, 3; i =

1, ..., 4). Then, we remove from the resulting problem the boundary conditions for
each term, which does not satisfy a differential equation. Thus we have the following
problem in the domain Ω:

dP o
10(t)

dt
= −P o

10(t)A11 −AT
11P

o
10(t) + P o

20(t)
(
P o
20(t)

)T
−P o

10(t)Sv1P
o
10(t)−Qo

10(t, 0)−
(
Qo

10(t, 0)
)T −D1,(5.24)

0 = −P o
10(t)A12 + P o

20(t)P
o
30(t)−Qo

20(t, 0),(5.25)

0 =
(
P o
30(t)

)2 −D2,(5.26)
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∂

∂t
− ∂

∂η

)
Qo

10(t, η) = −AT
11Q

o
10(t, η) + P o

20(t)Q
o
30(t, η)

−P o
10(t)Sv1Q

o
10(t, η)− P o

10(t)G11(η)−Ro
10(t, 0, η),(5.27) (

∂

∂t
− ∂

∂η

)
Qo

20(t, η) = −AT
11Q

o
20(t, η) + P o

20(t)Q
o
40(t, η)

−P o
10(t)Sv1Q

o
20(t, η)−Ro

20(t, 0, η),(5.28)

0 = −AT
12Q

o
10(t, η) + P o

30(t)Q
o
30(t, η)−

(
Ro

20(t, η, 0)
)T
,(5.29)

0 = −AT
12Q

o
20(t, η) + P o

30(t)Q
o
40(t, η)−Ro

30(t, 0, η),(5.30)(
∂

∂t
− ∂

∂η
− ∂

∂ρ

)
Ro

10(t, η, ρ) = −GT
11(η)Q

o
10(t, ρ)−

(
Qo

10(t, η)
)T
G11(ρ)

+
(
Qo

30(t, η)
)T
Qo

30(t, ρ)−
(
Qo

10(t, η)
)T
Sv1Q

o
10(t, ρ),(5.31) (

∂

∂t
− ∂

∂η
− ∂

∂ρ

)
Ro

20(t, η, ρ) = −GT
11(η)Q

o
20(t, ρ)

+
(
Qo

30(t, η)
)T
Qo

40(t, ρ)−
(
Qo

10(t, η)
)T
Sv1Q

o
20(t, ρ),(5.32) (

∂

∂t
− ∂

∂η
− ∂

∂ρ

)
Ro

30(t, η, ρ) =
(
Qo

40(t, η)
)T
Qo

40(t, ρ)

−
(
Qo

20(t, η)
)T
Sv1Q

o
20(t, ρ),(5.33)

P o
10(tf ) = 0, Qo

k0(tf , η) = 0, Ro
j0(tf , η, ρ) = 0,

j = 1, 2, 3, k = 1, 2,

(5.34)

(5.35) Qo
10(t,−h) = P o

10(t)H11, Qo
20(t,−h) = 0,

(5.36) Ro
10(t,−h, η) = HT

11Q
o
10(t, η), Ro

10(t, η,−h) =
(
Qo

10(t, η)
)T
H11,

(5.37) Ro
20(t,−h, η) = HT

11Q
o
20(t, η), Ro

20(t, η,−h) = 0,

(5.38) Ro
30(t,−h, η) = 0, Ro

30(t, η,−h) = 0.

It is verified directly that we can set

(5.39) Qo
20(t, η) ≡ 0, Qo

40(t, η) ≡ 0, Ro
20(t, η, ρ) ≡ 0, Ro

30(t, η, ρ) ≡ 0, (t, η, ρ) ∈ Ω

without a formal contradiction with the problem (5.24)-(5.38). In what follows, we
look for the solution of this problem satisfying the condition (5.39). Substitution of
(5.39) into (5.24)-(5.38) yields a new system. In this system, the equations (5.24),
(5.26),(5.27), (5.31) and (5.36) remain unchanged. However, for the sake of the
integrity of the new system, we write these equations in the new system. Thus, we
have the following problem in the domain Ω:

dP o
10(t)

dt
= −P o

10(t)A11 −AT
11P

o
10(t) + P o

20(t)
(
P o
20(t)

)T
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−P o
10(t)Sv1P

o
10(t)−Qo

10(t, 0)−
(
Qo

10(t, 0)
)T −D1,(5.40)

0 = −P o
10(t)A12 + P o

20(t)P
o
30(t),(5.41)

0 =
(
P o
30(t)

)2 −D2,(5.42) (
∂

∂t
− ∂

∂η

)
Qo

10(t, η) = −AT
11Q

o
10(t, η) + P o

20(t)Q
o
30(t, η)

−P o
10(t)Sv1Q

o
10(t, η)− P o

10(t)G11(η)−Ro
10(t, 0, η),(5.43)

0 = −AT
12Q

o
10(t, η) + P o

30(t)Q
o
30(t, η),(5.44)(

∂

∂t
− ∂

∂η
− ∂

∂ρ

)
Ro

10(t, η, ρ) = −GT
11(η)Q

o
10(t, ρ)−

(
Qo

10(t, η)
)T
G11(ρ)

+
(
Qo

30(t, η)
)T
Qo

30(t, ρ)−
(
Qo

10(t, η)
)T
Sv1Q

o
10(t, ρ),(5.45)

P o
10(tf ) = 0, Qo

10(tf , η) = 0, Ro
10(tf , η, ρ) = 0,(5.46)

(5.47) Qo
10(t,−h) = P o

10(t)H11,

(5.48) Ro
10(t,−h, η) = HT

11Q
o
10(t, η), Ro

10(t, η,−h) =
(
Qo

10(t, η)
)T
H11,

The equation (5.42) yields the solution

(5.49) P o
30(t) = P o∗

30 (t)
△
= D

1/2
2 , t ∈ [0, tf ],

where the superscript ”1/2” denotes the unique positive definite square root of the
corresponding positive definite matrix.

By virtue of (5.49), the equations (5.41) and (5.44) yield

P o
20(t) = P o

10(t)A12D
−1/2
2 , Qo

30(t, η) = D
−1/2
2 AT

12Q
o
10(t, η),

(t, η) ∈ [0, tf ]× [−h, 0],
(5.50)

where D
−1/2
2 is the inverse matrix for D

1/2
2 .

Substitution of (5.49) and (5.50) into the equations (5.40), (5.43), (5.45) yields
after a routine algebra the following system:

dP o
10(t)

dt
= −P o

10(t)A11 −AT
11P

o
10(t) + P o

10(t)S0P
o
10(t)

−Qo
10(t, 0)−

(
Qo

10(t, 0)
)T −D1,(5.51) (

∂

∂t
− ∂

∂η

)
Qo

10(t, η) = −AT
11Q

o
10(t, η) + P o

10(t)S0Q
o
10(t, η)

−P o
10(t)G11(η)−Ro

10(t, 0, η),(5.52)(
∂

∂t
− ∂

∂τ
− ∂

∂ρ

)
Ro

10(t, η, ρ) = −GT
11(η)Q

o
10(t, ρ)−

(
Qo

10(t, η)
)T
G11(ρ)

+
(
Qo

10(t, η)
)T
S0Q

o
10(t, ρ),(5.53)
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where S0 = A2D
−1
2 AT

2 − Sv1.
Thus, to obtain the solution of the problem (5.40)-(5.48), one has to solve the

system (5.51)-(5.53) subject to the boundary conditions (5.46)-(5.48). If the latter
has a solution P o

10(t), Q
o
10t, η), R

o
10(t, η, ρ) in the domain Ω, then the other terms of

the solution to (5.40)-(5.48) are immediately obtained by (5.49) and (5.50).
In what follows, we assume:

A2. The system (5.51)-(5.53) subject to the boundary conditions (5.46)-(5.48)
has a continuous solution

{
P o∗
10 (t), Q

o∗
10(t, η), R

o∗
10(t, η, ρ)

}
, (t, η, ρ) ∈ Ω, such that(

P o∗
10 (t)

)T
= P o∗

10 (t),
(
Ro∗

10(t, η, ρ)
)T

= Ro∗
10(t, ρ, η).

Using the equation (5.50) and the solution of the problem (5.51)-(5.53), (5.46)-
(5.48), mentioned in the assumption A2, we obtain the corresponding components
of the solution to the problem (5.40)-(5.48) as:

P o
20(t) = P o∗

20 (t)
△
= P o∗

10 (t)A12D
−1/2
2 , t ∈ [0, tf ],

Qo
30(t, η) = Qo∗

30(t, η)
△
= D

−1/2
2 AT

12Q
o∗
10(t, η), (t, η) ∈ [0, tf ]× [−h, 0].

(5.54)

This equation, along with the equation (5.34), yields

P o∗
20 (tf ) = 0, Qo

30(tf , η) = 0, η ∈ [−h, 0].(5.55)

5.2.2. Boundary Layer Correction Terms in a Neighborhood of t = tf . To obtain
equations for these terms, we substitute the expressions for Pj0(t, ε), (j = 1, 2, 3) (see
the equation (5.21)), the expressions for Qi0(t, η, ε), (i = 1, ..., 4) (see the equation
(5.22)) and the expressions for Rl(t, η, ρ, ε), (l = 2, 3) (see the equation (5.23)) into
the equations (5.5)-(5.6) and (5.9)-(5.10) instead of Pj(t), Qi(t, η) and Rl(t, η, ρ),
(j = 1, 2, 3; l = 2, 3; i = 1, ..., 4). Then, we equate the coefficients for ε0, depending
on ξ and (ξ, η), on both sides of the resulting equations. Thus, taking into account
(5.39), (5.49) and (5.55), we have

dP t
20(ξ)

dξ
= P t

20(ξ)D
1/2
2 + P t

20(ξ)P
t
30(ξ), ξ ≤ 0,(5.56)

dP t
30(ξ)

dξ
= P t

30(ξ)D
1/2
2 +D

1/2
2 P t

30(ξ) +
(
P t
30(ξ)

)2
, ξ ≤ 0,(5.57)

(5.58)
∂Qt

p0(ξ, η)

∂ξ
= D

1/2
2 Qt

p0(ξ, η) + P t
30(ξ)Q

t
p0(ξ, η), ξ ≤ 0, η ∈ [−h, 0], p = 3, 4,

Conditions for these differential equations are obtained by substitution of the ex-
pressions for Pl0(t, ε), (l = 2, 3) and Qp0(t, η, ε), (p = 3, 4) into the corresponding
terminal conditions in (5.14) and equating the coefficients for ε0 on both sides of
the resulting equations. This procedure immediately yields

P t
20(0) = 0, P t

30(0) = −D−1/2
2 ,

Qt
p0(0, η) = 0, η ∈ [−h, 0], p = 3, 4.

(5.59)
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Solving the problem (5.56)-(5.59), we obtain

P t
20(ξ) ≡ 0, Qt

p0(ξ, η) ≡ 0, p = 3, 4,

P t
30(ξ) = P t∗

30(ξ)
△
= −2D

1/2
2 exp(2D

1/2
2 ξ)

[
Im + exp(2D

1/2
2 ξ)

]−1
,

ξ ≤ 0, η ∈ [−h, 0].
(5.60)

Since D
1/2
2 is a positive definite matrix, then

(5.61)
∥∥P t∗

30(ξ)
∥∥ ≤ a exp(βξ), ξ ≤ 0,

where ∥ · ∥ denotes the Euclidean norm of a matrix; a > 0 and β > 0 are some
constants.

5.2.3. Boundary Layer Correction Terms in a Neighborhood of η = −h. To obtain
equations for these terms, we substitute the expressions for Pl0(t, ε), (l = 2, 3) (see
the equation (5.21)), the expressions for Qi0(t, η, ε), (i = 1, ..., 4) (see the equation
(5.22)) and the expressions for Rl(t, η, ρ, ε), (l = 2, 3) (see the equation (5.23)) into
the equations (5.9)-(5.10) instead of Pl(t), Qi(t, η) and Rl(t, η, ρ), (l = 2, 3; i =
1, ..., 4). Then, we equate the coefficients for ε0, depending on (t, ζ), on both sides
of the resulting equations. Thus, taking into account (5.49), we have

(5.62)
∂Qη

p0(t, ζ)

∂ζ
= −D1/2

2 Qη
p0(t, ζ), t ∈ [0, tf ], ζ ≥ 0, p = 3, 4.

Conditions for these differential equations are obtained by substitution of the ex-
pressions for Qp0(t, η, ε), (p = 3, 4) into the boundary conditions (5.16) and equat-
ing the coefficients for ε0, depending on t, on both sides of the resulting equations,
yielding

Qη
30(t, 0) =

(
P o
20(t)

)T
H11 + P o

30(t)H21 −Qo
30(t,−h), t ∈ [0, tf ],

Qη
40(t, 0) = P o

30(t)H22 −Qo
40(t,−h), t ∈ [0, tf ].

Using the equations (5.35),(5.39),(5.49),(5.54), we can transform these conditions
as:

(5.63) Qη
30(t, 0) = D

1/2
2 H21, Qη

40(t, 0) = D
1/2
2 H22, t ∈ [0, tf ].

The initial-value problem (5.62),(5.63) has the unique solution

Qη
30(t, ζ) = Qη∗

30(t, ζ)
△
= exp

(
−D

1/2
2 ζ

)
D

1/2
2 H21, t ∈ [0, tf ], ζ ≥ 0,

Qη
40(t, ζ) = Qη∗

40(t, ζ)
△
= exp

(
−D

1/2
2 ζ

)
D

1/2
2 H22, t ∈ [0, tf ], ζ ≥ 0,

(5.64)

satisfying the inequality

(5.65)
∥∥∥Qη∗

p0(t, ζ)
∥∥∥ ≤ a exp(−βζ), t ∈ [0, tf ], ζ ≥ 0, p = 3, 4,

where a > 0 and β > 0 are some constants.
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5.2.4. Boundary Layer Correction Terms in a Neighborhood of (t = tf , η = −h).
Similarly to the equations and conditions for the above considered boundary layer
correction terms, using (5.39),(5.49),(5.55),(5.60) and (5.64), we obtain the following

equations and conditions for Qt,η
30 (ξ, ζ) and Q

t,η
40 (ξ, ζ):(

∂

∂ξ
− ∂

∂ζ

)
Qt,η

30 (ξ, ζ) =
[
D

1/2
2 + P t∗

30(ξ)
]
Qt,η

30 (ξ, ζ)

+P t∗
30(ξ) exp

(
−D

1/2
2 ζ

)
D

1/2
2 H21, ξ ≤ 0, ζ ≥ 0,(5.66)

(
∂

∂ξ
− ∂

∂ζ

)
Qt,η

40 (ξ, ζ) =
[
D

1/2
2 + P t∗

30(ξ)
]
Qt,η

40 (ξ, ζ)

+P t∗
30(ξ) exp

(
−D

1/2
2 ζ

)
D

1/2
2 H22, ξ ≤ 0, ζ ≥ 0,(5.67)

Qt,η
30 (0, ζ) = − exp

(
−D

1/2
2 ζ

)
D

1/2
2 H21, ζ ≥ 0,

Qt,η
40 (0, ζ) = − exp

(
−D

1/2
2 ζ

)
D

1/2
2 H22, ζ ≥ 0,

(5.68)

(5.69) Qt,η
30 (ξ, 0) = P t∗

30(ξ)H21, Qt,η
40 (ξ, 0) = P t∗

30(ξ)H22, ξ ≤ 0,

where P t∗
30(ξ) is given in (5.60).

Solving the boundary-value problem (5.66)-(5.69) and using the results of [7], we
obtain

Qt,η∗
30 (ξ, ζ) = Φ(ξ)Ψ3(ξ + ζ)

+(1/2)P t
30(ξ)D

−1/2
2 exp

(
−D

1/2
2 ζ

)
D

1/2
2 H21, ξ ≤ 0, ζ ≥ 0,

Qt,η∗
40 (ξ, ζ) = Φ(ξ)Ψ4(ξ + ζ)

+(1/2)P t
30(ξ)D

−1/2
2 exp

(
−D

1/2
2 ζ

)
D

1/2
2 H22, ξ ≤ 0, ζ ≥ 0,

where Φ(ξ) is a unique solution of the problem

dΦ(ξ)

dξ
=
[
D

1/2
2 + P t∗

30(ξ)
]
Φ(ξ), Φ(0) = Im,

and Ψp(χ), (p = 3, 4) have the form

Ψ3(χ) =

{
−(1/2)D

1/2
2 exp

(
D

1/2
2 χ

)
H21, χ ≤ 0,

−(1/2)D
1/2
2 exp

(
−D

1/2
2 χ

)
H21, χ > 0,

Ψ4(χ) =

{
−(1/2)D

1/2
2 exp

(
D

1/2
2 χ

)
H22, χ ≤ 0,

−(1/2)D
1/2
2 exp

(
−D

1/2
2 χ

)
H22, χ > 0.

It is clear that Ψp(χ), (p = 3, 4) are continuous at χ = 0, and Qt,η
p0 (ξ, ζ), (p = 3, 4)

are exponentially decaying as |ξ|+ ζ → +∞.
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5.3. Justification of the asymptotic solution. Denote

P ∗
30(t, ε)

△
= P o∗

30 (t) + P t∗
30

(
t− tf )/ε

)
,

Q∗
30(t, η, ε)

△
= Qo∗

30(t, η) +Qη∗
30

(
t, (η + h)/ε

)
+Qt,η∗

30

(
(t− tf )/ε, (η + h)/ε

)
,

Q∗
40(t, η, ε)

△
= Qη∗

40

(
t, (η + h)/ε

)
+Qt,η∗

40

(
(t− tf )/ε, (η + h)/ε

)
,

(t, η) ∈ [0, tf ]× [−h, 0].
(5.70)

Lemma 5.1. Let the assumption A2 be valid. Then, there exists a positive number
ε0 such that for all ε ∈ (0, ε0], the problem (5.4)-(5.19) has a continuous solution
{P ∗

j (t, ε), Q
∗
i (t, η, ε), R

∗
j (t, η, ρ, ε), j = 1, 2, 3, i = 1, 2, 3} in the domain Ω. For all

(t, η, ρ, ε) ∈ Ω× (0, ε0], this solution satisfies the symmetry properties
(
P ∗
1 (t, ε)

)T
=

P ∗
1 (t, ε),

(
P ∗
3 (t, ε)

)T
= P ∗

3 (t, ε),
(
R∗

1(t, η, ρ, ε)
)T

= R∗
1(t, ρ, η, ε),

(
R∗

3(t, η, ρ, ε)
)T

=
R∗

3(t, ρ, η, ε), and the inequalities∥∥∥P ∗
k (t, ε)− P o∗

k0 (t)
∥∥∥ ≤ aε,

∥∥∥P ∗
3 (t, ε)− P ∗

30(t, ε)
∥∥∥ ≤ aε,∥∥∥Q∗

1(t, η, ε)−Qo∗
10(t, η)

∥∥∥ ≤ aε,
∥∥∥Q∗

2(t, η, ε)
∥∥∥ ≤ aε,∥∥∥Q∗

p(t, η, ε)−Q∗
p0(t, η, ε)

∥∥∥ ≤ aε,∥∥∥R∗
1(t, η, ρ, ε)−Ro∗

10(t, η, ρ)
∥∥∥ ≤ aε,

∥∥∥R∗
l (t, η, ρ, ε)

∥∥∥ ≤ aε,

k = 1, 2, p = 3, 4, l = 2, 3,

(5.71)

where a > 0 is some constant independent of ε.

Proof. The proof is carried out quite similarly to the work [7], where a problem
similar to the problem (5.4)-(5.19) is analyzed. The only essential difference between
the problems of [7] and (5.4)-(5.19) is that the former is associated with a linear-
quadratic cheap control problem with state delays, while the latter is associated
with a zero-sum linear-quadratic cheap control game with state delays. Therefore,
in the problem of [7] the matrix of coefficients for the quadratic terms is symmetric
positive semi-definite, while in (5.4)-(5.19) such a matrix is symmetric but indefinite.
Due to this indefiniteness, we introduce an additional assumption (the assumption
A2), while the other assumptions in the present paper are similar to those in [7]
yielding the similar results. Namely, the existence of the solution to the problem
(5.4)-(5.19) for all sufficiently small ε > 0, which satisfies the symmetry properties
and the inequalities (5.71). □
Corollary 5.2. Let the assumption A2 be valid. Then, for any ε ∈ (0, ε0], all the
statements of Theorem 4.3 are valid.

Proof. Due to Lemma 5.1, for any ε ∈ (0, ε0], the problem (4.2)-(4.4),(4.6)-(4.7)
has the solution

{
P ∗(t, ε), Q∗(t, η, ε), R∗(t, η, ρ, ε)

}
, (t, η, ρ) ∈ Ω. The components

P ∗(ε), Q∗(τ, ε) and R∗(τ, ρ, ε) of this solution have the block form (5.1),(5.2) and
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(5.3), respectively, where Pj(t, ε) = P ∗
j (t, ε), Qi(t, η, ε) = Q∗

i (t, η, ε), Rj(t, η, ρ, ε) =

R∗
j (t, η, ρ, ε), (j = 1, 2, 3; i = 1, ..., 4). For any ε ∈ (0, ε0], this solution satisfies all

the conditions of the assumption A1, which means the validity of Theorem 4.3 for
any such ε. □

Consider the value

J∗
0

(
x0, φx(η)

) △
= xT0 P

∗
10(0)x0 + 2xT0

∫ 0

−h
Qo∗

10(0, η)φx(η)dη

+

∫ 0

−h

∫ 0

−h
φT
x (η)R

o∗
10(0, η, ρ)φx(ρ)dηdρ,(5.72)

where x0 and φx(η) are the upper blocks of the vectors z0 and φ(η), respectively,
(see the equation (2.5)).

Corollary 5.3. Let the assumption A2 be valid. Then, for all ε ∈ (0, ε0], the value
of the CCDG J∗

ε

(
z0, φ(η)

)
satisfies the inequality

(5.73)
∥∥J∗

ε

(
z0, φ(η)

)
− J∗

0

(
x0, φx(η)

)∥∥ ≤ c
(
z0, φ(η)

)
ε,

where c
(
z0, φ(η)

)
> 0 is some constant independent of ε but depending on z0 and

φ(η).

Proof. The corollary is a direct consequence of the item (c) of Theorem 4.3, Lemma
5.1, Corollary 5.2 and its proof, and the equation (5.72). □

6. Reduced Differential Game

6.1. Transformation of the CCDG. Let us transform the minimizer’s control of
this game as:

(6.1) u(t) = (1/ε)w(t), t ∈ [0, tf ],

where w(t) is a new control of the minimizer.
Due to this transformation and the equations (2.5),(3.2), the dynamic system

and the cost functional of the game (2.1)-(2.3),(4.1) become as:

dx(t)

dt
= A11x(t) +A12y(t) +H11x(t− h)

+

∫ 0

−h
G11(η)x(t+ η)dη + C1v(t),(6.2)

ε
dy(t)

dt
= ε

[
A21x(t) +A22y(t) +H21x(t− h) +H22y(t− h)

+

∫ 0

−h

(
G21(η)x(t+ η) +G22(η)y(t+ η)

)
dη + C2v(t)

]
+ w(t),

(6.3)

J (w, v) =

tf∫
0

[
xT (t)D1x(t) + yT (t)D2y(t)
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+wT (t)w(t)− vT (t)Mv(t)
]
dt.(6.4)

Note, that the dynamics of the transformed game (6.2)-(6.4),(2.3) is singularly per-
turbed, while the controls’ costs are not small, i.e., are not cheap. We call this game
the Singularly Perturbed Game (SPG).

6.2. Derivation of the Reduced Differential Game. The dynamic system and
the cost functional of this game are obtained from (6.2)-(6.4) by setting there for-
mally ε = 0 and redenoting x, y, v, w and J with xr, yr, vr, wr and Jr, respectively.
Thus, we have

dxr(t)

dt
= A11xr(t) +A12yr(t) +H11xr(t− h)

+

∫ 0

−h
G11(η)xr(t+ η)dη + C1vr(t), t ∈ [0, tf ],(6.5)

0 = wr(t), t ∈ [0, tf ],(6.6)

Jr =

tf∫
0

[
xTr (t)D1xr(t) + yTr (t)D2yr(t)

+wT
r (t)wr(t)− vTr (t)Mvr(t)

]
dt.(6.7)

Due to (6.6), the functional (6.7) becomes:

Jr =

tf∫
0

[
xTr (t)D1xr(t) + yTr (t)D2yr(t)− vTr (t)Mvr(t)

]
dt.(6.8)

Since the variable yr(t) does not satisfy any equation for t ∈ [0, tf ], it can be
chosen to satisfy a desirable property of the system (6.5) and the functional (6.8),
i.e., yr(t) can be chosen as a control in these system and functional. Moreover, since
the control of the maximizer vr is present in (6.5),(6.8), while a minimizer’s control
does not appear in these system and functional, then it is reasonable to choose yr(t)
as a minimizer’s control. This observation means that the functional (6.8) depends
on yr and vr, i.e., Jr = Jr(yr, vr). Thus, the functional (6.8) is minimized by yr and
maximized by vr. The initial conditions for the system (6.5) are obtained from (2.3)
by removing the initial conditions for y(·), which yields

xr(η) = φx(η), η ∈ [−h, 0); xr(0) = x0.(6.9)

Thus, the Reduced Differential Game (RDG) consists of the dynamic system
(6.5), the initial conditions (6.9) and the functional (6.8). Since D2 and M are
positive definite matrices, the RDG is regular.

6.3. State-Feedback Saddle-Point Equilibrium in the RDG. Let ϕ(η) be
any function belonging to L2[−h, 0;Rn]. For all t ∈ [0, tf ], let us consider the t-
parametric set Yr,t of all vector-valued continuous functionals yr

[
xr, ϕ(η), t

]
: Rn ×

L2[−h, 0;Rn] → Rm, and the t-parametric set Vr,t of all vector-valued continuous
functionals vr

[
xr, ϕ(η), t

]
: Rn × L2[−h, 0;Rn] → Rs.
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Definition 6.1. By
(
Y V

)
r
, we denote the set of all pairs

(
yr[xr,t, t], vr[xr,t, t]

)
,

xr,t
△
=
{(
xr(t), xr(θ)

)
, θ ∈ [t− h, t)

}
, satisfying the following conditions: (i) for any

fixed t ∈ [0, tf ],
(
xr(t), xr(t+η)

)
∈ Rn×L2[−h, 0;Rn] and yr[xr,t, t] ∈ Yr,t, vr[xr,t, t] ∈

Vr,t; (ii) the initial-value problem (6.5),(6.9) for yr(t) = yr[xr,t, t], vr(t) = vr[xr,t, t],
t ∈ [0, tf ], and any φx(η) ∈ L2[−h, 0;Rn], x0 ∈ Rn has the unique absolutely con-
tinuous solution xr,yv

(
t;x0, φx(η)

)
in the interval [0, tf ]; (iii) the time realization of

the minimizer’s state-feedback control yr[xr,t, t] along the solution xr,yv
(
t;x0, φx(η)

)
belongs to L2[0, tf ;Rm]; (iv) the time realization of the maximizer’s state-feedback
control vr[xr,t, t] along xr,yv

(
t;x0, φx(η)

)
belongs to L2[0, tf ;Rs].

In what follows,
(
Y V

)
r
is called the set of all admissible pairs of the players’

state-feedback controls (strategies) in the RDG.

For any given yr,0[xr,t, t] ∈ Yr,t and vr,0[xr,t, t] ∈ Vr,t, consider the sets

Fr,v

(
yr,0[xr,t, t]

) △
= {vr[xr,t, t] ∈ Vr,t :

(
yr,0[xr,t, t], vr[xr,t, t]

)
∈ (Y V )r},

Fr,y

(
vr,0[xr,t, t]

) △
= {yr[xr,t, t] ∈ Yr,t :

(
yr[xr,t, t], vr,0[xr,t, t]

)
∈ (Y V )r}.

(6.10)

Consider the following t-dependent vector-valued functionals:

y∗r [xr,t, t]
△
= −D−1

2 AT
12

(
P o∗
10 (t)xr(t) +

∫ 0

−h
Qo∗

10(t, η)xr(t+ η)dη

)
∈ Yr,t,

v∗r [xr,t, t]
△
=M−1CT

1

(
P o∗
10 (t)xr(t) +

∫ 0

−h
Qo∗

10(t, η)xr(t+ η)dη

)
∈ Vr,t.

(6.11)

Note, that both inclusions in (6.11) are valid for all t ∈ [0, tf ].
Similarly to Theorem 4.3, we have the following assertion.

Theorem 6.2. Let the assumption A2 be valid. Then:
(a) the pair

(
y∗r [xr,t, t], v

∗
r [xr,t, t]

)
∈ (Y V )r, i.e., it is admissible in the RDG;

(b) for any yr[xr,t, t] ∈ Fr,y

(
v∗r [xr,t, t]

)
and any vr[xr,t, t] ∈ Fr,v

(
y∗r [xr,t, t]

)
, the ad-

missible pair
(
y∗r [xr,t, t], v

∗
r [xr,t, t]

)
satisfies the following inequality:

Jr

(
y∗r [xr,t, t], vr[xr,t, t]

)
≤ Jr

(
y∗r [xr,t, t], v

∗
r [xr,t, t]

)
≤ Jr

(
yr[xr,t, t], v

∗
r [xr,t, t]

)
,

i.e., this pair is a saddle-point equilibrium in the regular RDG;

(c) the value of the RDG is J ∗
r

(
x0, φx(η)

) △
= Jr

(
y∗r [xr,t, t], v

∗
r [xr,t, t]

)
= J∗

0

(
x0, φx(η)

)
,

given by (5.72);
(d) for any x0 ∈ Rn and any φx(η) ∈ L2[−h, 0;Rn], the value of the RDG is non-
negative.

Remark 6.3. Theorem 6.2 presents a game-theoretic interpretation of the problem
(5.51)-(5.53),(5.46)-(5.48), arising in the asymptotic solution of the problem (4.2)-
(4.4),(4.6)-(4.7). Namely, the property of the problem (5.51)-(5.53),(5.46)-(5.48),
required in the assumption A2 (the existence of the continuous and symmetric
solution), is sufficient for the existence of the saddle-point equilibrium in the RDG.
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7. Main Results

For any given ε ∈ (0, ε0], consider the vector-valued functional

(7.1) u∗ε,0[zt, t]
△
= −1

ε

[(
P o∗
20 (t)

)T
x(t) + P o∗

30 (t)y(t) +

∫ 0

−h
Qo∗

30(t, η)x(t+ η)dη

]
,

where t ∈ [0, tf ]; zt = col
(
xt, yt

)
.

Note that the vector-valued functional (7.1) is linear with respect to
(
x(t), x(t+

η), y(t)
)
. Moreover, the matrix-valued coefficients in this functional are continuous

functions for (t, η) ∈ [0, tf ]× [−h, 0]. Therefore,

(7.2) u∗ε,0[zt, t] ∈ Ut ∀t ∈ [0, tf ].

Lemma 7.1. Let the assumption A2 be valid. Then, for all ε ∈ (0, ε0], the following
inclusion is fulfilled:

(
u∗ε,0[zt, t], v

∗
r [xt, t]

)
∈ UV , where v∗r [·, ·] is given in (6.11).

Proof. First of all, let us note the following. Since v∗r [xr,t, t] ∈ Vr,t for all t ∈ [0, tf ],
then v∗r [xt, t] ∈ Vt for all t ∈ [0, tf ]. Now, the substitution of u∗ε,0[zt, t] and v

∗
r [xt, t]

into the system (2.1)-(2.2) instead of u(t) and v(t), respectively, yields a linear
functional-differential system with continuous coefficients. By virtue of the results of
[4], this linear system subject to the initial conditions (2.3) has the unique absolutely
continuous solution. Therefore, due to Definition 2.1, the inclusion stated in the
lemma is fulfilled. □

Lemma 7.2. Let the assumption A2 be valid. Then, there exists a positive number
ε1 ≤ ε0 such that, for all ε ∈ (0, ε1], the guaranteed result Ju

(
u∗ε,0[zt, t]; z0, φ(η)

)
of

the minimizer’s state-feedback control u∗ε,0[zt, t] in the SDG satisfies the inequality

(7.3)
∣∣Ju(u∗ε,0[zt, t]; z0, φ(η))− J∗

0

(
x0, φx(η)

)∣∣ ≤ c
(
z0, φ(η)

)
ε,

where c
(
z0, φ(η)

)
is some positive constant independent of ε, while depending on z0

and φ(η); J∗
0

(
x0, φx(η)

)
is the RDG value given by (5.72).

Proof. For a given ε ∈ (0, ε0], consider the following two m× (n+m)-matrices:

K1(t) = −1

ε

((
P o∗
20 (t)

)T
, P o∗

30 (t)
)
, K2(t, η) = −1

ε

(
Qo∗

30(t, η), 0
)
,

(t, η) ∈ [0, tf ]× [−h, 0].
(7.4)

Using these matrices, we can represent the control u∗ε,0[zt, t] in the form (3.6).

Due to Lemma 3.1, we can conclude the following. If, for some ε ∈ (0, ε0], the
problem (3.7)-(3.9),(3.10)-(3.11),(7.4) has a continuous solution PK(t) = P∗

K(t, ε),
QK(t, η) = Q∗

K(t, η, ε), RK(t, η, ρ) = R∗
K(t, η, ρ, ε), (t, η, ρ) ∈ Ω, such that(

P∗
K(t, ε)

)T
= P∗

K(t, ε),
(
R∗

K(t, η, ρ, ε)
)T

= R∗
K(t, ρ, η, ε), then u∗ε,0[zt, t] ∈ Hu and

its guaranteed result in the SDG has the form (3.12).
Similarly to Section 5, by constructing and justifying an asymptotic solution

of the problem (3.7)-(3.9),(3.10)-(3.11),(7.4), we obtain the existence of a positive
number ε1 ≤ ε0 such that for all ε ∈ (0, ε1] this problem has the solution with the
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above mentioned properties. Moreover, this solution has the block form similar to
(5.1)-(5.3):

P∗
K(t, ε) =

(
P∗
K,1(t, ε) εP∗

K,2(t, ε)

ε
(
P∗
K,2(t, ε)

)T
εP∗

K,3(t, ε)

)
,

Q∗
K(t, η, ε) =

(
Q∗

K,1(t, η, ε) Q∗
K,2(t, η, ε)

εQ∗
K,3(t, η, ε) εQ∗

K,4(t, η, ε)

)
,

R∗
K(t, η, ρ, ε) =

(
R∗

K,1(t, η, ρ, ε) R∗
K,2(t, η, ρ, ε)(

R∗
K,2(t, ρ, η, ε)

)T R∗
K,3(t, η, ρ, ε)

)
,

(7.5)

the matrices P∗
K,j(t, ε), Q∗

K,i(t, η, ε), R∗
K,j(t, τ, ρ, ε), (j = 1, 2, 3; i = 1, ..., 4) are

bounded for all (t, η, ρ, ε) ∈ Ω × (0, ε1], and the following inequalities are satisfied:∥∥P∗
K,1(t, ε) − P o∗

10 (t)
∥∥ ≤ aε,

∥∥Q∗
K,1(t, η, ε) − Qo∗

10(t, η)
∥∥ ≤ aε,

∥∥Q∗
K,2(t, η, ε)

∥∥ ≤ aε,∥∥R∗
K,1(t, η, ρ, ε)−Ro∗

10(t, η, ρ)
∥∥ ≤ aε,

∥∥R∗
K,l(t, η, ρ, ε)

∥∥ ≤ aε, (l = 2, 3), where P o∗
10 (t),

Qo∗
10(t, η), R

o∗
10(t, η, ρ) are the components of the solution to the problem (5.51)-

(5.53),(5.46)-(5.48) mentioned in the assumption A2; a > 0 is some constant in-
dependent of ε. These inequalities, along with the representation (3.12) for the
guaranteed result of u∗ε,0[zt, t] and the equations (2.5),(5.72),(7.5), directly yield the
statement of the lemma. □
Lemma 7.3. Let the assumption A2 be valid. Then, the guaranteed result
Jv
(
v∗r [xt, t]; z0, φ(η)

)
of the maximizer’s state-feedback control v∗r [xt, t] in the SDG

is

(7.6) Jv
(
v∗r [xt, t]; z0, φ(η)

)
= J∗

0 (x0, φx(τ)).

Proof. First of all let us note that, by virtue of Lemma 7.1, the control v∗r [xt, t] ∈
Hv. Moreover, due to Definition 2.3, the value Jv

(
v∗r [xt, t]; z0, φ(η)

)
represents an

optimal value of the cost functional in the optimal control problem, obtained from
the SDG by substitution of v(t) = v∗r [xt, t] into the equation of dynamics (3.3) and
the cost functional (3.5). The equation of dynamics in this optimal control problem
has the form

(7.7)
dz(t)

dt
= Ã(t)z(t) +Hz(t− h) +

∫ 0

−h
G̃(t, η)z(t+ η)dη +Bu(t), t ∈ [0, tf ],

and the cost functional is

J̃(u)
△
=

∫ tf

0

(
zT (t)D̃(t)z(t)− 2zT (t)

∫ 0

−h
F̃ (t, η)z(t+ η)dη

−
∫ 0

−h

∫ 0

−h
zT (t+ η)L̃(t, η, ρ)z(t+ ρ)dηdρ

)
dt→ inf

u[zt,t]∈Fu

(
v∗r [xt,t]

),
(7.8)

where

Ã(t) =

(
A11 + Sv1P

o∗
10 (t) A12

A21 + ST
v2P

o∗
10 (t) A22

)
,
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G̃(t, η) =

(
G11(η) + Sv1Q

o∗
10(t, η) 0

G21(η) + ST
v2Q

o∗
10(t, η) G22(η)

)
,

D̃(t) =

(
D1 − P o∗

10 (t)Sv1P
o∗
10 (t) 0

0 D2

)
,

F̃ (t, η) =

(
P o∗
10 (t)Sv1Q

o∗
10(t, η) 0

0 0

)
,

L̃(t, η, ρ) =

( (
Qo∗

10(t, η)
)T
Sv1Q

o∗
10(t, ρ) 0

0 0

)
.

The system (7.7) is subject to the initial conditions (3.4).
The problem (7.7)-(7.8),(3.4) is a singular linear-quadratic optimal control prob-

lem with state delays in the dynamics and in the cost functional. Moreover,

(7.9) Jv
(
v∗r [xt, t]; z0, φ(η)

)
= inf

u[zt,t]∈Fu

(
v∗r [xt,t]

) J̃(u).
The value in the right-hand side of (7.9) can be calculated in the way, similar to that
of [9] for solution of a singular stochastic linear-quadratic optimal control problem
with state delays in the dynamics. To keep the paper to be self-contained as much as
possible, we present here this calculation adapted to the problem (7.7)-(7.8),(3.4).
However, not to overload the paper and thus to keep its readability, we present this
calculation in a brief form.

The further proof consists of three stages.
Stage 1: Regularization of (7.7)-(7.8),(3.4).
We solve this singular optimal control problem by the regularization method, i.e.,

we replace it by a regular optimal control problem. The latter consists of the same
equation of dynamics (7.7) and initial conditions (3.4). However, the cost functional
of the new problem has the regular form

J̃ε(u)
△
=

∫ tf

0

(
zT (t)D̃(t)z(t)− 2zT (t)

∫ 0

−h
F̃ (t, η)z(t+ η)dη

−
∫ 0

−h

∫ 0

−h
zT (t+ η)L̃(t, η, ρ)z(t+ ρ)dηdρ

+ε2uT (t)u(t)

)
dt→ min

u[zt,t]∈Fu

(
v∗r [xt,t]

),
(7.10)

where ε > 0 is a small parameter.
Consider the following hybrid system of Riccati-type ordinary and partial differ-

ential equations with respect to unknown matrices P̃ (t), Q̃(t, η) and R̃(t, η, ρ) in
the domain Ω:

(7.11)
dP̃ (t)

dt
= −P̃ (t)Ã(t)−ÃT (t)P̃ (t)+P̃ (t)Su(ε)P̃ (t)−Q̃(t, 0)−Q̃T (t, 0)−D̃(t),(
∂

∂t
− ∂

∂η

)
Q̃(t, η) = −ÃT (t)Q̃(t, η) + P̃ (t)Su(ε)Q̃(t, η)
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−P̃ (t)G̃(t, η)− R̃(t, 0, η) + F̃ (t, η),(7.12) (
∂

∂t
− ∂

∂η
− ∂

∂ρ

)
R̃(t, η, ρ) = −G̃T (t, η)Q̃(t, ρ)− Q̃T (t, η)G̃(t, ρ)

+Q̃T (t, η)Su(ε)Q̃(t, ρ) + L̃(t, η, ρ),(7.13)

where Su(ε) is given in (4.5).
The system (7.11)-(7.13) is subject to the boundary conditions

(7.14) P̃ (tf ) = 0, Q̃(tf , η) = 0, R̃(tf , η, ρ) = 0,

(7.15) Q̃(t,−h) = P̃ (t)H, R̃(t,−h, η) = HT Q̃(t, η), R̃(t, η,−h) = Q̃T (t, η)H,

where (t, η, ρ) ∈ [0, tf ]× [−h, 0]× [−h, 0].
The following assertion is proven quite similarly to the items (i)-(iii) of Lemma

3.1.
Assertion. Let for a given ε > 0, the problem (7.11)-(7.15) have a continuous

solution
{
P̃ ∗(t, ε), Q̃∗(t, η, ε), R̃∗(t, η, ρ, ε)

}
, (t, η, ρ) ∈ Ω, such that

(
P̃ ∗(t, ε)

)T
=

P̃ ∗(t, ε),
(
R̃∗(t, η, ρ, ε)

)T
= R̃∗(t, ρ, η, ε). Based on this solution, let us construct

the following control for the system (7.7):

u(t) = ũ∗ε[zt, t]
△
= − 1

ε2
BT

[
P̃ ∗(t, ε)z(t) +

∫ 0

−h
Q̃∗(t, η, ε)z(t+ η)dη

]
.

Then: (a) ũ∗ε[zt, t] ∈ Fu

(
v∗r [xt, t]

)
; (b) this control solves the optimal control problem

(7.7),(7.10),(3.4); (c) the optimal value J̃∗
ε

(
z0, φ(η)

)
of the cost functional in this

problem has the form

J̃∗
ε

(
z0, φ(η)

) △
= J̃ε

(
ũ∗ε[zt, t]

)
= zT0 P̃

∗(0, ε)z0 + 2zT0

∫ 0

−h
Q̃∗(0, η, ε)φ(η)dη

+

∫ 0

−h

∫ 0

−h
φT (η)R̃∗(0, η, ρ, ε)φ(ρ)dηdρ.

Stage 2: Asymptotic solution of the problem (7.11)-(7.15).
The asymptotic solution of this problem is constructed and justified similarly

to the constructing and justifying the asymptotic solution to the problem (4.2)-
(4.4),(4.6)-(4.7) in Section 5. Moreover, constructing and justifying the asymptotic
solution to (7.11)-(7.15), we obtain the existence of a positive number ˜ε̂0 such that
for all ε ∈ (0, ε̂0] the solution of this problem, mentioned in Assertion, exists and
has the block form similar to (5.1)-(5.3):

P̃ ∗(t, ε) =

(
P̃ ∗
1 (t, ε) εP̃ ∗

2 (t, ε)

ε
(
P̃ ∗
2 (t, ε)

)T
εP̃ ∗

3 (t, ε)

)
,

Q̃∗(t, η, ε) =

(
Q̃∗

1(t, η, ε) Q̃∗
2(t, η, ε)

εQ̃∗
3(t, η, ε) εQ̃∗

4(t, η, ε)

)
,

R̃∗(t, η, ρ, ε) =

(
R̃∗

1(t, η, ρ, ε) R̃∗
2(t, η, ρ, ε)(

R̃∗
2(t, ρ, η, ε)

)T
R̃∗

3(t, η, ρ, ε)

)
,
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(7.16)

the matrices P̃ ∗
j (t, ε), Q̃

∗
i (t, η, ε), R̃

∗
j (t, η, ρ, ε), (j = 1, 2, 3; i = 1, ..., 4) are bounded

for all (t, η, ρ, ε) ∈ Ω×(0, ε̂0], and the following inequalities are satisfied:
∥∥P̃ ∗

1 (t, ε)−
P o∗
10 (t)

∥∥ ≤ aε,
∥∥Q̃∗

1(t, η, ε) − Qo∗
10(t, η)

∥∥ ≤ aε,
∥∥Q̃∗

2(t, η, ε)
∥∥ ≤ aε,

∥∥R̃∗
1(t, η, ρ, ε) −

Ro∗
10(t, η, ρ)

∥∥ ≤ aε,
∥∥R̃∗

l (t, η, ρ, ε)
∥∥ ≤ aε, (l = 2, 3), where P o∗

10 (t), Q
o∗
10(t, η), R

o∗
10(t, η, ρ)

are the components of the solution to the problem (5.51)-(5.53),(5.46)-(5.48) men-
tioned in the assumption A2; a > 0 is some constant independent of ε. Using these
inequalities, as well as the statement (c) of Assertion and the equations (5.72),(7.16),
we immediatelly obtain the inequality

(7.17)
∣∣J̃∗

ε

(
z0, φ(η)

)
− J∗

0

(
x0, φx(η)

)∣∣ ≤ c
(
z0, φ(η)

)
ε, ε ∈ (0, ε̂0]

where c
(
z0, φ(η)

)
is some positive constant independent of ε, while depending on

z0 and φ(η).
Let us remember that J∗

0

(
x0, φx(η)

)
is the value of the RDG given by (5.72).

Stage 3: Obtaining an expression for inf
u[zt,t]∈Fu

(
v∗r [xt,t]

) J̃(u).
First, let us rewrite the inequality (7.17) in the equivalent form

J∗
0

(
x0, φx(η)

)
− c
(
z0, φ(η)

)
ε ≤ J̃∗

ε

(
z0, φ(η)

)
≤ J∗

0

(
x0, φx(η)

)
+ c
(
z0, φ(η)

)
ε, ε ∈ (0, ε̂0].

(7.18)

Using this inequality and the statement (a) of Assertion, we obtain for any ε ∈
(0, ε̂0]:

inf
u[zt,t]∈Fu

(
v∗r [xt,t]

) J̃(u) ≤ J̃
(
ũ∗ε[zt, t]

)
≤ J̃ε

(
ũ∗ε[zt, t]

)
= J̃∗

ε

(
z0, φ(η)

)
≤ J∗

0

(
x0, φx(η)

)
+ c
(
z0, φ(η)

)
ε,

yielding inf
u[zt,t]∈Fu

(
v∗r [xt,t]

) J̃(u) ≤ J∗
0

(
x0, φx(η)

)
.

Now, we are going to show that

(7.19) inf
u[zt,t]∈Fu

(
v∗r [xt,t]

) J̃(u) = J∗
0

(
x0, φx(τ)

)
.

To prove the equality (7.19), we assume the opposite, i.e.,

(7.20) inf
u[zt,t]∈Fu

(
v∗r [xt,t]

) J̃(u) < J∗
0

(
x0, φx(τ)

)
.

This inequality means the existence of û[zt, t] ∈ Fu

(
v∗r [xt, t]

)
, such that

(7.21) inf
u[zt,t]∈Fu

(
v∗r [xt,t]

) J̃(u) < J̃
(
û[zt, t]

)
< J∗

0

(
x0, φx(η)

)
.

Since ũ∗ε[zt, t] is the optimal control in the problem (7.7),(7.10),(3.4), and (7.18)
holds, we obtain for any ε ∈ (0, ε̂0], any z0 ∈ Rn+m and any φ(η) ∈ L2[−h, 0;Rn+m]:

J∗
0

(
x0, φx(η)

)
− c
(
z0, φx(η)

)
ε ≤ J̃∗

ε

(
z0, φ(η)

)
= J̃ε

(
ũ∗ε[zt, t]

)
≤ J̃ε

(
û[zt, t]

)
= J̃

(
û[zt, t]

)
+ bε2,
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(7.22)

where b =
∫ tf
0

(
û[ẑt, t]

)T
û[ẑt, t]dt; ẑ(t), t ∈ [0, tf ], is the solution of the initial-value

problem (7.7),(3.4) generated by the control u(t) = û[zt, t], and ẑt =
(
ẑ(t), ẑ(t+η)

)
,

t ∈ [0, tf ], η ∈ [−h, 0).
The chain of the inequalities and the equalities (7.22) implies the inequality

J∗
0

(
x0, φx(η)

)
≤ J̃

(
û[zt, t]

)
, which contradicts the right-hand inequality in (7.21).

Thus, the inequality (7.20) is wrong, meaning the validity of the equality (7.19).
The latter, along with (7.9), directly yields the statement of the lemma. □

Corollary 7.4. Let the assumption A2 be valid. Then, the following inequality is
satisfied in the SDG:

(7.23)
∣∣J(u∗ε,0[zt, t], v∗r [xt, t])− J∗

0

(
x0, φx(η)

)∣∣ ≤ c
(
z0, φ(η)

)
ε, ε ∈ (0, ε1],

where the positive constants ε1 and c
(
z0, φ(η)

)
have been introduced in Lemma 7.2.

Proof. First, let us rewrite the inequality (7.3) in the equivalent form

J∗
0

(
x0, φx(η)

)
− c
(
z0, φ(η)

)
ε ≤ Ju

(
u∗ε,0[zt, t]; z0, φ(η)

)
≤ J∗

0

(
x0, φx(η)

)
+ c
(
z0, φ(η)

)
ε, ε ∈ (0, ε1].

This inequality, along with Definition 2.2 and Lemma 7.1, yields for all ε ∈ (0, ε1]
(7.24)
J
(
u∗ε,0[zt, t], v

∗
r [xt, t]

)
≤ Ju

(
u∗ε,0[zt, t]; z0, φ(η)

)
≤ J∗

0

(
x0, φx(η)

)
+ c
(
z0, φ(η)

)
ε.

Furthermore, by virtue of Definition 2.3, Lemma 7.1 and Lemma 7.3, we have for
all ε ∈ (0, ε1]

J
(
u∗ε,0[zt, t], v

∗
r [xt, t]

)
≥ Jv

(
v∗r [xt, t]; z0, φ(η)

)
= J∗

0

(
x0, φx(η)

)
≥ J∗

0

(
x0, φx(η)

)
− c
(
z0, φ(η)

)
ε.

The latter inequality and the inequality (7.24) directly yield the inequality (7.23),
which completes the proof of the corollary. □

Let {εq}, (q = 1, 2, ...), be a sequence of numbers, satisfying the following condi-
tions: (1ε) εq ∈ (0, ε1], (q = 1, 2, ...); (2ε) εq → +0 for q → +∞.

Theorem 7.5. Let the assumption A2 be valid. Then, for any given z0 ∈ Rn+m and

φ(τ) ∈ L2[−h, 0;Rn+m], the sequence
{(
u∗εq ,0[zt, t], v

∗
r [xt, t]

)}+∞
q=1

is the saddle-point

equilibrium sequence of the SDG, i.e., for any sequences uq[zt, t] ∈ Fu

(
v∗r [xt, t]

)
and

vq[zt, t] ∈ Fv

(
u∗εq ,0[zt, t]

)
, (q = 1, 2, ...), the following inequality is satisfied in the

SDG:

lim sup
q→+∞

J
(
u∗εq ,0[zt, t], vq[zt, t]

)
≤ lim

q→+∞
J
(
u∗εq ,0[zt, t], v

∗
r [xt, t]

)
≤ lim inf

q→+∞
J
(
uq[zt, t], v

∗
r [xt, t]

)
.

Moreover, the value of the SDG J∗(z0, φ(η)) equals to the value of the RDG

J∗
0

(
x0, φx(η)

)
.
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Proof. Using Definition 2.2 and Definition 2.3, we obtain for all q = 1, 2, ...

Ju
(
u∗εq ,0[zt, t]; z0, φ(η)

)
≥ J

(
u∗εq ,0[zt, t], vq[zt, t]

)
,

Jv
(
v∗r [xt, t]; z0, φ(η)

)
≤ J

(
uq[zt, t], v

∗
r [xt, t]

)
.

(7.25)

The inequalities (7.3),(7.23) and the first inequality in (7.25) yield

lim
q→+∞

J
(
u∗εq ,0[zt, t], v

∗
r [xt, t]

)
= J∗

0

(
x0, φx(η)

)
= lim

q→+∞
Ju
(
u∗εq ,0[zt, t]; z0, φ(η)

)
≥ lim sup

q→+∞
J
(
u∗εq ,0[zt, t], vq[zt, t]

)
.(7.26)

Using the equality (7.6), the inequality (7.23) and the second inequality in (7.25),
we obtain

lim
q→+∞

J
(
u∗εq ,0[zt, t], v

∗
r [xt, t]

)
= J∗

0

(
x0, φx(η)

)
= Jv

(
v∗r [xt, t]; z0, φ(η)

)
≤ lim inf

q→+∞
J
(
uq[zt, t], v

∗
r [xt, t]

)
.(7.27)

Now, the statements of the theorem immediately follow from (7.26) and (7.27).
Thus, the theorem is proven. □
Remark 7.6. Theorems 7.5 and 6.2 yield the following conclusions. To construct
the saddle-point equilibrium sequence of the SDG and obtain the value of this game,
we have to solve the lower Euclidean dimension regular RDG, and calculate the gain
matrices P o∗

20 (t), P
o∗
30 (t) and Qo∗

30(t, η), (t, η) ∈ [0, tf ] × [−h, 0], using the equations
(5.49),(5.54).

8. Conclusions

In this paper, the finite horizon zero-sum linear-quadratic differential game with
state delays in the equation of dynamics was considered. The delays are of both,
point-wise and distributed, types. The case where the cost functional of the game
does not contain a control cost of the minimizing player (the minimizer) was treated.
The absence of the minimizer’s control cost in the cost functional means that the
game is singular. For this game, the novel definitions of the saddle-point equilibrium
(the saddle-point equilibrium sequence) and the game value were proposed. The
original singular game was solved by its regularisation. The latter means that
this game was approximated by auxiliary regular game with the same equation
of dynamics. However, in contrast with the original game, the cost functional
of the approximating game has an additional addend. Namely, this addend is a
finite horizon integral of the square of the minimizer’s control with a small positive
weight (small positive parameter). Thus, the approximating game is a finite horizon
zero-sum linear-quadratic time delay differential game with cheap control of the
minimizer. Solvability conditions of the approximating game were derived. The
asymptotic analysis of the boundary-value problem for the hybrid system of Riccati-
type matrix equations, arising in these solvability conditions, was carried out in the
frames of the singular perturbations theory. Using this analysis, the saddle-point
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equilibrium sequence in the original singular game was designed. The expression
for the value of this game was derived. It was shown that the obtaining the saddle-
point sequence and the value of the singular game is based on the solution of a lower
Euclidean dimension regular zero-sum differential game – the reduced differential
game.
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