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find the sets of fixed points of quasi nonexpansive mappings in a real Hilbert space.
Recently, some authors are interested in studying Hadamard manifolds by using the
equilibrium problems, see [28] and the references therein. Some authors provided
some existence theorems for a solution set of equilibrium problems via scalarization
method, see [15] and the references therein. Moreover, some authors introduced two
extragradient algorithms for solving equilibrium problems in Hadamard manifolds.
Furthermore, they proved that any sequence generated by the proposed algorithms
converges to a solution of the equilibrium problems under suitable assumptions [19].
Authors in [29] studied extended mixed vector equilibrium problems in Hausdorff
topological vector spaces and by using generalized KKM-Fan theorem proved some
existence results in noncompact domain.

The purpose of this paper is to study vector equilibrium problem in the real
Hausdorff topological vector spaces to get some existence results. We first intro-
duce the concept of coercing family and recall the generalized version of KKMF
principle. Next, by using this new version of KKMF principle, we investigate some
existence results for solution of vector equilibrium problems. The compactness of
the solution sets of the vector equilibrium problems under suitable conditions is
investigated. Upper semicontinuity of the solution set mapping is shown. Also the
lower semicontinuity of the solution set mapping of the vector equilibrium problem
on some residual sets is provided.

2. Preliminaries

Throughout the paper, unless otherwise specified, let X and Y be two real
Hausdorff topological vector spaces, K a nonempty closed convex subset of X,
{C(x) : x ∈ K} a family of proper convex cones with nonempty interior where
C : K → 2Y , 2Y denotes the set of all subsets of Y and Y ∗ = L(Y,R) the topolog-
ical dual of Y . We denote the duality pairing between X∗ and X, with ⟨., .⟩ and
the open line segment joining between x, y ∈ K by ]x, y[. Let A be a nonempty
subset of X. The family of all nonempty finite subsets of A is denoted by F(A).
In topological vector space X, let int, cl, and co denote the interior, closure and
convex hull, respectively.

A nonempty subset P of Y is called a cone if λP ⊂ P , for all λ ≥ 0, and it is convex
if λP + (1 − λ)P ⊂ P , for all λ ∈ [0, 1]. Moreover, it is a convex cone when (i)
P + P = P , (ii) λP ⊂ P , for all λ ≥ 0. The cone P is said to be pointed whenever
P ∩−P = {0}. If P is a pointed convex cone of Y , then P induces a partial ordering
on Y (in this case the pair (Y, P ) is called an ordered topological vector space) as
follows:

x ≤ y ⇔ y − x ∈ P.

Let K be a nonempty convex subset of X and K0 a subset of K. A multi-valued
map Γ : K0 → 2K is said to be a KKM map if

coA ⊆
⋃
x∈A

Γ(x), ∀A ∈ F(K0).
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Let K be a nonempty subset of X and f : K × K → Y a bifunction. The vector
equilibrium problem (denoted by VEP) consists in finding x ∈ K such that

f(x, y) ̸∈ −int C(x), ∀y ∈ K.

Also the strong vector equilibrium problem ( SVEP) consists in finding x ∈ K such
that

f(x, y) ̸∈ −C(x)\{0}, ∀y ∈ K,

It is obvious that the solution set of SVEP is a subset of the solution set of VEP.

Classical KKM (Knaster-Kuratowski-Mazurkiewicz) theorem as follows is well
known in nonlinear analysis. It has a crucial role in the proof of many problems
with finite intersection property in the setting of finite-dimensional spaces.

Theorem 2.1 ( [22]). Let Sn = co{x1, . . . , xn+1} be a closed n-simplex, and
F1, . . . , Fn+1 be n+1 closed subsets of Sn. If for all set {i, j, . . . , l} ⊂ {1, . . . , n+1},
we have co{xi, xj , . . . , xl} ⊂ Fi ∪ Fj ∪ · · · ∪ Fl, then

⋂n+1
i=1 Fi ̸= ∅.

The generalization of classical KKM theorem to infinite-dimensional spaces is
given by Key Fan [12] as follows.

Lemma 2.2 ( [12]). Let K be an arbitrary set in a Hausdorff topological vector
space X and F : K → 2X a multivalued mapping with closed values. If F is a KKM
mapping and F (x) is a compact set for at least one x ∈ X, then

⋂
x∈X F (x) ̸= ∅.

A new version of Ky Fan’s lemma is presented by Mechaiekh and his colleagues [3]
by using the notion of coercing family instead of the compactness in Lemma 2.2. We
apply this consequence in our work to establish some existence theorems for VEP
and SVEP. Before stating a new version of Ky Fan’s lemma, we need to express the
concept of coercing covering.

In this article we are going to work with the compactly closed sets which are
weaker notion than the closed sets. We recall that a subset A of a topological space
E is compactly closed if for any compact set D of E, the set A ∩D is closed in E.

Definition 2.3 ([3]). Consider a subset A of a topological vector space Y . A family
{Ci,Ki}i∈I of pairs of sets is said to be coercing for a map G : A → 2Y if and only
if:

(i) for each i ∈ I, Ci is contained in a compact convex subset of A, and Ki is
a compact subset of Y ;

(ii) for each i, j ∈ I, there exists k ∈ I such that Ci ∪ Cj ⊂ Ck;
(iii) for each i ∈ I, there exists k ∈ I with

⋂
x∈Ck

G(x) ⊂ Ki.

Here, I is an index set.

Theorem 2.4 ([3]). Let X be a topological vector space, C a convex subset of X,
D a nonempty subset of C and F : D → 2C a KKM mapping with compactly closed
values in C. If F admits a coercing family, then

⋂
x∈D F (x) ̸= ∅.

Definition 2.5 ( [2]). Let X and Y be topological spaces and G : X → 2Y a
multivalued mapping.
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(i) G is called lower semicontinuous (l.s.c.) at w̄ ∈ X if for any open set
V ⊂ Y with V ∩ G(w̄) ̸= ∅, there exists a neighborhood N(w̄) of w̄ such
that G(w) ∩ V ̸= ∅, for all w ∈ N(w̄).

(ii) G is called upper semicontinuous (u.s.c.) at w̄ ∈ X if for any open set
V ⊂ Y with G(w̄) ⊂ V , there exists a neighborhood N(w̄) of w̄ such that
G(w) ⊂ V , for all w ∈ N(w̄).

We say that G(·) is l.s.c. (resp. u.s.c.) on W ⊂ X if and only if it is l.s.c. (resp.
u.s.c.) at each w̄ ∈ W . G(·) is said to be continuous on W if and only if it is both
l.s.c. and u.s.c. on W .

Proposition 2.6 ([2]). (i) G is l.s.c. at w̄ if and only if for any net {wα} ⊂ W
with wα → w̄ and any x̄ ∈ G(w̄), there exists xα ∈ G(wα) such that xα → x̄.

(ii) If G has compact values, then G is u.s.c. at w̄ if and only if for any net
{wα} ⊂ W with wα → w̄ and any xα ∈ G(wα), there exist a point x̄ ∈ G(w̄)
and a subnet {xβ} of {xα} such that xβ → x̄.

A topological space X is said to be a Baire space if the following condition holds:
given any countable collection {An}∞n=1 of the closed subsets of X, each of them has
empty interior in X, their union ∪An also has empty interior in X. A subset G of
X is called residual if it contains a countable intersection of open dense subsets of
X.

Lemma 2.7 ([16]). (Baire category theorem) If X is a compact Hausdorff space or
a complete metric space, then X is a Baire space.

Lemma 2.8 ([16]). Let X be a Baire space, Y a metric space and G : X → 2Y

an upper semicontinuous mapping with compact values. Then, there exists a dense
residual subset Q of X such that G is lower semicontinuous at each x ∈ Q.

3. Main result

In the next result, an existence theorem for a solution of VEP is established.

Theorem 3.1. Let K be a nonempty convex set, and f : K × K → Y satisfying
the following conditions:

(i) for any x ∈ K, f(x, x) = 0,
(ii) for any compact subset W of K and for any y ∈ K, the set {x ∈ W :

f(x, y) ̸∈ −intC(x)} is closed in K,
(iii) for any x ∈ K, the set {y ∈ K : f(x, y) ∈ −intC(x)} is convex,
(iv) there exist compact subset B and compact convex subset D of K such that

∀x ∈ K\B ∃y ∈ D where f(x, y) ∈ −intC(x).

Then, the set {x̄ ∈ K : f(x̄, y) ̸∈ −intC(x̄), ∀y ∈ K} is nonempty and compact in
K.

Proof. We define F : K → 2K as follows

F (y) = {x ∈ K : f(x, y) ̸∈ −intC(x)}.
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By (ii), F has compactly closed values in K. We claim that F is a KKM map-
ping. Indeed, if it is false, then there exist elements y1, y2, . . . , yn of K and z ∈
co({y1, y2, . . . , yn}) such that z ̸∈

⋃n
i=1 F (yi) and so by the definition of F , we get

f(z, yi) ∈ −intC(z), for i = 1, . . . , n.

Thus, by (iii), we have f(z, z) ∈ −intC(z) which is contradicted by (i). By (iv),
{(D,B)} is a coercing and so by Theorem 2.4, we have

⋂
x∈K F (x) = {x ∈ K :

f(x, y) ̸∈ −intC(x), ∀y ∈ K} is nonempty. Moreover, by (iv),
⋂

x∈K F (x) ⊂ B and
hence

⋂
x∈K F (x) =

⋂
x∈K F (x)∩B which is compact in K, by (ii). This completes

the proof. □
The following result is an existence theorem for strong vector equilibrium prob-

lem. It can be also viewed as an existence theorem for VEP, because the solution
set of strong vector equilibrium problem is a subset of the solution set of vector
equilibrium problem.

Theorem 3.2. Let K be a nonempty convex and close set and f : K ×K → Y a
continuous mapping in the first argument. Suppose for each x ∈ K, there exists a

convex cone C̃(x) such that −C(x) \ {0} ⊆ −intC̃(x). Assume that f and C̃ satisfy
the conditions (i)-(iv) of Theorem 3.1. Then, the solution set of SVEP, that is the
set {x̄ ∈ K : f(x̄, y) ̸∈ −C(x̄) \ {0}, ∀y ∈ K} is nonempty, and moreover it is
relatively compact set of K if the following condition holds

(v) there are compact subset B and compact convex subset D of K such that for
all x ∈ K\B there exists y ∈ D where f(x, y) ∈ −C(x) \ {0}.

Further, if the graph of the multivalued mapping x → H(x) = Y \ (−C(x) \ {0}) is
closed, then the solution set of SVEP is a compact subset of K.

Proof. Since f and C̃ satisfy the assumptions of Theorem 3.1, then there exists

x̄ ∈ K such that f(x̄, y) ̸∈ −intC̃(x̄), for all y ∈ K. Then, it follows from −C(x̄) \
{0} ⊆ −intC̃(x̄) that

f(x̄, y) ̸∈ −C(x̄) \ {0}, ∀y ∈ K.

Hence, x̄ is a solution of SVEP. It follows from (v) that the solution set of SVEP
is a subset of the compact set B of K and so it is relatively compact set of K.
Finally, if for all y ∈ K, f(xα, y) ̸∈ −C(xα)\{0} and xα → x, then it follows from
the closedness of K that x ∈ K and also (xα, f(xα, y)) belongs to the graph of the
multivalued mapping H and f is continuous in the first variable. Therefore, we get
f(x, y) ∈ H(x) = Y \(−C(x)\{0}). This means that x is a solution of SVEP and so
the solution set of SVEP is a closed subset of B. Consequently, the solution set of
SVEP is a compact subset of K and the proof is completed. □

The next result provides an existence theorem for the solutions of SVEP with
new hypothesis.

Theorem 3.3. Let K be a nonempty closed convex set, and f : K × K → Y
satisfying the following conditions:

(i) for any x ∈ K, f(x, x) = 0,
(ii) f is continuous in the first argument and convex in the second argument,
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(iii) the multivalued mapping x → Y \ (−C(x) \ {0}) is closed,
(iv) there exist compact subset B and compact convex subset D of K such that

∀x ∈ K\B, ∃y ∈ D where f(x, y) ∈ −C(x).

Then, the solution set of SVEP is nonempty and compact.

Proof. Let F : K → 2K be a multivalued mapping defined by

(3.1) F (y) = {x ∈ K : f(x, y) ̸∈ −C(x) \ {0}}.
It is clear that F (y) is closed for any y ∈ K. Because if {xα} is an arbitrary
net in F (y) such that xα → x, then it follows from xα ∈ F (y) that f(xα, y) ̸∈
−C(xα) \ {0} and hence f(xα, y) ∈ Y \ (−C(xα) \ {0}). Since f is continuous in
the first variable, we have f(xα, y) → f(x, y). Hence, by (iii), f(x, y) ̸∈ −C(x)\{0}
which means that x ∈ F (y) and so F (y) is closed. We claim that F is a KKM
mapping. Suppose on the contrary that F is not a KKM mapping. So, there exist
y1, . . . , yn in K and z ∈ co{yi : 1 = 1, . . . , n} such that z ̸∈ ∪n

i=1F (yi) which implies
that f(z, yi) ∈ −C(x)\{0}. There exists λi ≥ 0 with

∑
λi = 1 where v =

∑n
i=1 λiyi.

Since f is convex in the second argument, we have
∑n

i=1 λif(z, yi) = f(z, z) ∈
−C(x) \ {0} which is a contradiction to assumption (i). By (iv), {(D,B)} is a
coercing family for F . Consequently, F satisfies all the assumptions of Theorem 2.4
and so

⋂
x∈K F (x) ̸= ∅. Hence, there exists x̄ ∈ K such that

f(x̄, y) ̸∈ −C(x̄)\{0}, ∀y ∈ K.

Therefore, x̄ is a solution of SVEP. Since the solution set of SVEP equals to⋂
x∈K F (x), by (iv), it is a closed subset of B. Hence, we deduce that the solu-

tion set of SVEP is compact. This completes the proof. □
Let M be the collection of all mappings f : K×K → Y satisfying the conditions

(i)-(iv) of Theorem 3.1.

We say that a net (fα) in M converges to f ∈ M in the first variable if for any
y ∈ K and for any convergent net (xα) to an element x ∈ K, fα(xα, y) → f(x, y).
Denote that SK(f), the solution set of VEP, with respect to f , i.e., SK(f) = {x ∈
K : f(x, y) ̸∈ −intC(x), ∀y ∈ K}.

In the next result the upper semicontinuity of the solution set mapping of VEP
is considered.

Theorem 3.4. Assume that K is a closed convex set in the Hausdorff topological
space X and M is the set of all mappings f : K ×K → Y which satisfies Theorem
3.1. If the multivalued mapping W : K → 2Y defined by W (x) = Y \(−intC(x)) is
closed, then the solution set mapping SK : M → 2X defined by f → SK(f) is upper
semicontinuous with compact values in K.

Proof. Since, by Theorem 3.1, the values of the solution set mapping are compact, by
Proposition 2.6 (ii), it is enough to show that the graph of the solution set mapping
is closed. To verify the closedness of the graph of SK , suppose (fα, xα) ∈ Gr(SK)
and converges to (f, x). Thus, for all y ∈ K, we have fα(xα, y) → f(x, y). It follows
from xα ∈ SK(fα), the closedness of the graph of W and fα(xα, y) → f(x, y) that
f(x, y) ∈ W (x) = Y \(−intC(x)). This completes the proof. □
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Theorem 3.5. Let M be a Baire space and X a meterizable topological vector
space. If W : K → 2Y defined by W (x) = Y \(−intC(x)) is closed, then there exists
a dense residual subset Q of M such that the solution set mapping SK : M → 2X

is lower semicontinuous on Q.

Proof. By Theorem 3.4, SK is upper semicontinuous. Now the results follows from
Lemma 2.8. □
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