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These three theoretical questions motivate the paper. It seeks to answer them all;
see corresponding Theorems 4.3, 6.1 and 6.2, each offering novelties. Additional but
empirical motivation comes from the findings of Vernon Smith [27]. Long experi-
menting with double auctions and similar market mechanisms, he saw a “scientific
mystery.” Even when participants were few and imperfectly informed, results were
remarkably stable and insensitive to experimental details.

This paper returns to the said mystery, apparently still unsolved. It shows,
by way of analysis, that a double auction, executed just once, may already bring
out a price-supported core solution. This result foreshadows the first fundamental
welfare theorem on competitive equilibrium [17], [19]. A main novelty is that iterated
auctions can lead participants towards such equilibrium.2 Thus, double auctions
may eventually focalize price-taking behavior as long-run limit. In the interim, such
behavior is neither realistic nor needed as presumption [26].3

As in Vernon Smith’s experiments, the participants can be fairly few. This fact
contrasts the common view that “perfect competition” in markets requires many
and minor parties. Here, nobody comes duplicated, triplicated.... And certainly, the
agent set isn’t an atomless continuum [3]. Nonetheless, as argued below, repeated
double auctions “shrinks” the core towards competitive equilibrium [19].

Comparison with Walrasian tâtonnement also brings out stark differences. That
process presumes that all agents invariably be price-taking optimizers, and it per-
mits no trade out of equilibrium. By contrast, double auctions need no agents of
such sort, and all trade happens out of equilibrium.

Along the same line, what fits best as solution concept - and as steady state here -
is Debreu’s valuation equilbrium [4]. It incorporates perfect competition but differs,
except by chance, from the Walrasian version in that each agent’s wealth equals the
value of his final holding - as opposed to that of his initial counterpart.

As upshot, double auctions - besides operating as important, practical and welfare-
improving procedures - also speak for themselves as algorithms. In fact, they may
approximate or eventually compute competitive equilibrium. Yet they can hardly
be construed as aimed at optimizing some system criterion. Rather, what eventu-
ally emerges is a solution to a fixed point problem - one which no party addressed or
stated. Somewhat surprisingly, the process has a potential - or Lyapunov function
- which invites use of Zangwill’s convergence theorem [30].

The subsequent analysis rests on two primitives. First, agents’ preferences are
closed convex. Second, a money commodity denominates all marginal rates of ex-
change or substitution [14], [17]. Conditioned by his holding, each agent comes up
with an indifference criterion - an extended real-valued function along which he
willingly trades goods for no less than threshold payments.

2Feldman [7] let repeated, bilateral deals bring agents, via core solutions for two agents at a time,
to competitive equlibrium - whence indirectly to Pareto optimality [9]. By contrast, here repeated,
double auctions lead participants, via core solutions for all agents, directly towards competitive
equilibrium. Either approach emphasizes cooperative apects; nothing is said on evolutionary or
strategic underpinnings of competitive equilibrium [13], [18], [26].

3Double auctions facilitate price discovery. They also unbundle valuation of different com-
modities, mitigate or curb strategic behavior, and comply with incentives. Most important: they
encourage revelation of true values.
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On a mathematical note, for construction of an indifference criterion, utility needs
neither be represented nor smooth. On an economic note, utility isn’t necessarily
transferable or quasi-linear. Anyway, the auctioneer convolutes the received critera.
Invoking duality, he cares for efficient clearing, executed by linear pricing.

The paper addresses mathematicians motivated by economics as well as mathe-
matically inclined economists. It presumes negligible knowledge of economic theory
and brings little of mathematical or technical novelties. Apart from Theorems 4.3,
6.1 and 6.2, most contributions come by way of analysis and modelling.

The paper is planned as follows. Section 2 fixes notations and recalls some pre-
liminaries. Section 3 clarifies the construction and nature of any individual agent’s
indifference criterion. Section 4 studies how the auctioneer could handle the criteria
he receives. Section 5 identifies each steady state, in which the auction has no effect,
with competitive equilibrium of valuation sort. Section 6 inquires whether repeated
auctions could bring the agents thereto, and Section 7 concludes.

2. Notations and preliminaries

By assumption, privately held commodities - all of homogenous, known quali-
ties - are perfectly divisible, marketable and transferable, without any friction or
transaction cost. No consumption, production or transfer has external impacts.

Any bundle of commodities is represented by a vector in a locally convex, real
and separated vector space X.4 The shorthand expression x∗ ∈ X∗ means that x∗

is a continuous linear functional, mapping X into the set R of real numbers. It’s
convenient then to write simply x∗x instead of x∗(x). Any such functional may serve
as a price regime.

A (cost) criterion c : X → R∪{+∞} is proper iff it has non-empty effective do-
main domc := c−1(R). The same c is declared closed (resp. convex ) iff its epigraph
{(x, r) ∈ X× R : c(x) ≤ r} is likewise. For any proper c, its conjugate function

(2.1) x∗ ∈ X∗ 7→ c∗(x∗) := sup {x∗x− c(x) : x ∈ X} ∈ R∪{+∞}

is closed convex. So defined, c∗(x∗) equals the added value or profit, potentially
obtained, under an exogenous price regime x∗. Call x∗ ∈ X∗ a subgradient of c at
x ∈ domc, as signalled by writing

(2.2) x∗ ∈ ∂c(x) iff x ∈ argmax {x∗ − c} .

(2.2) holds precisely when Fenchel’s equality

(2.3) x∗x = c∗(x∗) + c(x)

confirms that total revenue x∗x be split between profit c∗(x∗) (2.1) and cost c(x). If
c is closed convex and bounded above near x, the subdifferential ∂c(x) is non-empty.

4Euclidean spaces suit computational or practical purposes, dimX then being the number of
marketable commodities. However, finance and insurance often require infinite dimensions.
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3. Preferences, money, and indifference

This section considers just one generic agent. His preferences are represented by
a binary relation ≿ in X× X. A choice x ∈ X belongs to the effective domain of ≿,
denoted dom ≿ and supposed non-empty, iff the preferred set

(3.1) {≿ x} := {x̂ ∈ X : x̂ ≿ x}

contains x. Consequently, ≿ is reflexive on its domain but not necessarily complete.
Transitivity is invoked later when required. Strict preference, x̂ � x means x̂ ≿ x
while x not ≿ x̂. A utility function u : X → R∪{−∞} would represent ≿ when

(3.2) u(x̂) ≥ u(x) > −∞ ⇐⇒ x̂ ≿ x ∈ dom ≿ .

No such representation (3.2) is needed though. Provided all preferred sets (3.1)
be closed convex, any representing function u is upper semicontinuous and quasi-
concave with effective domain domu := u−1(R) = dom ≿.5

Money. One special good (say, gold) g ∈ X⧹0, referred to as money, serves as com-
monly accepted unit of account, means of payment (numeraire) and intermediary
medium of exchange [1], [7], [26].6

X is the direct sum Rg ⊕ X of the subspace Rg, spanned by money, besides a
complementary space X , composed of money-free, “real” bundles. Instead of x =
rg+χ one may write x = (r, χ). Any x∗ ∈ X∗ := R∗g⊕X ∗ takes the corresponding
form x∗ = (r∗, χ∗) ∈ R∗ ×X ∗, and it operates by x∗x = r∗r + χ∗χ.

Trade goes in real goods for money or quid pro quo. Money is never exchanged
for itself. Being numeraire, a unit of (presently available) money always commands
price 1. So, from here on,

(3.3) any x∗ = (r∗, χ∗) ∈ X∗, intended or used for valuation, has r∗ = 1.

The component χ∗ ∈ X ∗ just prices “real goods”. Conversely, any “price vector”
χ∗ ∈ X ∗ extends to a unique valuation regime x∗ = (1, χ∗) ∈ X∗. Convention (3.3)
was motivated by economic arguments. It’s also underpinned by Proposition 3.3
below.

≿ is declared quasi-linear when x̂ ≿ x iff x̂+ rg ≿ x+ rg for all r ∈ R+. Then,
typically, a representation (3.2) of ≿ takes the form rg + χ 7→ r + u(χ); see [25].
Such partial separability implies transferable utility - a useful but rather restrictive
property, dispensed with here.

Assumption (on money). More money is strictly preferable,7 meaning that for any
x ∈ dom ≿,

(3.4) r > 0 =⇒ rg + x � x,

5It’s convenient that such a function also be concave - as in [14] and [26].
6g could be gold, fiat bills or some risk-free security. Arguments using endogenous money date

back to Dupuit (1844). Issues revolve around interpersonal comparisons, quantifiable compensa-
tions, and aggregate welfare. For extensions, see Luenberger [17]; for valuation in security markets,
see [11], [22], [23].

7For no bundle or real good 6= g do I assume that more of it is better.



TOWARDS COMPETITIVE EQUILIBRIUM BY DOUBLE AUCTIONS 1215

and

(3.5) x̂ � x =⇒ x̂− rg � x for sufficiently small r > 0.

Together, (3.4) and (3.5) open doors to scalarized preferences:

Indifference criterion. Suppose the agent holds endowment x ∈ dom ≿. If
contemplating to “supply” a real-good bundle χ ∈ X , he asks for no less money
compensation than

(3.6) c(χ |x) := inf {r ∈ R : rg − χ+ x ≿ x} .
Thus, making money a means of all transactions, the agent’s indifference criterion
(3.6) reflects his idiosyncratic valuations or threshold compensations - all in money
and depending on x.8

By assumption, c(· |x) > −∞ and c(0 |x) ≤ 0. So, c(· |x) is proper. Definition
(3.6) applies verbatim with x̂ ∈ X instead of χ ∈ X . I emphasize though, that χ
should best be construed as change in the real-good component of endowment x.
Convention (3.3) is supported by the fact that

(3.7) c(rg + χ |x) ∈ R =⇒ c(rg + χ |x) = r + c(χ |x),
a property shared with many financial measures [11], [24]. The following result
derives straightforwardly:

Proposition 3.1 (on closed convex indifference criteria). If the preferred set {≿ x}
(3.1) is closed (resp. convex), then so is also the function χ 7→ c(χ |x).9

Proposition 3.1 motivates a standing

Assumption (on preferences). Each preferred set (3.1) is henceforth taken as
closed convex.

Remark 3.2 (on ask versus bid). (3.6) was motivated as “minimal” amount of
money asked for supply. Regarding instead the receiving side, Luenberger [17]
considered “maximal”, monetary bid for demand :

(3.8) χ 7→ b(χ |x) := sup {r ∈ R : −rg + χ+ x ≿ x} ∈ R∪{−∞} .
Under the hypotheses of Prop. 3.1, because b(χ |x) = −c(−χ |x), Luenberger’s ben-
efit function b(· |x) is closed concave. It facilitates interpretation and supplements
the narrative. Yet, for formal analysis, it’s redundant.

Given x ∈ dom ≿, a price x∗ ∈ X∗ offers added value (2.1):

(3.9) c∗(x∗ |x) := sup {x∗x̂− c(x̂ |x) : x̂ ∈ X} .
Notice that the assumption c(0 |x) ≤ 0 implies c∗(· |x) ≥ 0. Moreover, then

(3.10) c∗(x∗ |x) = 0 ⇐⇒ x̂ = 0 solves (3.9) with c(0 |x) = 0.

As expected, and in compliance with (3.3) and (3.7), money must always be priced
at unit level [1]:

8g measures desire, but satisfaction is never mentioned. It may happen that no real r satisfies
rg − χ+ x ≿ x. Then, the convention inf ∅ = +∞ comes into play.

9For related material, see [28], [29].
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Proposition 3.3 (on linear pricing and minimal expenditure). Added value (3.9)
cannot be finite unless x∗g = 1. Then, it equals

(3.11) c∗(x∗ |x) = sup {x∗(x− x̂) : x̂ ≿ x} .

x̂ is a best choice in (3.11) iff it solves the problem of minimal expenditure:10

(3.12) E(x∗ |x) := inf {x∗x̂ | x̂ ≿ x} = x∗x− c∗(x∗ |x).

Proof. Simply observe that

c∗(x∗ |x) = sup {x∗χ− r | x̂ := rg − χ+ x ≿ x, χ ∈ X, r ∈ R}
= sup {x∗(x− x̂) + r(x∗g − 1) : x̂ ≿ x, r ∈ R}

=

{
sup {x∗(x− x̂) : x̂ ≿ x} and (3.11) holds if x∗g = 1,
+∞ otherwise

=

{
x∗x− E(x∗ |x) if x∗g = 1,
+∞ otherwise.

□

Producers and consumers - being prime figures in microeconomic theory [17],
[19] - will enter Section 6 on competitive equilibrium. Definition (3.6) already
described how a producer might ponder his supply. Concluding this section is brief
consideration of a consumer, constrained by his budget:

Proposition 3.4 (on budget-constrained choice of consumption). If x ∈ dom ≿
and c∗(x∗ |x) > 0, the affordable, strictly preferred set {x̂ � x : x∗x̂ ≤ x∗x} can not
be empty. Conversely, if the said set is indeed non-empty, then, c∗(x∗ |x) > 0. In
short, given budget β := x∗x,

{x̂ � x : x∗x̂ ≤ β} is empty iff c∗(x∗ |x) = 0.

Proof. From (3.8) follows follows that

(3.13) sup {b(x̌ |x)− x∗x̌ : x̌ ∈ X} = c∗(x∗ |x).

So, if c∗(x∗ |x) > 0, some x̌ ∈ X satisfies b(x̌ |x)− x∗x̌ > 0, and thereby,

x∗[x̌− b(x̌ |x)g + x] < β = x∗x.

Hence x̂ := x̌− [b(x̌ |x) + r]g + x costs x∗x̂ ≤ β for sufficiently small r > 0. At the
same time, from (3.4),

x̂ � x̌− b(x̌ |x)g + x ≿ x.

Consequently, x̂ is affordable (within budget x∗x) and strictly preferred to x.
For the converse, suppose some x̂ ∈ X is such a bundle. Then, by (3.5), for

sufficiently small r > 0, it holds −rg+ (x̂− x) + x � x and thereby b(x̂− x |x) > 0.
Then,

b(x̂− x |x)− x∗(x̂− x) > 0.

In turn, by (3.13), this implies c∗(x∗ |x) > 0. □

10See [17] or [19].
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4. The double auction

Accommodated henceforth is fixed finite ensemble I of economic agents; #I ≥ 2.
The members exchange or trade bundles of assets, claims or commodities. Trans-
actions happen on a common platform, possibly internet-based, and managed by a
system operator or auctioneer.

Agent i ∈ I already holds some “endowment” xi ∈ X. Conditioned by that
holding, he submits his indifference criterion (3.6):

(4.1) χi ∈ X 7→ ci(χi |xi ) ∈ R∪{+∞}
to the auctioneer. Thereby he commits to “supply” whatever real bundle χi ∈ X
for no less pecuniary payment than ci(χi |xi ).11 If ci(χi |xi ) < +∞, then, by tacit
assumption, agent i can indeed honour his commitments. (In particular, he has no
concerns with liquidity.) Each endowment xi remains fixed in this section. So, until
other notice, it’s convenient to write just ci(·) instead of ci(· |xi ).

Any double auction is a two-sided market. While (4.1) was motivated as minimal
compensation for supply, a twin version reads as maximal expense for demand ; see
Remark 3.2. So, to put diverse items - or parties - on equal footing, henceforth, by
convention: compensation is negative expense, and supply is negative demand.

The auctioneer pursues no self-interest, collects no commissions, and discriminates
nobody. Further, to enforce the law of one price, and preclude arbitrage [16] or
second-hand trade, he valuates real bundles by some endogenous functional χ∗ ∈ X ∗,
communicated at closure time of the auction. Also, to curb or mitigate strategic
behavior, he requires that agents’ “bids” be silent, “simultaneous”, single-shot, and
anonymous - put into “closed envelopes”.

Balanced exchange means a redistribution (χi) ∈ X I , satisfying
∑

i∈I χi = 0.
That is, the auction should serve as clearing house. At the same time, for efficiency,
the mechanism should minimize

∑
i∈I ci(χi).

Besides efficiency, to incite voluntary participation, each agent i ∈ I ought see
some surplus atop his cost - alongside a best choice for him. In short, if finally asked
to “supply” real bundle χi ∈ X , he should receive

(4.2) payment χ∗χi ≥ ci(χi) determined by a common price χ∗ ∈ ∂ci(χi).

Inequality (4.2) reflects individual rationality - or equivalently, that no single agent
would reasonably block or veto the outcome. Absence of blocking should also apply
for coalitions of agents. The outcome better be stable; it ought withstand coordi-
nated defections or reneging on commitments.

Can the auctioneer meet all these requirements - seemingly too many? Instead of
imposing them as constraints, could they rather come out as consequences? Theo-
rem 4.3 provides affirmative and constructive answers. Propositions 4.1&2 prepare
the ground, and - upon doing so - they play down the role of convexity.

What comes next might be called “welfare analysis” of one single round of a
double auction. It’s coached within the frames of cooperative game theory, focused

11By convention, ci(χi |xi ) = +∞ when i cannot “supply” χi. In particular, this observation
applies to each agent i who deals with fairly few commodities. For him, domci(· |xi ) has empty
interior.
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here on transferable-value and on the core as solution concept [21]. The aim is to
identify the auction result as a core outcome, supported by some price χ∗ ∈ X ∗.
Thus - for narrative and simplicity - the auctioneer’s task will be cast as though he
solves a particular cooperative game. Arguments revolve around inf-convolutions

(4.3) cI(χI) := inf

{∑
i∈I

ci(χi)

∣∣∣∣∣ ∑
i∈I

χi = χI

}
,

taken across various agent ensembles I ⊆ I. For now, fix any I ⊆ I with #I ≥ 2. If
available, any subgradient χ∗ ∈ ∂cI(χI) (2.2) facilitates decomposition and solution
of problem (4.3). On this account, it holds in any linear space:

Proposition 4.1 (on optimal allocations, coinciding subgradients, and equal “mar-
gins” [8]). Along each optimal allocation (χi) in (4.3) there is a subdifferential co-
incidence:

∂cI(χI) ⊆ ∩i∈I∂ci(χi).

Conversely, provided
∑

i∈I χi = χI , it holds

∂cI(χI) ⊇ ∩i∈I∂ci(χi).

If moreover, ∩i∈I∂ci(χi) 6= ∅, then (χi) is optimal in (4.3).

Proof from [8] is included for completeness. If χ∗ ∈ ∂cI(χI), and (χi) solves (4.3),
then

∑
i∈I χ̂i = χ̂ implies∑

i∈I
ci(χ̂i) ≥ cI(χ̂) ≥ cI(χI) + χ∗(χ̂− χI) =

∑
i∈I

[ci(χi) + χ∗(χ̂i − χi)] .

In this string, posit χ̂j = χj for each j ∈ I⧹i to get ci(χ̂i) ≥ ci(χi) + χ∗(χ̂i − χi).
Since i ∈ I and χ̂i ∈ X were arbitrary, χ∗ ∈ ∂ci(χi) for all i ∈ I.

Conversely, suppose χ∗ ∈ ∩i∈I∂ci(χi) and
∑

i∈I χi = χI . Since ci(χ̂i) ≥ ci(χi) +
χ∗(χ̂i − χi) for any χ̂i ∈ X and i ∈ I, summation across I yields∑

i∈I
ci(χ̂i) ≥

∑
i∈I

ci(χi) + χ∗
∑
i∈I

(χ̂i − χi).

In the last inequality, let
∑

i∈I χ̂i = χI to see that (χi) solves (4.3). For arbitrary
χ̂ ∈ X , the instance

∑
i∈I χ̂i = χ̂ entails cI(χ̂) ≥ cI(χI) + χ∗(χ̂ − χI), whence

χ∗ ∈ ∂cI(χI). □

By Prop. 4.1, if some ci is differentiable at χi, and ∩i∈I∂ci(χi) 6= ∅, then agents’
“margins” are equal at Pareto optimum. While subgradients (in the sense of convex
analysis) support global optimality, generalized directional derivatives, satisfying

c′(χ; d) ≥ lim sup
r→0+

c(χ+ rd)− c(χ)

r
,

offer local, neoclassical perspectives. One such perspective comes next; it’s as a
digression which can be skipped:
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Proposition 4.2 (on redistribution and directional margins). Any best solution
(χi) to allocation problem (4.3) satisfies the variational inequality

(4.4)
∑
i∈I

di = 0 =⇒
∑
i∈I

c′i(χi; di) ≥ 0.

Conversely, if each ci is convex, locally with respect to χi, and (4.4) holds with∑
i∈I χi = χI , then (χi) solves (4.3).

Proof. If (χi) solves (4.3), and
∑

i∈I di = 0, then
∑

i∈I c
′
i(χi; di) ≥∑

i∈I
lim sup

r→0+
r−1[ci(χi + rdi)− ci(χi)] ≥ lim sup

r→0+
r−1

∑
i∈I

[ci(χi + rdi)− ci(χi)] ≥ 0.

Conversely, if ci is convex at χi, and (χ̂i) allocates χI , posit di := χ̂i − χi to have∑
i∈I di = 0. So, (4.4) implies∑

i∈I
ci(χ̂i)−

∑
i∈I

ci(χi) =
∑
i∈I

[ci(χi + di)− ci(χi)] ≥
∑
i∈I

c
′
i(χi; di) ≥ 0.

□
After these preparations, returning now to the auctioneer, note that he seeks to

redistribute goods and money efficiently across the entire agent set. Thus, he faces
inf-convolution (4.3) for the “grand coalition” I = I with χI = 0.

Might not the members of some strict subset I ⊊ I, #I ≥ 2, rather want to
organize an auction or exchange among themselves? To come to grips with this
question - and to emphasize stability and welfare - it’s expedient to frame the
setting as a transferable-value, cooperative game [21] in which coalition I ⊆ I can,
by (4.3), obtain no less value than

(4.5) vI := −cI(0).

Henceforth suppose each ci(0) ≤ 0. Under that condition, by (4.3), clearly, vI ≥ 0
in (4.5). For interpretation, vI is the value coalition I could shoot at by organizing
a self-sufficient auction in “autarky” - without access to outside markets.

Recall that a “value profile” (Vi) ∈ RI belongs to the core of a transferable-value,
cooperative game with player set I - in which coalition I ⊆ I can secure itself joint,
already specified value vI ∈ R∪{−∞} - iff

(4.6)
∑
i∈I

Vi ≥ vI for each I ⊆ I with equality for the grand coalition I = I.

In the present setting, a double auction makes a core solution come straight up:

Theorem 4.3 (on price-supported core solutions). Consider the cooperative game
in which coalition I ⊆ I can get no less value than vI = −cI(0) ≥ 0 (4.5). Then,
for any shadow price χ∗ ∈ ∂cI(0) (2.2), by offering agent i ∈ I added value
Vi := c∗i (χ

∗) (2.1), the game generates a core solution (4.6). If moreover, (χi)
solves (4.3) for I = I and χI = 0, then χ∗χi ≥ ci(χi).

Thus, for whatever shadow price χ∗ ∈ ∂cI(0), the double auction may, in toto,
add value

(4.7) VI := −cI(0) = c∗I(χ
∗) ≥ 0.
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The latter is constructively and explicitly shared because VI =
∑

i∈I Vi. It follows
that VI = 0 iff all Vi = 0, and then, necessarily, each ci(0) = 0.

Proof. (2.1) implies, for any χ∗ ∈ X ∗, that coalition I ⊆ I would get aggregate
value

(4.8) VI :=
∑
i∈I

Vi =
∑
i∈I

c∗i (χ
∗) = c∗I(χ

∗) ≥ −cI(0) = vI .

In particular, χ∗ ∈ ∂cI(0) iff VI = c∗I(χ
∗) = −cI(0) = vI .

12 Then, by Proposition
4.1, χ∗ ∈ ∂ci(χi) so that χ∗χi = c∗i (χ

∗) + ci(χi) for each i (2.3). Because ci(0) ≤ 0,
it holds c∗i (χ

∗) ≥ 0, hence χ∗χi ≥ ci(χi). The assertion on shared value, derives
from (4.8) when I = I. □

Apart from the possibility that |cI(0)| > 0 - and apart then, from positive profits
or added values - the outcome resembles competitive equilibrium. This is exempli-
fied next:

Example 4.4 (production economies). Suppose “producer” i ∈ I, has already
“supplied” xi ∈ X. He incurs cost ci(χi) for putting out additional “supply” χi ∈
X , ci(0) = 0. Then, each shadow price χ∗ ∈ ∂cI(0) on products, alongside any
optimal solution (χi) to problem cI(0) (4.3) “comes close” to competitive equilibrium.
Indeed, markets clear :

∑
i∈I χi = 0. Further, agents’ profits are acceptable and

maximal : c∗i (χ
∗) = χ∗χi − ci(χi) ≥ 0 with χ∗ ∈ ∂ci(χi) ∀i.

Some remarks conclude this section. None are essential; all can be skipped.
(On the auction). Neither Theorem 4.3. nor Example 4.4 should lure one into
believing that double auctions provide a direct, two-way link to competitive equi-
librium. Certainly, as modelled, the auction promotes efficiency and welfare. Its
result depends though, on the (ex ante) holdings; there are endowment effects. The
(ex post) updated holdings may well invite another round of auction - as will be
explored later.

It deserves emphasis that exchange is anonymous - and indirect when #I ≥ 3. No
bargaining, matching, price prediction or search is needed. By connecting agents
via an automated hub, the auction dispenses with brokers, networks and topological
complexity. Moreover, money mitigates agents’ incentives to act strategically.
(On coordination). Note that every agent participates voluntarily. And no strict
subset I ⊂ I stands to gain by organizing a double auction among its members.
Also, the more numerous the participants, the merrier they are. Indeed, if I, I ⊂ I
are disjoint and non-empty, then cI∪I(0) ≤ cI(0) + cI(0), each term being ≤ 0.13

In short, the double auction coordinates payments and quantities; it’s an allocative
and integrative mechanism. It channels goods from parties who have relative high
abundance or low appreciation of some goods, to other parties who lack or like those
goods.
(On convexity). So far, no assumptions were made as to properties of the criteria ci

12Inequalities
∑

i∈I Vi ≥ vI ∀I ⊆ I, reflect weak duality. By contrast, the equality for I = I
captures strong duality. The latter points to convexity, possibly in weakened form; see Prop. 4.1
and the final remark of this section.

13It benefits a coalition to admit extra members for which ci(0) < 0.
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in (4.3) - apart from Theorem 4.3 naturally requiring that each ci(0) ≤ 0. Remark-
ably, no convexity conditions came up. The reason is simple: Although subgradients
(2.2) entered as chief objects, their existence were never considered an issue.

On the last account, returning to Prop. 4.1, suppose inf-convolution cI(·) (4.3)
be convex and bounded above near χI . Then, the subdifferential ∂cI(χI) is indeed
non-empty. More generally, by Prop. 3.3, instead of a convex cI(·), it suffices
that this function coincides with its closed convex envelope at χI . On a qualitative
note, admittance of many, minor participants contributes towards convexity of cI(·);
see [2], [3] or [6].

5. Competitive equilibrium

The double auction provides Pareto improvement iff the resulting added value
VI (4.7) is strictly positive. By Theorem 4.3, the particular outcome VI = 0 merits
special attention. Henceforth suppose ci(0 |xi ) = 0 for each i ∈ I and xi ∈ dom ≿i.
Let x0i ∈ dom ≿i be the initial holding of agent i. Write

(5.1) X :=

{
x = (xi) ∈ XI : xi ≿i x

0
i ∀i and

∑
i∈I

xi =
∑
i∈I

x0i

}
for the set of feasible allocations.

Definition 5.1 (competitive equilibrium). A price cum allocation pair [χ∗,x =
(xi)] ∈ X ∗ ×X (5.1) constitutes a competitive equilibrium iff

(5.2) χ∗ ∈ ∂cI(0 |x) with VI = c∗I(χ
∗ |x) = 0.

In such equilibrium, there is shadow pricing, market clearing, annulment of added
values - and no further trade. From Prop. 4.1 and Theorem 4.3 follows forthwith:

Proposition 5.2 (on competitive equilibrium). [χ∗, (xi)] ∈ X ∗×X is a competitive
market equilibrium iff χ∗ ∈ ∩i∈I∂ci(0 |xi ) and each Vi = c∗i (χ

∗ |x) = 0. There can be
no competitive equilibrium unless cI(0 |x) = 0. Then, necessarily each ci(0 |xi ) = 0.

As explained in Section 3, any price χ∗ ∈ X ∗ on real bundles extends to a price
x∗ = (1, χ∗) on X. Modulo such extension, to view competitive equilibrium in more
standard manner, invoke customary consumers and producers. From Propositions
3.1-3.4 follows:

Proposition 5.3 (market clearing and agents’ choice). Competitive equilibrium
[x∗,x] prevails iff markets clear and

for consumer i: x̂i �i xi =⇒ x∗x̂i > x∗xi,

for producer j: x∗x̂j > x∗xj =⇒ xj is infeasible.

A special yet most studied, classical instance of competitive equilibrium, [x∗, (xi)] ∈
X∗ × X is declared Walrasian if, besides all other properties, it also holds that
x∗xi = x∗x0i ∀i. These budget conditions pinpoint problems with the Walrasian
concept; see footnote 1 in [26]. As said above, the more appropriate solution con-
cept is here rather that of valuation equilibrium [4]. It differs from the Walrasian
version if x∗xi 6= x∗x0i for at least one i ∈ I.
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6. Convergence to competitive equilibrium

Suppose agent ensemble I organizes a double auction among its members. Let
these actually hold a feasible profile x = (xi) ∈ X (5.1). Henceforth suppose the
inf-convolution cI(0 |x) be attained with non-empty subdifferential ∂cI(0 |x). Then,
member i ∈ I may exit from the auction with Pareto-improved, updated holding

(6.1) x+1
i := πig − χi + xi ≿i xi,

featuring his “supply” χi ∈ X of “real” goods, for which he received payment

(6.2) πi := χ∗χi ≥ ci(χi |xi ),
thereby getting added value c∗i (χ

∗ |xi ) ≥ 0, based on a common shadow price

(6.3) χ∗ ∈ ∂cI(0 |x) = ∩i∈I∂ci(χi |xi ) with
∑
i∈I

χi = 0.

In short, qua market mechanism, the double auction generates an algorithm:

(6.4) x ∈ X ⇒ A(x) :=
{
x+1 ∈ X

∣∣ x+1 = (x+1
i ) satisfies (6.1)-(6.3)

}
.

Since the preferences ≿i are invariant, any effective double auction offers Pareto
improvement. Hence, voluntary participation complies with individual rationality
and incentives. Moreover, the attending improvements, defined by (6.1)-(6.3), are
concrete, specific and quantifiable.14

If each≿i is represented by some utility function ui(·) (3.2), then (xi) 7→
∑

i∈Iui(xi)
becomes a potential or Lyapunov function for iterated double auctions - that is, al-
gorithm (6.4) makes

∑
i∈I ui(xi) increase. Representation (3.2) implies, however,

that ≿i be complete and transitive on its domain.
For greater appeal and generality, without complete preferences, granted only

transitivity, there is a more informative and easily observable potential. Indeed,
upon iterating the double auction, added value VI steadily decreases :

Theorem 6.1 (on reduction of value added). Suppose each preference ≿i be tran-
sitive. Then, an iteration of the double auction reduces the addition of overall value
(4.7). That is, for consecutive clearing prices χ∗ ∈ ∂cI(0 |x), χ∗+1 ∈ ∂cI(0

∣∣x+1 ) it
holds:

(6.5) V +1
I := c∗I(χ

∗+1
∣∣x+1 ) ≤ c∗I(χ

∗ |x) =: VI .

Proof. A notational issue must first be clarified. Conjugation (2.1) of a function
c : X → R∪{+∞} is denoted c∗(χ∗). If c : X → R∪{+∞}, write c∗(x∗). For any
indifference criterion (3.6), by (3.3), (3.7) and Proposition 3.3, c∗I(x

∗ |x) < +∞ =⇒
x∗ = (1, χ∗) & c∗I(x

∗ |x) = c∗I(χ
∗ |x).

Note that χ∗ ∈ ∂cI(0 |x) implies 0 ∈ ∂c∗I(χ
∗ |x) (2.3). Thus, for any clearing price

χ∗ of the double auction, χ∗ ∈ argmin c∗I(· |x), and x∗ = (1, χ∗) ∈ argmin c∗I(· |x).
Now, from (3.12) follows that

c∗I(χ
∗ |x) = c∗I(x

∗ |x) = x∗
∑
i∈I

x0i −
∑
i∈I

Ei(x∗ |xi ).

14When c∗I(χ
∗ |x ) > 0, any payment profile i ∈ I 7→ π̂i > 0 atop costs ci(χi |xi ), and satisfying∑

i∈I π̂i ≤ c∗I(χ
∗ |x ), would entail strict Pareto improvement. It does, however, not necessarily

comply with (4.2). If moreover,
∑

i∈I π̂i < c∗I(χ
∗ |x ), the auction wouldn’t offer a core solution.
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By (6.1) x+1
i ≿i xi. Hence, granted transitive preferences ≿i, expenditures increase:

Ei(x∗
∣∣x+1

i ) ≥ Ei(x∗ |xi ) for all x∗ ∈ X∗ and each i ∈ I; see Prop. 3.3. Consequently,

writing x0I :=
∑

i∈I x
0
i , it follows that c

∗
I(χ

∗+1
∣∣x+1 ) =

c∗I(x
∗+1

∣∣x+1 ) = inf
x̂∗

{
x̂∗x0I −

∑
i∈I

Ei(x̂∗
∣∣x+1

i )

}

≤ inf
x̂∗

{
x̂∗x0I −

∑
i∈I

Ei(x̂∗ |xi )

}
= c∗I(x

∗ |x) = c∗I(χ
∗ |x).

□
Theorem 6.1 links to received, qualitative results on the “shrinking of the core”

which obtains when agents be duplicated, triplicated ... - in short, “replicated.”
It adds to such results - albeit constructively, explicitly and quantitatively - by
stressing that iterated double auctions may substitute for replication of agents [19],
[21].

Theorem 6.2 (Convergence to competitive equilibrium). Let each preference rela-
tion ≿i be transitive and form a closed subset of X× X. Suppose the correspondence
x ∈ X ⇒ ∂cI(0 |x) has non-empty values and sequentially compact graph. Then,
for each cluster point x of a sequence xk+1 ∈ A(xk), k = 0, 1, ..., emanating from
x0 ∈ X, there is a price χ∗ ∈ X ∗ such that (χ∗,x) is a competitive equilibrium.

Proof. Consider a sequence (χ∗k,xk) with χ∗k ∈ ∂cI(0
∣∣xk ). Posit V k := c∗I(χ

∗k ∣∣xk ).

From (6.5) follows that V k ↘ V for some limit V ≥ 0. By sequential compactness,
some subsequence (χ∗k,xk), k ∈ K, converges to (χ∗,x) with χ∗ ∈ ∂cI(0 |x). Sup-
pose V > 0 and consider a subsequence K ⊆ K such that (χ∗k+1,xk+1) →K (χ̂, x̂)
with χ̂∗ ∈ ∂cI(0 |x̂). Then V (χ∗ |x̂) < V. This contradicts the fact that V k+1 →K
V . □

Theorem 6.2 singles out steady states in which another auction has no effect.
Granted differentiability in the aggregate, such states are competitive equilibria:

Theorem 6.3 (Steady states as competitive equilibria). Suppose the set X of fea-
sible allocations is non-empty compact (5.1). Also, for every x ∈ X, suppose the
infimal value cI(0 |x) (4.3) be attained, and that the subdifferential ∂cI(0 |x) re-
duces to a singleton.
Then, the double auction has at least one steady state x ∈ X, defined by the fixed
point condition x ∈ A(x) (6.4) - or equivalently, by χ∗ ∈ ∂cI(0 |x) and c∗I(χ

∗ |x) =
0. Any such fixed point yields a competitive equilibrium.

Proof. Correspondence A(·) (6.4) has non-empty convex values and closed graph.
Hence, by Kakutani’s theorem, it admits a fixed point x ∈ A(x). If c∗I(χ

∗ |x) > 0
for some χ∗ ∈ ∂cI(0 |x), then x+1∈ A(x) implies x+1 6= x. In fact, c∗i (χ

∗ |x) > 0

implies x+1
i �i xi. Consequently, for any χ∗ ∈ ∂cI(0 |x) it holds c∗I(x∗ |x) = 0 ⇐⇒

x ∈ A(x). □
Ignoring entry or exit of agents - as well as possible lack of strict convexity/

differentiability of the indifference criteria - equilibrium is definite. Then, there is
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no path dependence; the process turns on initial holdings, and a specific equilibrium
is selected.

7. Concluding remarks

It’s fitting to compare and contrast iterated double auctions with classical Wal-
rasian tâtonnement [19]. The latter lets each price change have the same sign as
the corresponding aggregate excess demand. Both processes feature a central auc-
tioneer or system operator. Otherwise they differ greatly in decisions, messages,
practicality, stability and trade:
As to decisions, the operator of a double auction sets prices and he redistributes
commodities as well as money; the Walrasian auctioneer just changes prices.
Regarding messages, participants in double auctions communicate criteria that re-
late prices to quantities; in Walrasian tâtonnement they report no such relations,
just intended quantities.
While double auctions are practical and much used, Walrasian tâtonnement is nei-
ther.
Most important: double auctions display remarkable stability ; Walrasian tâtonnement
can generate instability, even chaos [18], [19].15

Double auctions permit trade out of equilibrium; classical tâtonnement does not.
Finally, arguing for themselves by way of experiments [27], double auctions sup-

port theoretical foundations for competitive equilibrium. Thereby they furnish a
basis for applied studies.
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