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As first contribution of our paper (Section 2), we define and investigate the class
of ostensibly affine complementarity problems. Then, as second contribution, we will
show under mild assumptions, that a complementary eigenvalue λ can be substituted
such that the EiCP is locally equivalent to an ordinary complementarity problem
possessing some valuable properties (see Section 3). Based on these developments,
we will finally prove in Section 3.4 that, for an arbitrary but fixed solution of this
complementarity problem, there exists a local Lipschitzian error bound if the EiCP
is linear with symmetric matrices A,B, whereas B is additionally positive definite
in (1.1).

To explain and emphasize the meaning of the latter result, let us consider an
ordinary complementarity problem

Find x ∈ Rn such that x ≥ 0, H(x) ≥ 0, x⊤H(x) = 0(1.3)

with some given continuous mapping H : Rn → Rn. (For the local reduction of an
EiCP to such a complementarity problem, the properties of H will be specified later
on.) It is well known, that the complementarity problem (1.3) can be equivalently
written as system of equations

F (x) = 0,(1.4)

where F : Rn → Rn is given by the nonsmooth mapping

(1.5) F (x) := min{x,H(x)}
with min{·, ·} taken componentwise. For more details and other possible reformu-
lations, see [18]. Let x∗ be any fixed element of the solution set F−1(0) of (1.4).
Then, it is said that F provides a local Lipschitzian error bound at x∗, if there are
constants c, ε > 0 such that

cdist[x, F−1(0)] ≤ ‖F (x)‖ for all x ∈ x∗ + εB,(1.6)

where ‖ · ‖ stands for the Euclidean norm, B := {x ∈ Rn | ‖x‖ ≤ 1} is the unit
ball, and dist[x, Z] := inf{‖x − y‖ | y ∈ Z} denotes the point-to-set distance of
x to a nonempty set Z ⊂ Rn. For brevity, we will omit the term "Lipschitzian"
throughout.

Recently, necessary and sufficient conditions for the existence of a local error
bound for certain nonsmooth systems of equations were studied in [24]. An appli-
cation to complementarity systems can be found in [25]. However, the sufficient
conditions therein turn out to be too restrictive for the purpose of analyzing EiCPs.
Within the present article, we will derive new sufficient conditions for the existence
of a local error bound for the solution set of (1.3). The new conditions shall relax
those in [24,25], whereas the mapping H is assumed to be of a special kind, termed
ostensibly affine (see Section 2 below).

The knowledge of error bounds is important in several areas of mathematical
programming. We just mention the analysis of the convergence speed of algorithms,
e.g., see [32, 33]. Another important benefit of error bounds is their use in the
design of algorithms for systems of (possibly nonsmooth) equations whose solutions
are nonisolated. In such cases, (generalized) Jacobians at a nonisolated solution are
singular. For classical Newton methods, this may destroy superlinear convergence.
Advanced Newton-type methods that employ local error bounds can avoid these
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difficulties, see [17, 23, 44, 45], for instance. By now, superlinear convergence of
existing Newton-type methods for linear EiCPs [3, 4, 34] relies on assumptions that
guarantee the nonsingularity of certain (generalized) Jacobians.

2. Ostensibly affine complementarity problems

In a first part of this section, we will provide some preliminaries. In particular, we
give some selected results recently obtained in [24, 25]. The second part is devoted
to a new class of ordinary complementarity problems and its study regarding local
error bounds.

2.1. Preliminaries. As before, we use the reformulation (1.4) of the complementar-
ity problem (1.3) with the nonsmooth mapping F given by (1.5). Since the mapping
H defining the complementarity problem (1.3) is assumed to be continuous at least,
it follows that F is continuous and F−1(0) is closed. With reference to [24, 29], the
mapping H is said to be strictly differentiable at x ∈ F−1(0) with respect to F−1(0),
if H is differentiable at x with Jacobian H ′(x) ∈ Rn×n and

‖H(y + d)−H(y)−H ′(x)d‖ = o(‖d‖) as y
F−1(0)→ x and d → 0(2.1)

holds. Clearly, the latter is particularly fulfilled provided x is isolated in F−1(0)
and H is differentiable at x, or if H is differentiable near x with the derivative being
continuous at x, see [39, Proposition 3.4.2].

The following notion is inspired by [27, Definition 8.22].

Definition 2.1. A set C ⊂ Rn is called closed semilinear near x ∈ C, if there exist
closed (convex) polyhedra P1, ..., PN ⊂ Rn along with a constant ε > 0 such that

C ∩ (x+ εB) =
N⋃
l=1

Pl ∩ (x+ εB) and x ∈
N⋂
l=1

Pl.

Remark 2.2. Let M ∈ Rn×n and q ∈ Rn be given. Then, similarly to the proof
of [32, Lemma 3.1], it can be shown that the set {x ∈ Rn | min{x,Mx+ q} = 0} is
closed semilinear near any of its elements. □

Definition 2.3. A set C ⊂ Rn is called T -conical near x ∈ C, if there exists δ > 0
such that

C ∩ (x+ δB) = x+ (TC(x) ∩ δB) ,

where

TC(x) := {d ∈ Rn | ∃(tk) ↓ 0∃(dk) → d : (x+ tkd
k) ⊂ C}

is the tangent cone to C at x.

The name for the latter conicity concept was suggested recently in [24] to distin-
guish it from the conicity concept in [5], where the radial cone is used instead of the
tangent cone. A related concept [26] relies on an arbitrary closed convex cone.

Lemma 2.4 (Proposition 8.24, [27]). If C is closed semilinear near x ∈ C, then C
is T -conical near x.
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Evidently, the converse implication of the previous lemma is not true in general.
In the remainder of this section, let x∗ ∈ F−1(0) be fixed. In order to approximate
TF−1(0)(x

∗) later on, we will make use of the cone

DF (x∗) := {d ∈ Rn | ∃(tk) ↓ 0∃(dk) → d : ‖F (x∗ + tkd
k)‖ = o(tk)}.(2.2)

It can be easily seen [24, Lemma 8] that

TF−1(0)(x
∗) ⊂ DF (x∗).(2.3)

Lemma 2.5. Suppose that H is differentiable at x∗. If F provides a local error
bound at x∗, then

TF−1(0)(x
∗) = DF (x∗)

is satisfied.

Proof. To show that the differentiability of H at x∗ implies semidifferentiability of F
at x∗, arguments as in the proof of [25, Lemma 1] can be used. Now, according to [24,
Lemma 2 a)], we further have that ‖F (·)‖ is semidifferentiable at x∗. Therefore, [24,
Lemma 5 a)] and [24, Theorem 1 a)] yield

DF (x∗) = {d ∈ Rn | ∃(tk) ↓ 0 : ‖F (x∗ + tkd)‖ = o(tk)} ⊂ TF−1(0)(x
∗)(x∗).

In combination with (2.3), the proof is complete. □
Lemma 2.6. Suppose that H is differentiable at x∗. Then, for any d ∈ Rn, we have
d ∈ DF (x∗) if and only if there exists some constant τ > 0 such that

min
{
x∗ + td,H(x∗) + tH ′(x∗)d

}
= 0

is valid for all t ∈ [0, τ ].

Proof. The lemma can be shown by arguments in the proof of [25, Lemma 1]. □
Lemma 2.7. Suppose that H is differentiable at x∗, F−1(0) is T -conical near x∗,
and d ∈ DF (x∗). If there exists some τ > 0 (possibly smaller than the one obtained
in Lemma 2.6) so that the implication

Hi(x
∗) = H ′

i(x
∗)d = 0 =⇒ Hi(x

∗ + td) = 0(2.4)

holds for all (i, t) ∈ {1, . . . , n} × [0, τ ], then d ∈ TF−1(0)(x
∗) is valid.

Proof. According to Lemma 2.6, we have

min
{
x∗ + td,H(x∗) + tH ′(x∗)d

}
= 0 for all t ∈ [0, τ ].(2.5)

Now, take any i ∈ {1, . . . , n}. If Hi(x
∗) = H ′

i(x
∗)d = 0, then (2.4)–(2.5) provide

min{(x∗ + td)i,Hi(x
∗ + td)} = 0 for all t ∈ [0, τ ].(2.6)

If Hi(x
∗) > 0, the continuity of Hi and (2.5) imply (2.6), where we assume that

τ > 0 is reduced when needed. Finally, if H ′
i(x

∗)d 6= 0 = Hi(x
∗), then (2.5) yields

(x∗ + td)i = 0 < Hi(x
∗) + tH ′

i(x
∗)d for all t ∈ (0, τ ].

This and the differentiability of Hi at x∗ show that (2.6) is satisfied, where again
τ > 0 has to be reduced if necessary. Altogether, we have that (2.6) holds for all
i ∈ {1, . . . , n}. Hence, x∗ + td ∈ F−1(0) for all t > 0 small enough. Due to the
T -conicity of F−1(0) near x∗, it follows that d ∈ TF−1(0)(x

∗). □
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2.2. Local error bounds. This subsection is devoted to a special class of com-
plementarity problems and the question when F provides a local error bound for
complementarity problems of this class.

Definition 2.8. The mapping H is called ostensibly affine near x∗, if H is strictly
differentiable at x∗ with respect to F−1(0) and if there exists ε > 0 such that

H(x) = H(x∗) +H ′(x∗)(x− x∗) for all x ∈ F−1(0) ∩ (x∗ + εB).

If H is ostensibly affine near x∗, the complementarity problem (1.3) is called osten-
sibly affine near x∗.

Remark 2.9. Suppose that H is differentiable at x∗. If x∗ is an isolated solution,
i.e., there is some ε > 0, such that F−1(0) ∩ (x∗ + εB) = {x∗}, then it is easily seen
that H is ostensibly affine near x∗. □
Remark 2.10. Because F−1(0) is not necessarily a linear subspace, ostensibly
affine mappings are not necessarily affine. Hence, ostensibly affine complementar-
ity problems are not necessarily linear complementarity problems (which are well
studied with respect to our current interests [32, 37]): Indeed, let us consider the
nonlinear complementarity problem with H(x) := min{x, 0}2 for x ∈ R. Then,
F−1(0) = R+ is a halfspace, H is strictly differentiable at x∗ := 0 with H ′(x∗) = 0,
and 0 = H(x) = H(x∗) + H ′(x∗)(x − x∗) holds only for x ∈ F−1(0). Thus, H is
ostensibly affine near x∗, but it is not an affine mapping. □

In what follows, if H is differentiable at x∗, we will use the set

LH(x∗) :=
{
x ∈ Rn | min

{
x,H(x∗) +H ′(x∗)(x− x∗)

}
= 0

}
.(2.7)

Lemma 2.11. Suppose that H is ostensibly affine near x∗. Then, the following
statements are valid:

a) There exists some ε > 0 such that, for all x ∈ x∗ + εB,

x ∈ F−1(0) =⇒ x ∈ LH(x∗).

b) If F provides a local error bound at x∗, then the converse of the implication
in statement a) is also fulfilled for some (possibly different) ε > 0 and thus,
F−1(0) is closed semilinear near x∗.

Proof. To see that statement a) is valid, let ε > 0 be the constant given by Definition
2.8. Then, for any x ∈ F−1(0) ∩ (x∗ + εB) we notice that

0 = min{x,H(x)} = min{x,H(x∗) +H ′(x∗)(x− x∗)}(2.8)

because H is ostensibly affine near x∗.
Statement b) is shown by contradiction. Hence, there exists a sequence (xk) ⊂

Rn \ F−1(0) with (xk) → x∗ and

min{xk,H(x∗) +H ′(x∗)(xk − x∗)} = 0 for all k ∈ N.(2.9)

Since F−1(0) is closed (see Section 2.1), there is a sequence (x̄k) ⊂ F−1(0) with
(x̄k) → x∗ such that

dist[xk, F−1(0)] = ‖xk − x̄k‖ for all k ∈ N.(2.10)
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Because F provides a local error bound at x∗, there are c > 0 and K ∈ N, so that

cdist[xk, F−1(0)] ≤ ‖min{xk,H(xk)}‖
= ‖min{xk,H(x̄k) +H ′(x∗)(xk − x̄k)}‖+ o(‖xk − x̄k‖)

is valid for all k ≥ K, where the equality is due to the strict differentiability of H
at x∗, see Definition 2.8. Hence, this definition for x = x̄k, (2.9), and (2.10) yield

cdist[xk, F−1(0)] ≤ ‖min{xk,H(x∗) +H ′(x∗)(xk − x∗)}‖+ o(dist[xk, F−1(0)])
= o(dist[xk, F−1(0)])

for all k ≥ K, perhaps with some different K ∈ N. This contradicts (xk) ⊂ Rn \
F−1(0). Finally, Remark 2.2 ensures that F−1(0) is closed semilinear near x∗. □

The following example demonstrates that F−1(0) is not necessarily closed semi-
linear near some x∗ even if H is ostensibly affine near x∗.

Example 2.12. Consider H(x) := (x1(x2 − x21), 0)
⊤ for x = (x1, x2) ∈ R2. Then,

F−1(0) = ({0} × R+) ∪
{
(x1, x2) | x2 = x21, x1 ≥ 0

}
.

Whereas F−1(0) is not closed semilinear near x∗ := 0, it is easy to verify that
H ′(x∗)x = 0 = H(x) for all x ∈ F−1(0). Thus, H is ostensibly affine near x∗. □
Theorem 2.13. Suppose that H is ostensibly affine near x∗. Then, the following
statements are equivalent:

a) F provides a local error bound at x∗.
b) F−1(0) is T -conical near x∗ and TF−1(0)(x

∗) = DF (x∗).
c) There exists some ε > 0 such that, for all x ∈ x∗ + εB,

x ∈ LH(x∗) =⇒ x ∈ F−1(0).

Proof. a) implies b): Just combine Lemma 2.11 with Lemma 2.4 and Lemma 2.5.
b) implies c): Since F−1(0) is T -conical near x∗, we obtain by part a) of Lemma

2.11 that there exists δ > 0 with

x∗ +
(
TF−1(0)(x

∗) ∩ δB
)
= F−1(0) ∩ (x∗ + δB) ⊂ LH(x∗) ∩ (x∗ + δB).

Therefore, to prove statement c), it suffices to show that there is ε ∈ (0, δ] satisfying

LH(x∗) ∩ (x∗ + εB) ⊂ x∗ +
(
TF−1(0)(x

∗) ∩ εB
)
.(2.11)

According to Remark 2.2, the set LH(x∗) is closed semilinear near x∗. Hence,
there exist (convex) polyhedra P1, ..., PN along with some ε ∈ (0, δ] so that

LH(x∗) ∩ (x∗ + εB) =
N⋃
l=1

Pl ∩ (x∗ + εB) and x∗ ∈
N⋂
l=1

Pl(2.12)

are valid. Now, for any x ∈ LH(x∗) ∩ (x∗ + εB), (2.7) and (2.12) give

0 = min
{
x∗ + t(x− x∗),H(x∗) + tH ′(x∗)(x− x∗)

}
for all t ∈ [0, 1].

Thus, by Lemma 2.6, we have x− x∗ ∈ DF (x∗) ∩ εB and hence,

x ∈ x∗ +
(
TF−1(0)(x

∗) ∩ εB
)

follows from statement b). In other words, (2.11) is true.
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c) implies a): To see that F provides a local error bound at x∗, let us assume
the contrary. Therefore, a sequence (xk) ⊂ Rn \ F−1(0) exists with xk → x∗ and
dist[xk, F−1(0)]‖F (xk)‖−1 → ∞. Since F−1(0) coincides with LH(x∗) near x∗ by
statement c), [37, Proposition 1] shows that there is a constant c > 0 so that, for all
k ∈ N sufficiently large,

(2.13) cdist[xk, F−1(0)] = cdist[xk, LH(x∗)]
≤ ‖min{xk,H(x∗) +H ′(x∗)(xk − x∗)}‖

holds. Because F−1(0) is closed, there exists a sequence (x̄k) ⊂ F−1(0) satisfying
dist[xk, F−1(0)] = ‖xk − x̄k‖ for all k ∈ N. Thus, the strict differentiability of H at
x∗, that H is ostensibly affine near x∗, and (2.13) yield, for all k ∈ N large enough,

‖F (xk)‖ = ‖min{xk,H(xk)}‖
= ‖min{xk,H(x̄k) +H ′(x∗)(xk − x̄k)}‖+ o(‖xk − x̄k‖)
= ‖min{xk,H(x∗) +H ′(x∗)(xk − x∗)}‖+ o(‖xk − x̄k‖)
≥ c‖xk − x̄k‖+ o(‖xk − x̄k‖).

This contradicts the fact that dist[xk, F−1(0)]‖F (xk)‖−1 tends to infinity. □

By Lemma 2.11 a), the implication in Theorem 2.13 c) is actually an equivalence.
Nonetheless, it suffices to check only the implication in order to confirm (or to refute)
the validity of statements a) and b) of the theorem.

Remark 2.14. Statement b) in Theorem 2.13 is equivalent to the existence of δ > 0
such that

F−1(0) ∩ (x∗ + δB) = x∗ +
(
TF−1(0)(x

∗) ∩ δB
)
= x∗ + (DF (x∗) ∩ δB) .(2.14)

In contrast to this, a solution x∗ is termed noncritical [25, Definition 1] if

T̂F−1(0)(x
∗) = DF (x∗),(2.15)

where T̂F−1(0)(x
∗) denotes Clarke’s (regular) tangent cone to F−1(0) at x∗, cf. [12,

p. 11]. Under a certain strict semidifferentiability assumption, condition (2.15) is
known to be necessary and sufficient for F to provide a local error bound at x∗,
see [24, Corollary 1]. Suppose that F is (at least) semidifferentiable at x∗. Then,
according to the discussion in [24, Section 4], equality (2.15) implies

T̂F−1(0)(x
∗) = TF−1(0)(x

∗)(2.16)

and (2.15) becomes equivalent to

T̂F−1(0)(x
∗) = TF−1(0)(x

∗) = DF (x∗).(2.17)

Further, TF−1(0)(x
∗) = DF (x∗) does obviously hold if and only if there exists some

δ > 0 satisfying

x∗ +
(
TF−1(0)(x

∗) ∩ δB
)
= x∗ + (DF (x∗) ∩ δB) .

Therefore, (2.14) and (2.17) differ in the equations on their most-left-hand side.
For complementarity problems, however, equation (2.16) can naturally be violated,
see [25, Remark 3]. Hence, (2.17) (and thus (2.15)) can often not be employed to
ensure that F provides a local error bound, even if mapping H is affine. □
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The next result is an immediate consequence of Remark 2.9 and Theorem 2.13.

Corollary 2.15. Suppose that H is differentiable at x∗. If x∗ is isolated in F−1(0),
then the following statements are equivalent:

a) F provides a local error bound at x∗.
b) DF (x∗) = {0}.
c) x∗ is isolated in LH(x∗).

The corollary shows in particular, that the two conditions in statement b) of
Theorem 2.13 reduce to one, if x∗ is isolated in F−1(0).

Example 2.16. For H(x) := x2 and x∗ := 0, we have F−1(0) = TF−1(0)(x
∗) = {x∗}.

Thus, F−1(0) is T -conical near x∗. According to Remark 2.9, H is ostensibly affine
near x∗. However, an application of Lemma 2.6 yields DF (x∗) = R+. Hence,
TF−1(0)(x

∗) ⊊ DF (x∗) follows. Due to Corollary 2.15, we conclude that F does not
provide a local error bound at x∗. □

The previous example shows that T -conicity does not necessarily imply the equal-
ity TF−1(0)(x

∗) = DF (x∗). The next example demonstrates that the reverse implica-
tion need not be true as well. Therefore, in general, the two conditions in statement
b) of Theorem 2.13 do not imply each other.

Example 2.17. Consider H(x) := x3 sin(1/x) for x 6= 0 and H(x) := 0, otherwise.
Then, H is continuously differentiable with the derivative,

H ′(x) :=

{
x (3x sin(1/x))− cos(1/x)) , if x 6= 0,

0, if x = 0.

Clearly, F−1(0) =
{
(kπ)−1 | k ∈ N

}
∪ {0}. For x∗ = 0, we observe that H ′(x∗) = 0.

Thus, since H(x) = 0 for all x ∈ F−1(0), H is evidently ostensibly affine near x∗.
Now, it can be immediately seen that TF−1(0)(x

∗) = R+. Moreover, again taking into
account Lemma 2.6 yields DF (x∗) = R+. Therefore, we have TF−1(0)(x

∗) = DF (x∗).
However, F−1(0) is clearly not T -conical near x∗. Finally, with Theorem 2.13 in
mind, we conclude that F does not provide a local error bound at x∗. □

3. A local study of Eigenvalue complementarity problems

The first subsection provides conditions that allow to locally remove a complemen-
tary eigenvalue and to reformulate EiCP as an ordinary complementarity problem.
Based on the results in Section 2.2, we investigate in Section 3.2 conditions under
which F yields an error bound for this complementarity problem. The third sub-
section discusses several examples and in the last subsection we apply our results to
the linear EiCP.

3.1. Local Reformulation of EiCPs. This subsection shows how an EiCP can be
locally reformulated as ordinary complementarity problem (1.3). With the previous
section in mind, we first note that the solution set of an EiCP is nothing else than

SOL :=

{
(x, λ) ∈ Rn \ {0} × R | min{x,M(λ)x} = 0

}
.(3.1)
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Projecting SOL onto Rn and R, respectively, we get

X∗ := {x ∈ Rn | ∃λ ∈ R : (x, λ) ∈ SOL},
Λ∗ := {λ ∈ R | ∃x ∈ Rn : (x, λ) ∈ SOL}.

Moreover, we define the set-valued mapping S : X∗ ⇒ Λ∗ by

S(x) := {λ ∈ Λ∗ | (x, λ) ∈ SOL}.(3.2)

Lemma 3.1. For any x ∈ X∗, the set S(x) is nonempty and closed.

Proof. Obviously, S(x) is nonempty by definition for any x ∈ X∗. Since the matrix-
valued mapping λ 7→ M(λ) introduced in Section 1 is continuous, the set

S(x) =
{
λ ∈ R | M(λ)x ≥ 0, x⊤M(λ)x = 0

}
is closed. □
Assumption 1. The pair (x, λ) ∈ SOL satisfies lim

y
X∗
→x

dist[λ, S(y)] = 0.

Lemma 3.2. The pair (x, λ) ∈ SOL fulfills Assumption 1 if and only if there is a
function s : X∗ → Λ∗ with the following properties:

a) s is continuous at x,
b) s(x) = λ,
c) s(y) ∈ S(y) for all y ∈ X∗ near x.

Proof. Suppose first that Assumption 1 is valid for the pair (x, λ) ∈ SOL. Then,
due to Lemma 3.1, for any y ∈ X∗ there exists some s(y) ∈ S(y) ⊂ Λ∗ with

dist[λ, S(y)] = min {|λ− γ| | γ ∈ S(y)} = |λ− s(y)|.(3.3)

Since λ belongs to S(x), the latter equations give s(x) = λ. From (3.3) and As-
sumption 1, we obtain

0 ≤ lim inf
y
X∗
→x

|λ− s(y)| ≤ lim sup

y
X∗
→x

|λ− s(y)| = lim sup

y
X∗
→x

dist[λ, S(y)] = 0.

Therefore, s(y) tends to λ = s(x) as y ∈ X∗ tends to x and hence, the function
s : X∗ → Λ∗ as defined above fulfills properties a)–c).

To prove the converse implication, let s : X∗ → Λ∗ be a function with properties
a)–c). Then, s(y) ∈ S(y) holds for all y ∈ X∗ near x according to c). Thus, b) gives

dist[λ, S(y)] ≤ |λ− s(y)| = |s(x)− s(y)|
for all y ∈ X∗ sufficiently close to x. Therefore, according to a), Assumption 1 is
valid for the pair (x, λ) ∈ SOL. □

To reformulate EiCP as ordinary complementarity problem, we will substitute the
complementary eigenvalue λ by means of Dini’s classical implicit function theorem,
see [16] for instance. For this purpose, the next assumption is needed.

Assumption 2. The pair (x, λ) ∈ SOL satisfies x⊤M ′(λ)x 6= 0.

Lemma 3.3. Suppose that the pair (x∗, λ∗) ∈ SOL fulfills Assumption 2. Then,
there are open neighborhoods U ⊂ Rn of x∗ and V ⊂ R of λ∗ along with a continu-
ously differentiable function f : U → V with the following properties:
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a) f(x∗) = λ∗,
b) For all x ∈ U , it holds that x⊤M(f(x))x = 0.
c) For all x ∈ U , it holds that

∇f(x) = − 1

x⊤M ′(f(x))x
·
(
M(f(x)) +M(f(x))⊤

)
x.

d) If x⊤M(λ)x = 0 holds for some (x, λ) ∈ U × V , then λ = f(x) follows.
e) For all x ∈ U and all µ > 0 with µx ∈ U , it holds that f(µx) = f(x).

Moreover, U and V can be chosen such that each pair (x, λ) ∈ (U × V ) ∩ SOL
satisfies Assumption 2.

Proof. Assertions a)–d) directly follow from [16, Theorem 1B.1], applied to the func-
tion ϕ : Rn × R → R with ϕ(x, λ) := x⊤M(λ)x. To prove e), let us pick µ > 0 and
x ∈ U with µx ∈ U . Set λ := f(x) and notice that λ ∈ V . Then, assertion b) yields
(µx)⊤M(λ)(µx) = 0. Since d) gives λ = f(µx), we have f(µx) = f(x). □

Theorem 3.4. In the setting of Lemma 3.3, the following statements are valid:
a) The mapping Φ : U → Rn, defined by

Φ(x) := M(f(x))x,(3.4)

is continuously differentiable.
b) If the pair (x∗, λ∗) fulfills Assumption 1, then there is an open neighborhood

U0 ⊂ U of x∗ so that, for all x ∈ U0, it holds that x ∈ X∗ if and only if

x ≥ 0, Φ(x) ≥ 0, and x⊤Φ(x) = 0.(3.5)

In particular, U0 can be chosen such that both Assumption 1 and Assumption
2 are fulfilled for each pair (x, f(x)) with x ∈ X∗ ∩ U0.

Proof. Statement a) is obvious, so we only prove statement b). We first notice that,
by Lemma 3.1,

dist[λ∗, S(x)] = min{|λ∗ − λ| | λ ∈ S(x)} for x ∈ X∗

is valid. Since Assumption 1 at the pair (x∗, λ∗) was requested to hold, Lemma 3.2
implies that function x ∈ X∗ → d(x) := dist[λ∗, S(x)] is continuous at x∗ with
d(x∗) = 0. Hence, there exists ε > 0 such that

x∗ + εB ⊂ U and λ∗ ± d(x) ∈ V for all x ∈ X∗ ∩ (x∗ + εB)(3.6)

are satisfied. To show that EiCP is locally equivalent to the ordinary complemen-
tarity problem (3.5), first note that Lemma 3.3 b) and (3.4) imply

x⊤Φ(x) = 0 for all x ∈ U.(3.7)

Let us now pick any x ∈ x∗ + εB that solves the complementarity problem (3.5).
Due to (3.6), we have x ∈ U and, thus, (3.4) gives Φ(x) = M(f(x))x. Hence, from
(3.7) and (3.5), we obtain

x ≥ 0, M(f(x))x ≥ 0, x⊤M(f(x))x = 0.

Thus, (x, f(x)) ∈ SOL and x ∈ X∗ follow.



LOCAL ANALYSIS FOR EIGENVALUE COMPLEMENTARITY PROBLEMS 1201

To see the reverse, namely that x ∈ X∗ ∩ (x∗ + εB) implies (3.5), we first note
that Lemma 3.1 yields the existence of some λ(x) ∈ S(x) satisfying

d(x) = |λ∗ − λ(x)|.

Therefore, (3.6) implies λ(x) ∈ V and, according to Lemma 3.3 d), we observe that
λ(x) = f(x). Combining the latter with (3.4) yields Φ(x) = M(λ(x))x and, since
(x, λ(x)) ∈ SOL, we notice that x solves (3.5).

In particular, we have just proven that

f(x) ∈ S(x) for all x ∈ X∗ ∩ (x∗ + εB).(3.8)

Hence, to prove the final statement in part b) of the theorem, pick any ε′ ∈ (0, ε)
and any x̂ ∈ X∗ ∩ (x∗ + ε′B). Because of (3.8), we have (x̂, f(x̂)) ∈ SOL. Thanks
to Lemma 3.3, we can assume ε′ to be small enough such that (x̂, f(x̂)) fulfills
Assumption 2. Moreover, we can assume that there exists some ε̂ ∈ (0, ε′) such that

x̂+ ε̂B ⊂ x∗ + ε′B.(3.9)

By Lemma 3.3, f is continuous at x̂. In addition, (3.8)–(3.9) yield f(x) ∈ S(x)
for all x ∈ X∗ ∩ (x̂ + ε̂B). Thus, applying Lemma 3.2 yields that Assumption 1 is
fulfilled for the pair (x̂, f(x̂)) ∈ SOL. □

3.2. Local error bounds. In Definition 2.1, we recalled the notion that a set is
closed semilinear near one of its elements. Moreover, we have seen in Section 2 that
this notion in the case of an ostensibly affine complementarity problem is closely
tied to the existence of a local error bound. Therefore, we begin with a sufficient
condition for the solution set X∗ of an EiCP to be closed semilinear near any of its
elements. In the main part of this subsection, we study the local behavior of the
mapping Φ introduced in Theorem 3.4. Particularly, we provide conditions under
which a continuous extension of Φ is ostensibly affine and show how a local error
bound for the complementarity problem (3.5) can be derived.

Consider the set of matrices

M :=

{
M(λ) | λ ∈ Λ∗

}
,(3.10)

and denote its cardinality by |M|.

Lemma 3.5. Suppose that |M| < ∞. Then, X∗∪{0} is closed semilinear near any
of its elements.

Proof. If |M| < ∞, there are matrices M1, ...,MK ∈ M such that {M1, ...,MK} =
M. By Remark 2.2, for each l ∈ {1, ...,K}, the set {x ∈ Rn | min{x,Mlx} = 0} is
closed semilinear near any of its elements. Thus, the lemma is true because

X∗ ∪ {0} =
K⋃
l=1

{x ∈ Rn | min{x,Mlx} = 0}

=
{
x ∈ Rn | ∃λ ∈ Λ∗ : min

{
x,M(λ)x

}
= 0

}
.

□
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The condition |M| < ∞ is known to hold for some common EiCPs. For instance,
it can be shown that EiCPs with the mapping M defined by (1.1) or (1.2) have
the property that |Λ∗| < ∞ is valid under appropriate assumptions on the matrices
A,B,C, see [28, Section 1] and Section 3.4 below. Then, |M| < ∞ follows im-
mediately. However, notice that |M| < ∞ does not imply |Λ∗| < ∞ in general.
To see this, consider the one-dimensional case with M(λ) = sin(λ), which implies
|Λ∗| = ∞, while M = {0}.

Lemma 3.6. Suppose that the pair (x∗, λ∗) ∈ SOL fulfills Assumptions 1–2 and that
|M| < ∞. Let the set U0 and the mappings f and Φ be as in Theorem 3.4. Then,
for some ε > 0 with x∗ + εB ⊂ U0,

Φ(x) = M(λ∗)x(3.11)

is satisfied for all x ∈ X∗ ∩ (x∗ + εB).

Proof. Recall that (3.4) in Theorem 3.4 yields

Φ(x) = M(f(x))x for all x ∈ U0.(3.12)

The proof is by contradiction. Then, because X∗ ∪ {0} is closed semilinear near x∗

(Lemma 3.5) and by (3.12), we can assume without loss of generality, that there is
a polyhedron P ⊂ X∗ along with a sequence (xk) ⊂ P that converges to x∗ so that

Φ(xk) = M(f(xk))xk 6= M(λ∗)xk for all k ∈ N.

Thus, it immediately follows that

M(f(xk)) 6= M(λ∗) for all k ∈ N.(3.13)

Taking into account that x 7→ M(f(x)) is continuous at all x ∈ U0 (Lemma 3.3), we
see that (3.13) implies

|{M(f(xk)) | k ∈ N}| = ∞.(3.14)

Furthermore, using part b) in Theorem 3.4, we conclude that f(xk) ∈ Λ∗ for all k
sufficiently large. Thus, (3.14) contradicts the assumption |M| < ∞. □

Lemma 3.7. In the setting of Lemma 3.6, there exists some ε > 0 (possibly smaller
than the one obtained in Lemma 3.6) with x∗ + εB ⊂ U0, such that

Φ(x) = Φ(x∗) + Φ′(x∗)(x− x∗)

is satisfied for all x ∈ X∗ ∩ (x∗ + εB).

Proof. Let us first define the index sets

I+(x) := {i | Φi(x) + xi > 0}, and I0 := {i | Φi(x
∗) = x∗i = 0}.

Obviously, we have

I+(x
∗) ∪ I0 = {1, . . . , n} and I+(x

∗) ∩ I0 = ∅.

As Φ is continuous (see Theorem 3.4), there is some ε > 0, smaller or equal to the
one in Lemma 3.6, so that

x ∈ U0 and I+(x
∗) ⊂ I+(x) for all x ∈ X∗ ∩ (x∗ + εB) .
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For any x ∈ X∗ ∩ (x∗ + εB), these observations, with Theorem 3.4 b) in mind, yield

(3.15) Φ(x∗)⊤x =
∑

i∈I+(x∗)

Φi(x
∗)xi +

∑
i∈I0

Φi(x
∗)xi = 0.

In the same way, we obtain,

(3.16) Φ(x)⊤x∗ = 0.

Now, Theorem 3.4 a) and Lemma 3.3 a) imply

(3.17) Φ′(x∗) = M(f(x∗)) +M ′(f(x∗))x∗∇f(x∗)⊤

= M(λ∗) +M ′(λ∗)x∗∇f(x∗)⊤.

Hence, combining the latter with Lemma 3.6, Lemma 3.3 a) and c), Theorem 3.4
a), and (3.15)–(3.16) gives, for any x ∈ X∗ ∩ (x∗ + εB),

(3.18)

Φ′(x∗)x = Φ(x) +M ′(λ∗)x∗∇f(x∗)⊤x

= Φ(x)− 1

x∗M ′(λ∗)x∗
M ′(λ∗)x∗

(
M(λ∗)x∗ +M(λ∗)⊤x∗

)⊤
x

= Φ(x)− 1

x∗M ′(λ∗)x∗
M ′(λ∗)x∗

(
Φ(x∗)⊤x+Φ(x)⊤x∗

)
= Φ(x).

Since (3.18) also yields Φ(x∗) = Φ′(x∗)x∗, the statement of the lemma is true. □

Theorem 3.8. In the setting of Lemma 3.7, there exists a continuous mapping
H : Rn → Rn that is ostensibly affine near x∗ and coincides with Φ on the nonempty
and closed set x∗ + εB (with ε > 0 from Lemma 3.7).

Proof. The existence of a continuous extension H : Rn → Rn of mapping Φ is
a consequence of Tietze’s extension theorem, see [10, Theorem 9.23] for instance.
Due to Theorem 3.4 a), H is therefore continuously differentiable near x∗, hence
strictly differentiable at x∗. Moreover, from Lemma 3.7 we now obtain that H(x) =
H(x∗) + H ′(x∗)(x − x∗) is valid for all x ∈ X∗ ∩ (x∗ + εB). It remains to show
that F−1(0) ∩ (x∗ + εB) = X∗ ∩ (x∗ + εB) holds, with F defined according to (1.5),
i.e., F (x) = min{x,H(x)} for x ∈ Rn. This, however, follows immediately from
Theorem 3.4 b) since H coincides with Φ on x∗ + εB. Hence, H is ostensibly affine
near x∗. □

Corollary 3.9. In the setting of Lemma 3.7, let H : Rn → Rn be the continuous
mapping determined by Theorem 3.8 and F : Rn → Rn be defined according to (1.5).
Then, the following statements are equivalent:

a) F provides a local error bound at x∗.
b) TX∗(x∗) = DF (x∗).
c) There exists some ε > 0 such that, for each x ∈ x∗ + εB,

min

{
x,M(λ∗)x−

(x∗)⊤
(
M(λ∗) +M(λ∗)⊤

)
x

(x∗)⊤M ′(λ∗)x∗
·M ′(λ∗)x∗

}
= 0(3.19)

implies (x, λ∗) ∈ SOL.
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Proof. To apply Theorem 2.13 for the particular mapping H from Theorem 3.8, we
first note that, by the latter theorem, H is ostensibly affine near x∗. Statement a) of
the present corollary is statement a) of Theorem 2.13. By Lemma 3.5 and Lemma
2.4, we see that, for the concrete mapping H, statement b) of Theorem 2.13 reduces
to statement b) of the present corollary. To verify that statement c) of Theorem
2.13 for the current mapping H is statement c) of the corollary, let us consider an
arbitrarily chosen x ∈ x∗ + εB (with ε > 0 from Theorem 3.8). Then, by Theorem
3.8, x ∈ LH(x∗) is equivalent to min{x,Φ(x∗) + Φ′(x∗)(x − x∗)} = 0. From (3.18),
we have Φ(x∗) = Φ′(x∗)x∗. This, (3.17), and parts a) and c) of Lemma 3.3 yield

Φ(x∗) + Φ′(x∗)(x− x∗) = M(λ∗)x−
(x∗)⊤

(
M(λ∗) +M(λ∗)⊤

)
x

(x∗)⊤M ′(λ∗)x∗
·M ′(λ∗)x∗.

Hence, x ∈ LH(x∗) in c) of Theorem 2.13 coincides with (3.19). Moreover, x ∈
F−1(0) in part c) of this theorem is nothing else than min{x,H(x)} = 0. Due to
x ∈ x∗ + εB, the latter is equivalent to min{x,Φ(x)} = 0 and, by Theorem 3.4, to
x ∈ X∗. Then, on the one hand, (x, λ∗) ∈ SOL immediately implies x ∈ X∗ and
thus, min{x,Φ(x)} = 0. On the other hand, if min{x,Φ(x)} = 0 (or equivalently
x ∈ X∗), then (3.11) in Lemma 3.6 yields 0 = min{x,M(λ∗)x}, i.e., (x, λ∗) ∈ SOL.
Hence, for the mapping H given by Theorem 3.8, statement c) of Theorem 2.13 is
nothing else than statement c) in the corollary. This completes the proof. □

By Theorem 3.4 a) and Theorem 3.8, we observe that F (x) = min{x,M(f(x))x}
holds for all x near x∗. However, in general, it can be difficult to compute function
values of the implicit function f given by Lemma 3.3. Nonetheless, in the case of a
symmetric linear EiCP, f(x) can be computed easily, see Section 3.4 below.

3.3. Discussion of assumptions. In this section, we have used Assumptions 1–2
and the assumption that |M| < ∞. We demonstrate by examples that none of these
assumptions implies one of the others.

Example 3.10. Let us consider M(λ) :=

(
λ 0
0 0

)
. For x̃ := (0, 1), we find that

(x̃, λ) ∈ SOL for all λ ∈ R. Thus, |M| = ∞. Moreover, for x̂ := (1, 0), we see that
the pair (x̂, 0) ∈ SOL fulfills Assumption 2. Finally, we notice that 0 ∈ S(x) for all
x ∈ X∗. Since the function x 7→ s(x) = 0 is continuous at any x ∈ X∗, Lemma 3.2
implies that Assumption 1 is fulfilled at any pair (x, 0) with x ∈ X∗. Therefore, in
general, neither Assumption 2 nor Assumption 1 guarantees |M| < ∞. □

Example 3.11. For M(λ) := λ2, we have SOL = R+ \ {0} × {0}. Hence, |M| = 1,
while no element of SOL satisfies Assumption 2. Because S(x) = {0} for all x ∈ X∗

and since the function x 7→ s(x) = 0 is continuous at any x ∈ X∗, Lemma 3.2
implies that each pair (x, 0) with x ∈ X∗ fulfills Assumption 1. Therefore, in
general, Assumption 1 does not imply Assumption 2. □

Example 3.12. For

M(λ) := sin(λ)

(
0 0
0 1

)
+ λ

(
0 1
1 0

)
,
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we have 0 ∈ Λ∗. Hence, X∗ = R2
+ \ {0} follows. For x̂ := (0, 1), we find that

(x̂, π) ∈ SOL and

x̂⊤M ′(π)x̂ = cos(π) 6= 0.

Thus, the pair (x̂, π) fulfills Assumption 2 and, interestingly, also the strict comple-
mentarity condition x̂i + (M(π)x̂)i > 0 for i = 1, 2. However, we show now that
Assumption 1 is violated there. Let us assume the contrary, i.e., that Assumption 1
is satisfied at the pair (x̂, π). For any ε ∈ (0, π), we can pick x = (x1, x2) ∈ X∗ \{x̂}
sufficiently close to x̂ such that

x1 > 0 and x2 > 0.(3.20)

Then, according to Assumption 1, Lemma 3.2 shows that there is some c = c(x) ∈
[π − ε, π + ε] satisfying (x, c) ∈ SOL, or equivalently, the system

min

{(
x1
x2

)
,

(
cx2

cx1 + sin(c)x2

)}
= 0(3.21)

must be fulfilled. According to (3.20), however, the first equality in (3.21) implies
c = 0, a contradiction. Therefore, Assumption 1 can not be satisfied at (x̂, π) and
hence, Assumption 2 does not imply Assumption 1 in general. □
3.4. Application to symmetric linear Eigenvalue complementarity prob-
lems. In this subsection, we assume that the EiCP is linear, i.e., mapping M is
given by

M(λ) = λB −A,

where A,B ∈ Rn×n. For the remainder, B is assumed to be positive definite.
The latter property is quite common and guarantees that the linear EiCP has a
solution [28, Section 1]. When needed, the symmetry of A and B is assumed later
on. For such symmetric linear EiCPs, we will show that there is some c > 0, so
that ‖F (x)‖ is an upper bound for c dist[x,X∗], if x is sufficiently close to x∗ and
x∗ ∈ X∗ is arbitrary but fixed.

Lemma 3.13. It holds that |M| < ∞.

Proof. Similar to [36, Proposition 3], one can show that |Λ∗| < ∞. Thus, |M| < ∞
follows. □

The next result can be found in [31] and elsewhere.

Lemma 3.14. For all (x, λ) ∈ Rn \ {0} × R, the equation x⊤M(λ)x = 0 is valid if
and only if

λ =
x⊤Ax

x⊤Bx
.

With Lemma 3.3 d) in mind, the previous lemma implies that the implicit function
f in Sections 3.1–3.2 for the linear EiCP is given by

f(x) =
x⊤Ax

x⊤Bx
(3.22)

for all x near x∗. Thus, Lemma 3.14 also implies that a complementary eigenvalue
λ∗ relative to the complementary eigenvector x∗ is unique with λ∗ = f(x∗).
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Lemma 3.15. Assumptions 1 and 2 are satisfied at (x∗, λ∗).

Proof. According to Lemma 3.14, we observe that

S(x) =

{
x⊤Ax

x⊤Bx

}
for all x ∈ X∗.(3.23)

The function s : X∗ → Λ∗, defined by s(x) := (x⊤Ax)/(x⊤Bx), is continuous at x∗

and, by (3.23), fulfills s(x) ∈ S(x) for all x ∈ X∗ (near x∗). Thus, Lemma 3.2 implies
that Assumption 1 is satisfied at (x∗, λ∗) = (x∗, s(x∗)). As B is positive definite, we
obtain (x∗)⊤M ′(λ∗)x∗ = (x∗)⊤Bx∗ > 0, i.e., (x∗, λ∗) satisfies Assumption 2. □
Lemma 3.16. The continuous mapping H : Rn → Rn, defined by

H(x) :=

(
x⊤Ax

x⊤Bx
B −A

)
x for x ∈ Rn \ {0} and H(0) := 0,(3.24)

is ostensibly affine near x∗, i.e., there is ε > 0 with H(x) = H(x∗)+H ′(x∗)(x−x∗)
being satisfied for each x ∈ F−1(0)∩ (x∗+ εB) = X∗ ∩ (x∗+ εB), where F is defined
according to (1.5).

Proof. The continuity of H can be shown in a standard way. Furthermore, Lemma
3.14 implies F−1(0) = X∗ ∪ {0}. Thus, the fact that H is ostensibly affine near x∗

for some ε > 0 is a consequence of (3.22) and Lemmas 3.7, 3.13, and 3.15. □
In the remainder, the mapping H is defined by (3.24).

Theorem 3.17. If the matrices A and B are symmetric, then TX∗(x∗) = DF (x∗).

Proof. We notice that TX∗(x∗) = TF−1(0)(x
∗). Then, due to (2.3), it suffices to show

that DF (x∗) ⊂ TX∗(x∗). Because of Lemma 3.13, Lemma 3.5, and Lemma 2.4,
X∗ is T -conical near x∗. Evidently, H is continuously differentiable near x∗ 6= 0.
Therefore, to show DF (x∗) ⊂ TX∗(x∗), we are going to apply Lemma 2.7.

If, for some d ∈ DF (x∗), (2.4) is satisfied for all i ∈ {1, . . . , n} and all t ≥ 0
sufficiently small, then Lemma 2.7 yields d ∈ TX∗(x∗). Therefore, let us assume
that there is d ∈ DF (x∗) with ‖d‖ = 1 such that

J :=
{
i | Hi(x

∗) = H ′
i(x

∗)d = 0
}
6= ∅.(3.25)

As needed in Lemma 2.7, we will show that Hi(x
∗ + td) = 0 holds for all i ∈ J and

all t ∈ [0, τ ] with τ > 0 sufficiently small. Then, d ∈ TX∗(x∗) follows.
As first step, we show that there exists some τ ∈ (0, ‖x∗‖) such that

f(x∗ + td) = λ∗ for all t ∈ [0, τ ],(3.26)

where the implicit function f (see Lemma 3.3) takes the form (3.22). Therefore, the
function ω(t) := f(x∗ + td) can be written as

ω(t) =
a0 + ta1 + t2a2
b0 + tb1 + t2b2

for t ∈ [0, ‖x∗‖),(3.27)

where a0, a1, a2, b0, b1, b2 ∈ R are constants satisfying b0 > 0, b2 > 0, and b0 + tb1 +
t2b2 > 0 for all t ∈ [0, ‖x∗‖) since B is positive definite. Now, (3.27) yields

∇f(x∗ + td)⊤d = ω′(t) =
p′(t)q(t)− p(t)q′(t)

q2(t)
(3.28)
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and further

d⊤∇2f(x∗ + td)d = ω′′(t) =
p′′(t)q(t)− p(t)q′′(t)

q2(t)
− 2ω′(t)

q′(t)

q(t)
,(3.29)

where the functions p, q : [0, ‖x∗‖) → R are defined by

p(t) := a0 + ta1 + t2a2 and q(t) := b0 + tb1 + t2b2.

With the index sets

J0 := {i | Hi(x
∗) = x∗i = 0} , J1 := {i | x∗i > 0} , and J2 := {i | Hi(x

∗) > 0} ,
Lemma 2.6 provides

min {di,H ′
i(x

∗)d} = 0 for i ∈ J0,
H ′

i(x
∗)d = 0 for i ∈ J1,
di = 0 for i ∈ J2.

(3.30)

Now, taking into account the symmetry of matrices A and B, Lemma 3.3 a) and c),
and Theorem 3.4 a), we observe that

∇f(x∗) = − 2

(x∗)⊤Bx∗
(λ∗B −A)x∗ = − 2

(x∗)⊤Bx∗
H(x∗).(3.31)

Thus, it holds that (∇f(x∗))i = 0 for all i ∈ J0∪J1. Therefore, with (3.30) in mind,

∇f(x∗)⊤d =
∑

i∈J0∪J1

(∇f(x∗))idi +
∑
i∈J2

(∇f(x∗))idi = 0(3.32)

follows. Since
∇f(x) = − 2

x⊤Bx
(f(x)B −A)x

is valid for all x close to x∗, short computations and β := (x∗)⊤Bx∗ give

d⊤∇2f(x∗)d =
2

β2

(
2d⊤H(x∗)(Bx∗)⊤d− β d⊤H ′(x∗)d

)
.(3.33)

From (3.30), we get d⊤H ′(x∗)d = 0. Therefore, (3.31)–(3.33) yield

d⊤∇2f(x∗)d =
4

β2
(Bx∗)⊤dd⊤H(x∗) = 0.(3.34)

Because λ∗ = f(x∗) = a0/b0 = p(0)/q(0), a combination of (3.28) for t = 0 and
(3.32) yields a1 = λ∗b1. Moreover, using (3.29) for t = 0, (3.32), and (3.34), we get
a2 = λ∗b2. Hence, we observe that p(t) = λ∗q(t) is valid for all t > 0 small enough.
Thus, the claim in (3.26) is true for some τ ∈ (0, ‖x∗‖).

As second step, we show that

Hi(x
∗ + td) = 0 for all (i, t) ∈ J × [0, τ ].(3.35)

For any i ∈ J , let us consider the function hi : [0, τ ] → R with hi(t) := Hi(x
∗ + td).

Evidently, i ∈ J yields

h′i(0) = H ′
i(x

∗)d = 0.(3.36)

Moreover, (3.26) implies hi(t) =
(
(λ∗B − A)(x∗ + td)

)
i

for all t ∈ [0, τ ]. Thus, hi
is affine on [0, τ ]. Finally, (3.36) and i ∈ J give hi(t) = hi(0) = Hi(x

∗) = 0 for all
t ∈ [0, τ ]. Therefore, (3.35) is valid and, hence, Lemma 2.7 implies d ∈ TX∗(x∗). □
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Corollary 3.18. Suppose that the matrices A and B are symmetric. Then, for any
x∗ ∈ X∗, the mapping F : Rn → Rn with F (0) := 0 and

F (x) := min

{
x,

x⊤Ax

x⊤Bx
Bx−Ax

}
for x 6= 0

provides a local error bound at x∗.

Proof. The assertion follows from Lemmas 3.13–3.16, Theorem 3.17, and Corollary
3.9. □
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