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notices possible extensions by involving a more general divergence. Rényi divergence
is a specific extension of Kullback–Leibler divergence, which is the building block
for the risk measures in [29]. Breuer and Csiszár [12, 13] realize that divergences
are indeed essential in assessing risk. The divergence specifies a set of ambiguity,
cf. Rockafellar and Royset [35].

This paper addresses general divergences and Fisher information. We derive the
result that risk measures, which are built on divergence, are most naturally associ-
ated with a specific Orlicz space of random variables. For this reason we investigate
them in depth here and identify its natural domain as well as its topological and
convex dual.

Risk measures are not solely investigated to measure, to handle or to hedge risk.
Rockafellar and Uryasev [38], Rockafellar et al. [41, 42], Krokhmal et al. [21]
develop a comprehensive theory involving risk measures in four different aspects,
which are all interconnected. Their concept of risk quadrangles has become essential
in understanding risk as well (cf. Rockafellar and Royset [36]).
Outline of the paper. The following section recalls essentials from generalized di-
vergence and introduces the notation. Section 3 introduces the φ-divergence risk
measure and Section 4 discusses its natural domain and the associated norm. In
Section 5 we derive important representations, including the dual representation
and the Kusuoka representation. We finally characterize the dual norm and exploit
the convincing properties of the risk measure for concrete optimization problems.
Section 7 concludes the paper with a closing discussion.

2. Preliminaries

In what follows we repeat the definition of risk measures and divergence. The
first subsection states the definition and interpretation of risk measures. We further
provide some interpretations which cause their outstanding importance in econom-
ics.

2.1. Risk measures. A risk measure is a function ρ mapping random variables
from some space L to the reals, ρ : L → R ∪ {∞}. The inherent interpretation
is that the random variable X with random outcomes is associated with the risk
ρ(X). In insurance, the number ρ(X) is understood as premium for the insurance
policy X.

Axioms for risk measures have been introduced by [5, 6]. A risk measure is called
coherent if it satisfies the following axioms (cf. also [34]):

A1. Monotonicity: ρ(X1) ≤ ρ(X2) provided that X1 ≤ X2 almost surely.
A2. Translation equivariance: ρ(X + c) = ρ(X) + c for any X ∈ L and c ∈ R.
A3. Subadditivity: ρ(X1 +X2) ≤ ρ(X1) + ρ(X2) for all X1, X2 ∈ L.
A4. Positive homogeneity: ρ(λX) = λ ρ(X) for all X ∈ L and λ > 0.

The term risk measure is also used in the literature for the Axioms A1–A3, while
the term coherent specifically refers to the Axiom A4.

The domain L of the risk functional is often not specified. In what follows we
introduce φ-divergence and elaborate the natural domain, which is as large as pos-
sible, of the associated risk measures.
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2.2. Divergence. Divergence is a concept originating from statistics. The diver-
gence quantifies, how much a probability measure deviates from an other measure.
We define divergence functions first to introduce the general φ-divergence.

Definition 2.1 (Divergence function). A convex and lsc. function φ : R → R∪{∞}
is a divergence function if φ(1) = 0, dom(φ) = [0,∞) and

(2.1) lim
x→∞

φ(x)

x
= ∞.

Remark 2.2 (φ-divergence). The term divergence function is inspired by φ-divergence.
For a divergence function φ, the φ-divergence of a probability measure Q from P is
given by

Dφ(Q ‖ P ) :=
∫
Ω
φ

(
dQ

dP

)
dP

if Q � P and ∞ otherwise. This divergence is an important concept of a non-
symmetric distance between probability measures. Kullback–Leibler is the diver-
gence obtained for φ(x) = x log x. For a detailed discussion of the general φ-
divergence we refer to [12, 13].

In what follows we assume that φ is a divergence function satisfying all conditions
of Definition 2.1. Associated with φ is its convex conjugate ψ defined by ψ(y) :=
supz∈R y z − φ(z). These two functions satisfy the Fenchel–Young inequality

(2.2) x y ≤ φ(x) + ψ(y), x, y in R,
and further properties, as stated in the following proposition.

Proposition 2.3. Let φ be divergence function and ψ its convex conjugate. The
following statements hold true:

(i) φ and ψ are continuous on (0,∞) and (−∞,∞), respectively.
(ii) ψ is non-drecasing.
(iii) It holds that y ≤ ψ(y) for every y ∈ R.

Proof. For the first assertion we recall [32, Theorem 10.4], which states that a convex
function is continuous on the interior of its domain. Therefore continuity of φ is
immediate. For continuity of ψ it is sufficient to demonstrate that ψ(y) <∞ holds
for every y ∈ R. By contraposition we assume there is a point y ∈ R such that

∞ = ψ(y) = sup
z∈R

y z − φ(z) = sup
z∈dom(φ)

y z − φ(z) = sup
z≥0

y z − φ(z).

The function φ is finite in its domain and thus the supremum can not be attained
at some point z∗ ≥ 0. We thus have

∞ = ψ(y) = lim
z→∞

y z − φ(z) = lim
z→∞

z

(
y − φ(z)

z

)
and consequently limz→∞

(
y − φ(z)

z

)
≥ 0. This contradicts assumption (2.1), i.e.,

φ(z)
z tends to ∞ for z → ∞.
The second assertion (ii) follows from

ψ(y1) = sup
z∈R

y1z − φ(z) = sup
z≥0

y1z − φ(z) ≤ sup
z≥0

y2z − φ(z) = ψ(y2)
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for y1 ≤ y2. We finally have that

ψ(y) = sup
z∈R

yz − φ(z) ≥ y · 1− φ(1) = y, y ∈ R,

which completes the proof. □

3. φ-divergence risk measures

Ahmadi-Javid [2, 3] introduces the Entropic Value-at-Risk based on Kullback–
Leibler divergence and briefly mentions a possible generalization. We pick up and
advance this idea and demonstrate that φ-divergence risk measures are indeed co-
herent risk measures as specified by the Axioms A1–A4 above.

In what follows we deduce further properties of these risk measures, which are of
importance in subsequent investigations.

Definition 3.1 (φ-divergence risk measure). Let φ be a divergence function with
convex conjugate ψ. The φ-divergence risk measure ρφ,β : L

1 → R ∪ {∞} is

(3.1) ρφ,β(X) := inf
µ∈R,
t>0

t

(
β + µ+ Eψ

(
X

t
− µ

))
,

where the coefficient β > 0 indicates risk aversion.

Remark 3.2 (Interpretation and motivation). The divergence function φ character-
izes the shape of risk aversion for increasing risk, while the risk aversion coefficient
β describes the tendency of an investor to avoid risk.

The risk measure in (3.1) above is well defined for X ∈ L1, as

(3.2) EX ≤ ρφ,β(X)

by Proposition 2.3 (iii). Note, however, that the risk measure may be unbounded,
i.e., ρφ,β(X) = ∞. Further observe that ρφ,β only depends on the expectation and
is therefore law invariant, i.e., the risk measure evaluates random variables X and
X ′ equally, provided that P (X ≤ x) = P (X ′ ≤ x) for all x ∈ R.

The following proposition demonstrates that ρφ,β is indeed a coherent risk mea-
sure.

Proposition 3.3. The functional ρφ,β is a coherent risk measure, it satisfies all
Axioms A1–A4 above.

Proof. To demonstrate translation equivariance let c ∈ R be given. Employing the
substitution µ̃ := µ− c

t we have that

ρφ,β(X + c) = inf
µ∈R
t>0

t

(
β + µ+ Eψ

(
X + c

t
− µ

))

= inf
µ∈R
t>0

t

(
β + µ̃+

c

t
+ Eψ

(
X

t
− µ̃

))
= ρφ,β(X) + c,
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which is translation equivariance, A2. As for positive homogeneity observe that

ρφ,β(λX) = inf
µ∈R
t>0

t

(
β + µ+ Eψ

(
λX

t
− µ

))

= inf
µ∈R
t>0

λt̃

(
β + µ+ Eψ

(
λX

λt̃
− µ

))
= λ ρφ,β(X),

where we have substituted t̃ := t
λ .

Monotonicity follows directly from monotonicity of ψ (Proposition 2.3 (ii)). In-
deed, provided that X1 ≤ X2 we have that

Eψ

(
X1

t
− µ

)
≤ Eψ

(
X2

t
− µ

)
,

which implies ρφ,β(X1) ≤ ρφ,β(X2).
As for subadditivity let X, Y ∈ L1 be given. Applying Jensen’s inequality for

the weights t1
t1+t2

and t2
t1+t2

gives

ρφ,β(X) + ρφ,β(Y )

≥ inf
µ1,µ2∈R
t1,t2>0

(t1 + t2)

(
β +

t1µ1 + t2µ2
t1 + t2

+ E

(
ψ

(
X + Y

t1 + t2
− t1µ1 + t2µ2

t1 + t2

)))
=ρφ,β(X + Y ),

as t1 + t2 > 0 and t1µ1+t2µ2
t1+t2

∈ R. This proves A3 (subadditivity). □

Remark 3.4. This proof of coherence of ρφ,β does not involve all conditions imposed
on φ above. However, the particular condition (2.1) turns out to be of importance
for the proper domain of these risk measures, as Section 4 outlines below.

Remark 3.5 (Bounds). The general inequality

0 ≤ ρφ,β(0) = inf
µ∈R
t>0

t
(
µ+ ψ(−µ+ β)

)
≤ 0

follows from (3.2) for the constant random variable X = 0 and by letting t → 0.
The general bounds

(3.3) EX ≤ ρφ,β(X) ≤ ess sup(X)

follow from translation equivariance.

The following proposition exposes the parameter of risk aversion β. We demon-
strate that a larger parameter of risk aversion increases the risk assessment for every
random variable.

Proposition 3.6. Suppose that 0 < β1 ≤ β2. It holds that

ρφ,β1(X) ≤ ρφ,β2(X)

for every X ∈ L1. Conversely, for any non-negative random variable X ≥ 0 we
have that

ρφ,β2(X) ≤ β2
β1
ρφ,β1(X).
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Proof. It is immediate that

t

(
β1 + µ+ Eψ

(
X

t
− µ

))
≤ t

(
β2 + µ+ Eψ

(
X

t
− µ

))
, t > 0, µ ∈ R,

and hence the first assertion.
As for the second inequality assume that X is non-negative. The inequality

ρφ,β(X) = t∗
(
β1 + µ∗ + Eψ

(
X

t∗
− µ∗

))
≥ t∗ β1 + EX ≥ t∗ β1

follows with (3.2), where t∗ denotes the optimal value inside of (3.1) (and 0, if the
infimum is not attained). In other words, the set of possible optimal values of t is

bounded by
ρφ,β1 (X)

β1
. Consequently we have

β2
β1
ρφ,β1(X) =

β2 − β1
β1

ρφ,β1(X) + inf
µ∈R,

0<t≤
ρφ,β1

(X)

β1

t

(
β1 + µ+ Eψ

(
X

t
− µ

))

≥ inf
µ∈R,

0<t≤
ρφ,β1

(X)

β1

t (β2 − β1) + t

(
β1 + µ+ Eψ

(
X

t
− µ

))

≥ ρφ,β2(X),

the assertion. □

4. Norms and domains

This section demonstrates that the largest vector space on which φ-divergence risk
measures are finite, are specific Orlicz spaces. We further show that φ-divergence
norms, which are based on φ-divergence risk measures, are equivalent to certain
Orlicz norms on these spaces.

4.1. Norms associated with risk functionals. Coherent risk measures induce
semi-norms, cf. [19, 27, 28]. Following this setting we introduce φ-divergence norms
by

(4.1) ‖X‖φ,β := ρφ,β (|X|) .

This is indeed a norm, as ‖X‖φ,β = 0 if and only if X = 0, as follows from (3.3).
It is a consequence of A1–A4 and the vector space axioms that ‖ · ‖φ,β is finite,

iff ρφ,β ( · ) is finite. We therefore consider the risk measure on the set

(4.2)
{
X ∈ L0 : ‖X‖φ,β <∞

}
.

Remark 4.1. By Proposition 3.6 it follows for β1 < β2 that

(4.3) ‖X‖φ,β1 ≤ ‖X‖φ,β2 ≤ β2
β1

‖X‖φ,β1 .

The norms associated with risk functionals are thus equivalent for varying risk
aversion parameters β > 0.
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4.2. Orlicz spaces. In what follows we discuss the spaces (4.2) endowed with
norm (4.1). To this end we introduce the Orlicz class with their associated norms
first.

Definition 4.2 (Orlicz norms and spaces). A convex function Φ: [0,∞) → [0,∞)
with Φ(0) = 0,

lim
x→0

Φ(x)

x
= 0 and lim

x→∞

Φ(x)

x
= ∞

and its convex conjugate Ψ are called a pair of complementary Young-functions.
Given a pair of complementary Young-functions Φ and Ψ, the norms

‖X‖Φ := sup
EΨ(|Z|)≤1

EX Z and(4.4)

‖X‖(Φ) := inf

{
λ > 0: EΦ

(
|X|
λ

)
≤ 1

}
(4.5)

are called Orlicz norm and Luxemburg norm, respectively. Further, the spaces

MΦ :=
{
X ∈ L0 : EΦ(t |X|) <∞ for all t > 0

}
and(4.6)

LΦ :=
{
X ∈ L0 : EΦ(t |X|) <∞ for some t > 0

}
(4.7)

are called Orlicz heart and Orlicz opace, respectively.

Remark 4.3. The Orlicz norm ‖ · ‖Φ and the Luxemburg norm ‖ · ‖(Φ) are topo-
logically equivalent. More specifically, it holds that

‖X‖(Φ) ≤ ‖X‖Φ ≤ 2 ‖X‖(Φ)

on LΦ (see [31, Theorem 4.8.5]).

The next Lemma relates divergence functions and Young functions.

Lemma 4.4. Let φ be a divergence function (cf. Definition 2.1). The function

(4.8) Φ(x) :=

{
0 if x ∈ [0, 1]

max {0, φ(x)} else

is an Young-function (cf. Definition 4.2) and a divergence function (Definition 2.1).
Further, for every X ∈ L1, it holds that ‖X‖φ,β < ∞ if and only if ‖X‖Φ,β < ∞
and

β

β + d
‖X‖φ,β ≤ ‖X‖Φ,β ≤ β + d

β
‖X‖φ,β ,

where d := ‖φ− Φ‖L∞ = supx≥0 |φ(x)− Φ(x)|.

Proof. For the first assertion it is sufficient to show that Φ is convex, as the other
properties are evident by the definition of φ and Φ. Let 0 ≤ x ≤ y and λ ∈ (0, 1)
be given. As max {0, φ} is still convex, we may assume x ∈ [0, 1] and y > 1. By
employing φ(1) = 0, max {0, φ(x)} ≥ 0 and the convexity of max {0, φ}, it follows
that Φ is non-decreasing on [1,∞) and thus on [0,∞). We therefore have

Φ (λx+ (1− λ)y) ≤ Φ(λ+ (1− λ) y)

≤ λΦ(1) + (1− λ)Φ(y) = λΦ(x) + (1− λ)Φ(y)
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and hence the first assertion.
For the second observe that d < ∞ by (2.1) and convexity of φ. Employing the

obvious inequality φ(x)− d ≤ Φ(x) we get that

Ψ(y) = sup
z∈R

y z − Φ(z) ≤ sup
z∈R

y z − (φ(z)− d)

≤ sup
z∈R

y z − φ(z) + d = ψ(y) + d

for all y ∈ R. Inserting this into (3.1) it follows ‖X‖Φ,β <∞ if ‖X‖φ,β <∞ and

‖X‖Φ,β = inf
µ∈R,
t>0

t

(
β + µ+ EΨ

(
|X|
t

− µ

))

≤ inf
µ∈R,
t>0

t

(
β + d+ µ+ Eψ

(
|X|
t

− µ

))

= ‖X‖φ,β+d ≤
β + d

β
‖X‖φ,β

by (4.3). The proof of the converse statement is analogous. □
The following two theorems, which are the main results of this section, establish

that the domains of divergence risk measures are specific Orlicz spaces.

Theorem 4.5 (Equivalence of norms). Let φ be a divergence function and the
associated Young-function Φ be given from (4.8). It holds that ‖X‖φ,β < ∞ and

‖X‖Φ,β <∞ if and only if X ∈ LΨ. Furthermore, the norms

‖ · ‖φ,β , ‖ · ‖Φ,β and ‖ · ‖Φ
are equivalent on LΨ. In particular we have the inequality

(4.9)
1

max{1, β}
‖X‖Φ,β ≤ ‖X‖Φ ≤ Ψ(1) + 1

min{1, β}
‖X‖Φ,β

for all X ∈ LΨ.

Proof. Let be X ∈ LΨ. By employing (4.3) with β = 1 it follows that

1

max {1, β}
‖X‖Φ,β ≤ ‖X‖Φ,1 ≤

1

min {1, β}
‖X‖Φ,β

and it is thus sufficient to show (4.9) for β = 1. We have that

‖X‖Φ,1 = inf
µ∈R,
t>0

t

(
1 + µ+ EΨ

(
|X|
t

− µ

))
≤ inf

t>0
t

(
1 + EΨ

(
|X|
t

))
,

where the last term is an equivalent expression of the Orlicz norm in (4.4) (see [20,
Theorem 10.5]). Therefore, the inequality

1

max{1, β}
‖X‖Φ,β ≤ inf

t>0
t

(
1 + EΨ

(
|X|
t

))
= ‖X‖Φ <∞

holds true.
To prove the converse inequality assume ‖X‖Φ,1 < ∞. By the definition of Ψ

and Proposition 2.3 (iii) we have that Ψ(0) = − infz∈RΦ(z) = 0 and −y+Ψ(y) ≥ 0
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for all y ∈ R. Therefore, as −y + Ψ(y) is a non-negative, convex function which
is 0 in the origin, it is non-decreasing on [0,∞). Hence the infimum in (3.1) is not
attained for µ < 0 and it follows that

‖X‖Φ,1 = inf
µ∈R,
t>0

t

(
1 + µ+ EΨ

(
|X|
t

− µ

))

= inf
µ≥0
t>0

t

(
1 + µ+ EΨ

(
|X|
t

− µ

))
.

Moreover, as t and Ψ are non-negative, we get from 1 + Ψ(1) ≥ 1 that

inf
µ≥0,
t>0

t

(
1 + µ+ EΨ

(
|X|
t

− µ

))

≥ 1

1 + Ψ(1)
inf
µ≥0,
t>0

t+ µ t (1 + Ψ(1)) + tEΨ

(
|X|
t

− µ

)

= inf
µ≥0,
t>0

t+ µ t

Ψ(1) + 1

(
1 +

µ t

t+ µ t
Ψ(1) +

t

t+ µ t
EΨ

(
|X|
t

− µ

))
and therefore, by applying Jensen’s inequality,

∞ > ‖X‖Φ,1 ≥ inf
µ≥0,
t>0

t+ µ t

Ψ(1) + 1

(
1 +

µ t

t+ µ t
Ψ(1) +

t

t+ µ t
EΨ

(
|X|
t

− µ

))

≥ inf
µ≥0,
t>0

t+ µ t

Ψ(1) + 1

(
1 + EΨ

(
|X|
t+ µ t

))
≥ 1

Ψ(1) + 1
‖X‖Φ.

This establishes ‖X‖Φ,β ⇐⇒ X ∈ LΨ as well as (4.9). The remaining statement is
immediate by Lemma 4.4. This yields the claim. □
Theorem 4.6 (Equivalence of spaces). Let ψ be the convex conjugate of a divergence
function φ.1 It holds that ‖X‖φ,β < ∞ if and only if X ∈ Lψ and (Mψ, ‖ · ‖φ,β) ∼=
(MΨ, ‖ · ‖Φ) as well as (Lψ, ‖ · ‖Φ,β) ∼= (LΨ, ‖ · ‖Φ) (here, ∼= indicates a continuous
isomorphism).

Proof. We have ψ(y) − d < Ψ(y) < ψ(y) + d as shown in the proof of Lemma 4.4
and hence the setwise identities MΨ =Mψ and LΨ = Lψ. The remaining assertion
follows from Theorem 4.5. □

To emphasize the strength of the previous result we provide some propositions
which are consequences of Theorem 4.6 and general results on Orlicz space theory.

Proposition 4.7. The pairs (Mψ, ‖ · ‖φ,β) and (Lψ, ‖ · ‖φ,β) are Banach spaces.

Proposition 4.8. The simple functions are dense in (Mψ, ‖ · ‖φ,β).

Proof. Cf. [31, Theorem 4.9.1, Theorem 4.12.8]. □
Proposition 4.9. The following duality relations hold true:

1The sets Mψ (Lψ, resp.) are defined as in (4.6) (in (4.7), resp.).
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(i) (Mψ, ‖ · ‖φ,β)∗ ∼= (Lφ, ‖ · ‖∗φ,β), where ∗ indicates the dual space (the dual

norm, resp.).
(ii) Assume φ satisfies the ∆2-condition, i.e., there exist numbers T , k ≥ 0 such

that

(4.10) φ(2x) ≤ k φ(x) for all T < x.

Then (Mφ, ‖ · ‖φ,β) = (Lφ, ‖ · ‖φ,β) and (Lψ, ‖ · ‖φ,β) ∼= (Mψ, ‖ · ‖φ,β)∗∗.
(iii) (Mψ, ‖ · ‖φ,β) is reflexive if and only if φ and ψ satisfy the ∆2-condition.

Proof. Cf. [31, Theorem 4.13.6, Remark 4.13.8 and Theorem 4.13.9]. □

5. Representations

This section establishes the dual representation of φ-divergence risk measures. We
further deduce a simple criterion to ensure that the infimum in (3.1) is attained.
The Kusuoka’s representation relates the φ-divergence risk measures with distortion
risk measures, which are of practical importance.

5.1. Dual Representation. The subsequent theorem provides the exact shape of
the dual representation of the φ-divergence risk measure. [2] gives a similar result
for L∞, but this space is not dense in Lψ as [4, Theorem 3.2] elaborate for the
Entropic Value-at-Risk.

Theorem 5.1 (Dual representation). For every X ∈ Lψ, the φ-divergence risk
measure has the representation

(5.1) ρφ,β(X) = sup
Z∈Mφ,β

EX Z,

where

(5.2) Mφ,β :=
{
Z ∈ L1 : Z ≥ 0, EZ = 1, Eφ(Z) ≤ β

}
.

In order to prove the dual representation we need to recall a result on so-called
normal convex integrands. A function g : Ω× R → (−∞,∞] is said to be a normal
convex integrand, if (i) ω 7→ g(ω, x) is measurable for every fixed x and (ii) if
x 7→ g(ω, x) is convex, lower semicontinuous and int dom (g(ω, ·)) = ∅ for almost
all ω ∈ Ω. The following theorem is a special case of [33, p. 185, Theorem 3A]. It
states that the supremum and expectation can be interchanged for normal convex
integrands, if certain conditions are satisfied (the space L1 is notably decomposable).

Theorem 5.2 (Interchangeability principle). Let (Ω,F , P ) be a probability space
and g : Ω× R → R ∪ {∞} a normal convex integrand. Then

sup
X∈L1(Ω,F ,P )

∫
Ω
g (ω,X(ω)) P (dω) =

∫
Ω
sup
x∈R

g (ω, x) P (dω)

holds if the left supremum is finite.

We now establish the dual representation (5.1) of the divergence risk measure.
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Proof of Theorem 5.1. Let X ∈ Lψ and Z ∈ Mφ,β be given. By applying the
Fenchel–Young inequality (2.2) inside of the objective function in (3.1) we get for
Z ∈Mφ,β that

t

(
β + µ+ Eψ

(
X

t
− µ

))
≥ t

(
β + µ+ E

(
X

t
− µ

)
Z − φ(Z)

)
≥ t µ+ t β − t µEZ − tEφ(Z) + EX Z

≥ EX Z,

provided that t > 0 and µ ∈ R. Taking the infimum among all t > 0, µ ∈ R on the
left hand side and the supremum for all Z ∈Mφ,β on the right hand side it follows
that

(5.3) ∞ > ρφ,β(X) ≥ sup
Z∈Mφ,β

EX Z.

This is the first inequality required (5.1).
As for the converse observe that the constant random variable Z ≡ 1 is feasible

and satisfies Eφ(Z) = φ(1) = 0 < β. This is, as stated in [23, p. 236 Problem 7], a
sufficient condition for strong duality for the right problem in (5.1), i.e., there exist
Lagrange multipliers µ∗ ∈ R and t∗ ≥ 0 such that

(5.4) sup
Z∈Mφ,β

EX Z = sup
Z≥0

EX Z − µ∗ (EZ − 1)− t∗ (Eφ(Z)− β) .

Further, by employing infx≥0 φ(x) > −∞ and substituting t µ̄ = µ we have that

sup
Z≥0

EX Z − µ∗ (EZ − 1)− t∗ (Eφ(Z)− β)

≥ inf
µ∈R,
t>0

sup
Z≥0

EX Z − µ (EZ − 1)− t inf
x≥0

φ(x) + t β

≥ inf
µ∈R,
t>0

sup
Z≥0

EX Z − µ (EZ − 1)− t (Eφ(Z)− β)

= inf
µ̄∈R,
t>0

t

(
µ̄+ β + sup

Z≥0
E

((
X

t
− µ̄

)
Z − φ(Z)

))

= inf
µ̄∈R,
t>0

t

(
µ̄+ β + sup

Z∈L1

E

((
X

t
− µ̄

)
Z − φ(Z)

))
,

where the last equality follows from the condition φ(z) = ∞ for z < 0. Now observe

that the inner function f(ω, z) :=
(
X(ω)
t − µ̄

)
z−φ(z) is a normal convex integrand,

as φ is lower semicontinuous and int dom(φ) = (0,∞) 6= ∅. Moreover, as X ∈ Lψ,
it follows from (2.2) that

sup
Z∈L1

E

((
X

t
− µ

)
Z − φ(Z)

)
≤ Eψ

(
X

t
− µ

)
<∞
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for some µ ∈ R and t > 0. Therefore, by inserting Theorem 5.1, we have that

sup
Mφ,β

EX Z ≥ inf
µ∈R,
t>0

t

(
µ+ β + sup

Z∈L1

E

(
X

t
− µ

)
Z − φ(Z)

)

= inf
µ∈R,
t>0

t

(
µ+ β + E

(
sup
z∈R

(
X

t
− µ

)
z − φ(z)

))

= inf
µ∈R,
t>0

t

(
µ+ β + Eψ

(
X

t
− µ

))
,

which is the desired inequality. This completes the proof. □

5.2. Consequences of the dual representation. The φ-divergence risk mea-
sures derive its name from their relation to φ divergence. We provide this relation
now explicitly and investigate the dual representation. We further relate the dual
representation (5.1) to Haezendonck risk measures.

Remark 5.3 (Alternative dual representation). LetMφ,β as in (5.2) and Z ∈Mφ,β .
The random variable Z satisfies Z ≥ 0 and EZ = 1. Therefore QZ defined as

QZ(B) := EP 1B Z

is a probability measure. QZ is absolutely continuous with respect to P and Radon–
Nikodym derivative dQZ

dP = Z. Hence we can reformulate the dual representa-
tion (5.1) as

(5.5) ρφ,β(X) = sup
Q≪P

{EQX : Dφ(Q ‖ P ) ≤ β} ,

where Dφ(Q ‖ P ) is the φ-divergence defined in Remark 2.2. ρφ,β(X) can therefore
be interpreted as the largest expected value EQX over all probability measures Q
within a φ-divergence ball around P . The divergence function φ characterizes the
shape of the ball, while β determines the radius.

Remark 5.4 (Relationship with Haezendonck risk measures). Suppose φ is a
Young-function as in Definition 4.2. Then the dual representation in (5.1) rewrites
as

ρφ,β(X) =
{
EX Z : Z ≥ 0, EZ = 1, ‖Z‖(φ̃) ≤ 1

}
where φ̃ is the function φ̃(·) = 1

βφ(·) and ‖ · ‖(φ̃) the corresponding Luxemburg

norm (4.5). The dual norm of ‖ · ‖(φ̃) is the Orlicz norm ‖ · ‖ψ̃, cf. (4.4), where ψ̃ is

the associated convex conjugate. Interchanging ‖ · ‖(φ̃) by ‖ · ‖ψ̃ we get

ρ(X) =
{
EX Z : Z ≥ 0, EZ = 1, ‖Z‖ψ̃ ≤ 1

}
,

which is the dual representation of the so-called Haezendonck–Goovaerts risk mea-
sure (see [9, Proposition 4]). It therefore turns out that the Haezendonck–Goovaerts
risk measures are the natural dual counterparts of the φ-divergence risk measures,
as the corresponding feasible sets are determined by norms which are dual to each
other. For more information on Haezendonck–Goovaerts risk measures see [7], [9]
and [18].
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Employing the dual representation we derive a simple condition when the infimum
in (3.1) is attained.

Proposition 5.5 (Existence of minimizers). Let X ∈ Lψ and ᾱ be given by

(5.6) ᾱ := max

{
α ∈ [0, 1) : φ(0)α+ φ

(
1

1− α

)
(1− α) ≤ β

}
.

If

(5.7) P (X = ess sup(X)) < 1− ᾱ

holds true, then the infimum in the defining equation of the risk measure (3.1) is
attained.

Proof. The assertion is shown in two parts. The first part demostrates ρφ,β(X) <
ess sup(X) while the second establishes that ρφ,β(X) = ess sup(X) holds if the
infimum is not attained. The assertion then follows by contradiction.

To prove the first part let Mφ,β as in (5.2), ᾱ as in (5.6) and X ∈ Lψ as in (5.7)
be given. We choose Z ∈Mφ,β , α ∈ (ᾱ, 1 − P (X = ess sup(X))) and U uniform

distributed on [0, 1]. We further set µZα := E
(
F−1
Z (U)

∣∣ 0 ≤ U < α
)
and µZ1−α :=

E
(
F−1
Z (U)

∣∣α ≤ U ≤ 1
)
. As F−1

Z (U) and Z are identically distributed it follows
that

1 = E(F−1
Z (U)) = µZα P (0 ≤ U < α) + µZ1−α P (α ≤ U ≤ 1)

= µZα α+ µZ1−α (1− α)

and

β ≥ E
(
φ(F−1

Z (U))
)

= E
(
φ(F−1

Z (U))
∣∣ 0 ≤ U < α

)
α+ E

(
φ(F−1

Z (U))
∣∣α ≤ U ≤ 1

)
(1− α)

≥ φ
(
µZα
)
α+ φ

(
µZ1−α

)
(1− α) = φ

(
µZα
)
α+ φ

(
1− αµZα
1− α

)
(1− α)

where we employed Jensen’s inequality to obtain the second inequality. Additionally,
by the definition of ᾱ in (5.6), we have that

φ(0)α+ φ

(
1

1− α

)
(1− α) > φ(0) ᾱ+ φ

(
1

1− ᾱ

)
(1− ᾱ) = β.

From this and the continuity of φ we conclude that there exists a positive constant
c, not depending on Z, such that µZα ≥ c holds for every Z ∈ Mφ,β . Hence, by
employing the covariance inequality in [43, Theorem 4], it follows that

EX Z ≤
∫ 1

0
F−1
X (u)F−1

Z (u) du

=

∫ α

0
F−1
X (u)F−1

Z (u) du+

∫ 1

α
F−1
X (u)F−1

Z (u) du

≤ F−1
X (α)

(∫ α

0
F−1
Z (u) du

)
+ F−1

X (1)

(∫ 1

α
FZ(u) du

)
≤ F−1

X (α)α c+ F−1
X (1) (1− α c)
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and consequently

ρφ,β(X) = sup
Z∈Mφ,β

EX Z ≤ F−1
X (α)α c+ F−1

X (1) (1− α c)

< F−1
X (1) = ess sup(X),

which demonstrates the first part.
For the second note that the infimum in (3.1) is not attained if and only if t

inside of

inf
µ∈R,
t>0

t

(
β + µ+ Eψ

(
X

t
− µ

))
tends towards 0. Hence we have t∗ = 0 for the Lagrange multiplier t∗ in (5.4). It
thus follows that

ρφ,β(X) = sup
Mφ,β

EX Z = sup
Z≥0

EX Z − µ∗(EZ − 1) = ess sup(X).

This completes the proof. □

5.3. Spectral representation. The φ-divergence risk measure ρφ,β is coherent
and law-invariant and thus has a Kusuoka representation (cf. [22]). We give the
representation in terms of spectral risk measures, which is equivalent to the Kusuoka
representation. We derive this representation from the dual (5.1) based on the
general approach elaborated in [30].

Proposition 5.6 (Spectral representation). The spectral representation of a φ-
divergence risk measure ρφ,β for X ∈ Lψ is

(5.8) ρφ,β(X) = sup
σ

∫ 1

0
σ(u)F−1

X (u) du,

where the supremum is taken over all non-decreasing σ : [0, 1] → [0,∞] with
∫ 1
0 σ(u) du =

1 and ∫ 1

0
φ
(
σ(u)

)
du ≤ β.

Remark 5.7. Every functional of the shape

ρσ(X) =

∫ 1

0
σ(u)F−1

X (u) du,

where σ : [0, 1] → [0,∞] is non-decreasing with
∫ 1
0 σ(u) du = 1, is a coherent risk

measure itself. It is called distortion risk measure in [26] or spectral risk measure
in [1].

The spectral representation (5.8) is beneficial to derive bounds as

ρσ(X) ≤ ρφ,β(X) for all X ∈ Lψ.

We provide an example next.
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Example 5.8 (AV@R bound). For some fixed α ∈ (0, 1) we set σα(·) = 1
1−α1[α,1](·).

The associated distortion risk measure is

ρσα(X) =

∫ 1

0
σ(u)F−1

X (u) du =
1

1− α

∫ 1

α
F−1
X (u) du

which is called Average Value-at-Risk and denoted as AV@Rα(X). If

(5.9)

∫ 1

0
φ (σα(u)) du = φ(0)α+ φ

(
1

1− α

)
(1− α) ≤ β

holds, then σα is contained in the set of functions, over which the supremum on the
left side of (5.8) is taken. We hence obtain

AV@Rα(X) = ρσα(X) ≤ ρφ,β(X) for all X ∈ Lψ

for every α such that (5.9) is satisfied. Therefore, by inserting definition of ᾱ in (5.6),
we have that

AV@Rα(X) ≤ ρφ,β(X), α ≤ ᾱ.

The latter inequality is of importance, as the Average Value-at-Risk is the most
important risk measure in finance and in insurance. The inequality generalizes a
corresponding inequality for the Entropic Value-at-Risk, cf. [2, Proposition 3.2].

6. Characterization of the dual and applications

The Banach space Lψ is, by Proposition 4.9, not reflexive, in general. By James’s
theorem, there are continuous linear functionals, which do not attain their supre-
mum on the closed unit ball. This section characterizes functionals of the dual,
which attain their supremum on the closed unit ball. We characterize the optimal
dual random variables in (5.1) by an explicit relation to optimality of t and µ in the
defining equation (3.1). We further establish an explicit representation of the dual
norm of ‖ · ‖φ,β . We further specify conditions so that the optimal values in (3.1)
can be derived based on a system of equations.
φ-divergence risk measures are efficiently incorporated into portfolio optimization

problems. We demonstrate this property in an explicit example.

6.1. Characterizing equations. To elaborate optimality inside of (3.1) and (5.1),
we state some facts concerning the ‘derivatives’ of the convex function φ and its
conjugate ψ. Even though they are not necessarily differentiable, they have sub-
derivatives φ′ and ψ′ (see [11, Theorem 2.3.12], [32, Theorem 23.4]). These are
functions, satisfying the equivalent relations

(6.1) ψ′(x) (z − x) ≤ ψ(z)− ψ(x) and φ′(y) (z − y) ≤ φ(z)− φ(y),

and

(6.2) xψ′(x) = φ(ψ′(x)) + ψ(x) and y φ′(y) = φ(y) + ψ(φ′(y))

for all x, z ∈ R, y ≥ 0. The subderivatives φ′ and ψ′ are, in general, not unique.
Nevertheless, they are uniquely determined, except for at most countably many
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points. Any function satisfying (6.1) is non-decreasing and therefore measurable.
Hence the system of equations

1 = Eψ′
(
X

t
− µ

)
,(6.3)

β = Eφ

(
ψ′
(
X

t
− µ

))
(6.4)

is well specified.
In what follows we demonstrate that solutions of the equations (6.3)–(6.4) char-

acterize optimal solutions t∗ and µ∗ in the defining equation (3.1). They specify the
random variable Z∗ in the dual space maximizing the functional EX Z among all
Z ∈Mφ,β .

Theorem 6.1. Let be X ∈ Lψ, Mφ,β as in (5.2) and ψ′ satisfying (6.1). Suppose
µ∗ ∈ R and t∗ > 0 solve of the characterizing equations (6.3)–(6.4). Then they are
the optimal values in (3.1). Furthermore, the random variable

Z∗ := ψ′
(
X

t∗
− µ∗

)
is optimal in (5.1), i.e.,

sup
Z∈Mφ,β

EX Z = EX Z∗ = t∗
(
β + µ∗ + Eψ

(
X

t∗
− µ∗

))
and Z∗ ∈Mφ,β.

Proof. Let solutions t∗ > 0, µ∗ ∈ R of (6.3) and (6.4) be given. The assertion
Z∗ ∈ Mφ,β is immediate by the equations (6.3), (6.4) and the fact that φ(x) = ∞
holds for x < 0. Furthermore, by employing (6.2), we have that

E

(
X

t∗
− µ∗

)
Z∗ − φ (Z∗)

=E

(
X

t∗
− µ∗

)
ψ′
(
X

t∗
− µ∗

)
− φ

(
ψ′
(
X

t∗
− µ∗

))
= Eψ

(
X

t∗
− µ∗

)
.

Hence by (6.3), (6.4) and Theorem 5.1 it follows that

ρφ,β(X) = sup
Z∈Mφ,β

EX Z ≥ EX Z∗

= t∗
(
EX Z∗

t∗
− µ∗ (EZ∗ − 1)− (Eφ (Z∗)− β)

)
= t∗

(
β + µ∗ + E

(
X

t∗
− µ∗

)
Z∗ − φ (Z∗)

)
= t∗

(
β + µ∗ + Eψ

(
X

t∗
− µ∗

))
≥ ρφ,β(X).

We therefore obtain EX Z∗ = ρφ,β(X) as well as

ρφ,β(X) = t∗
(
β + µ∗ + Eψ

(
X

t∗
− µ∗

))
.
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Thus µ∗, t∗ and Z∗ are optimal in (3.1) and (5.1), respectively. This is the assertion.
□

Remark 6.2. Note that optimal values t∗ and µ∗ in (3.1) may exist, although
the characterizing system (6.3)–(6.4) cannot be solved. The existence of solutions
depends on the specific choice of the subderivative ψ′.

Nevertheless, further assumption on the random variable X and the function ψ
can insure solutions of the system of equations. We present the corresponding result
in Section 6.3 below.

6.2. Dual norm. This subsection addresses the dual norm

(6.5) ‖Z‖∗φ,β := sup
∥X∥φ,β≤1

EX Z

of the φ-divergence norms given in (4.1). In what follows, we characterize (6.5)
as an optimization problem in one variable, provided that φ satisfies the ∆2-
condition (4.10).

Note that φ ∈ ∆2 implies

Eφ (t |Z|) <∞ for some t > 0 ⇐⇒ Eφ (t |Z|) <∞ for all t > 0

as well as
(
Mψ

)∗ ∼= Lφ and (Lφ)∗ ∼= Lψ (see Proposition 4.9). Thus the expression
in (6.5) is finite if and only if Z ∈ Lφ.

The following lemma states a specific transformation of a random variable Z ∈
Lφ, which we use later to characterize the dual norm.

Lemma 6.3. Let φ ∈ ∆2 and Z ∈ Lφ. There exists a continuous function
cZ : [E |Z|,∞) → [0, 1] such that

(6.6) Emax

{
cZ(λ),

|Z|
λ

}
= 1

for all λ ∈ [E |Z|,∞). If Eφ
(

|Z|
E |Z|

)
> β in addition, then there is a number

λ∗ ∈ (E |Z|,∞) such that

Eφ

(
max

{
cZ(λ

∗),
|Z|
λ∗

})
= β

is satisfied.

Proof. To establish the assertion we recall the intermediate value theorem, which
states that the equation

f(x) = y

has a solution x∗, if f is continuous and there are x1, x2 such that f(x1) ≤ y ≤ f(x2).
Let Z ∈ Lφ. If Z is constant, the function cZ(λ) := 1 satisfies (6.6). We therefore

assume that Z is non-constant and consider some fixed λ ∈ (E |Z|,∞). Setting

f(c) := Emax
{
c, |Z|λ

}
we have that

|f (c2)− f (c1)| =
∣∣∣∣Emax

{
c2,

|Z|
λ

}
− Emax

{
c1,

|Z|
λ

}∣∣∣∣ ≤ |c2 − c1|



1174 P. DOMMEL AND A. PICHLER

for all c1, c2 ∈
[
ess inf

(
|Z|
λ

)
, 1
]
. Thus f is Lipschitz continuous and hence continu-

ous. Further we have that

f

(
ess inf

(
|Z|
λ

))
= E

(
|Z|
λ

)
= Emax

{
ess inf

(
|Z|
λ

)
,
|Z|
λ

}
< 1 ≤ Emax

{
1,

|Z|
λ

}
= f(1)

and thus, by employing the intermediate value theorem, f(c∗) = 1 for some c∗ ∈(
ess inf

(
|Z|
λ

)
, 1
]
. Hence (6.6) has for a solution c∗(λ) for every λ ∈ (E |Z|,∞),

which is unique as f increases strictly on
(
ess inf

(
|Z|
λ

)
, 1
]
. Therefore the function

cZ : [E |Z|,∞) → [0, 1] given by

cZ(λ) :=

{
ess inf

(
|Z|
E |Z|

)
for λ = E |Z|

c∗(λ) for λ ∈ (E |Z|, ∞)

is well defined and satisfies (6.6) for every λ ∈ [E |Z|,∞).
To demonstrate the continuity of cZ , let λ0 ∈ (E |Z|,∞) and ε > 0. With-

out loss of generality we may assume that ε is sufficiently small such that p =

P
(
|Z|
λ0

≤ cZ(λ0)− ϵ
)
> 0. Choosing δ ≤ λ0 ϵ p it follows that

Emax

{
cZ(λ0)− ε,

|Z|
λ

}
≤ Emax

{
cZ(λ0)− ε,

|Z|
λ0 − δ

}
≤ λ0
λ0 − δ

Emax

{
cZ(λ0)− ε,

|Z|
λ0

}
≤ λ0
λ0 − δ

(
Emax

{
cZ(λ0),

|Z|
λ0

}
− ε p

)
=

λ0
λ0 − δ

(1− ε p) ≤ 1

and similarly

Emax

{
cZ(λ0) + ε,

|Z|
λ

}
≥ Emax

{
cZ(λ0) + ε,

|Z|
λ0 + δ

}
≥ λ0
λ0 + δ

Emax

{
cZ(λ0) + ε,

|Z|
λ0

}
≥ λ0
λ0 + δ

(
Emax

{
cZ(λ0),

|Z|
λ0

}
+ ε p

)
≥ 1

for all λ ∈ (λ0 − δ, λ0 + δ). We thus get that cZ(λ) ∈ [cZ(λ0) − ϵ, cZ(λ0) + ϵ] for
all λ ∈ (λ0 − δ, λ0 + δ), by the intermediate value theorem. This establishes the
continuity of cZ on (E |Z|,∞). The (right side) continuity in λ = E |Z| follows from
the fact that

Emax

{
ess inf

(
|Z|
E |Z|

)
+ ε,

|Z|
E |Z|

}
> 1

holds for every ϵ > 0. This demonstrates the first part of the assertion.
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For the second we assume Eφ
(

|Z|
E |Z|

)
> β and define the function g(λ) :=

Eφ
(
max

{
cZ(λ),

|Z|
λ

})
. By

Emax

{
cZ(λ),

|Z|
λ

}
= 1 for all λ ∈ (E |Z|,∞),

we observe that max
{
cZ(λ),

|Z|
λ

}
→ 1 almost surely, for λ → ∞. It is hence

sufficient to show that g is continuous, as then the assertion follows from

0 = φ(1) = lim
λ→∞

g(λ) < β < Eφ

(
|Z|
E |Z|

)
= g (E |Z|)

and the intermediate value theorem. Let (λn)n∈N ⊂ (E |Z|,∞) such that λn →
λ0 ∈ [E |Z|,∞). Choosing a number M ≥ 1 such that φ is non-decreasing and
non-negative for all x ≥M , we have the estimation∣∣∣∣φ(max

{
cZ(λ),

|Z|
λ

})∣∣∣∣ ≤ sup
x∈[0,M ]

|φ(x)|+ φ

(
max

{
M,

|Z|
λ

})
≤ sup

x∈[0,M ]
|φ(x)|+ φ

(
max

{
M,

|Z|
E |Z|

})
(6.7)

for all λ ∈ [E |Z|,∞). As (6.7) is integrable we can interchange limit and expectation
by Lebesgue’s Dominated convergence theorem, and thus get

g(λ0) = Eφ

(
max

{
cZ(λ0),

|Z|
λ0

})
= E

(
lim
n→∞

φ

(
max

{
cZ(λn),

|Z|
λn

}))
= lim

n→∞
Eφ

(
max

{
cZ(λn),

|Z|
λn

})
= lim

n→∞
g(λn)

by Proposition 2.3 (i) and continuity of cZ . This demonstrates continuity of g and
consequently the assertion. □

The dual norm allows the following explicit expression, which reduces the problem
to an optimization exercise in a single variable.

Theorem 6.4. For φ ∈ ∆2 and Z ∈ Lφ it holds that

‖Z‖∗φ,β = inf

{
λ ≥ E |Z| : Eφ

(
max

{
cZ(λ),

|Z|
λ

})
≤ β

}
,

where cZ is the function in Lemma 6.3.

Proof. Let be Z ∈ Lφ and Mφ,β as in (5.2). If Eφ
(

|Z|
E |Z|

)
≤ β holds, we have that

|Z|
E |Z| ∈Mφ,β and therefore

EX Z ≤ E |Z| E |X| |Z|
E |Z|

≤ E |Z| sup
Y ∈Mφ,β

E |X|Y = E |Z| ‖X‖φ,β

by Theorem 5.1. Hence it holds ‖Z‖∗φ,β ≤ E |Z|. Conversely, by (3.3), we get that

‖ sign(Z)‖φ,β ≤ 1 and thus ‖Z‖∗φ,β ≥ E |Z|, as EZ sign(Z) = E |Z| ≥ E |Z| ‖ sign(Z)‖φ,β .
We therefore obtain ‖Z‖∗φ,β = E |Z|.
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Now assume Eφ
(

|Z|
EZ

)
> β. Employing Lemma 6.3 we get a number λ∗ ∈

(E |Z|,∞) such that

(6.8) Emax

{
cZ(λ

∗),
|Z|
λ∗

}
= 1 and Eφ

(
max

{
cZ(λ

∗),
|Z|
λ∗

})
= β

holds. Setting Z∗ := max
{
cZ(λ

∗), |Z|λ∗
}
, and observing Z∗ ∈ Mφ,β as well as |Z|

λ∗ ≤
Z∗, it follows from Theorem 5.1 that

EX Z

λ∗
≤ E |X| |Z|

λ∗
≤ E |X|Z∗ ≤ ‖X‖φ,β

for every X ∈ Lψ. We therefore conclude ‖Z‖∗φ,β ≤ λ∗.
To establish the converse inequality, we consider the random variable X∗ :=

max
{
0, φ′

(
|Z|
λ∗

)
− φ′ (cZ(λ

∗))
}
, where φ′ corresponds to the function in (6.1). In-

voking (6.1) and (6.2), we obtain that

Eψ

(
φ′
(
|Z|
λ∗

))
= E

|Z|
λ∗

φ′
(
|Z|
λ∗

)
− φ

(
|Z|
λ∗

)
≤ Eφ

(
2 |Z|
λ∗

)
− 2φ

(
|Z|
λ∗

)
<∞

as Z ∈ Lφ and φ ∈ ∆2. Thus φ′
(
|Z|
λ∗

)
∈ Lψ and consequently X∗ ∈ Lψ. Further,

as φ′ is non-decreasing, we observe that

X∗ + φ′ (cZ(λ
∗)) = max

{
φ′ (cZ(λ

∗)) , φ′
(
|Z|
λ∗

)}
= φ′

(
max

{
cZ(λ

∗),
|Z|
λ∗

})
= φ′ (Z∗)

and hence

E(X∗ + φ′(cZ(λ
∗)))Z∗ = Eφ′(Z∗)Z∗ = Eψ

(
φ′(Z∗)

)
+ φ(Z∗)

= Eψ
(
(X∗ + φ′(cZ(λ

∗))
)
+ φ(Z∗)

by (6.2). Employing this as well as (5.3) and (6.8), we obtain

ρφ,β(X
∗) ≥ EX∗ Z∗ = −φ′(cZ(λ

∗)) + β + E
((
X∗ + φ′(cZ(λ

∗)
)
Z∗ − φ(Z∗)

)
= −φ′(cZ(λ

∗)) + β + Eψ
(
X∗ + φ′(cZ(λ

∗)
)
≥ ρφ,β(X

∗)

and therefore ρφ,β(X
∗) = EX∗ Z∗. Observing that Z∗ equals |Z|

λ∗ on the set where
X∗ differs from 0, we finally get that

E sign(Z)X∗ Z

λ∗
=

EX∗ |Z|
λ∗

= EX∗ Z∗

= ρφ,β(X
∗) = ‖X∗‖φ,β = ‖ sign(Z)X∗‖φ,β

as X∗ is non-negative. This establishes ‖Z‖∗φ,β ≥ λ∗ and thus the theorem. □
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6.3. Existence of solutions of the characterizing equations. For complete-
ness we provide conditions to guarantee that the system (6.3)–(6.4) is solvable. The
solutions t∗ and µ∗ identify the optimal solution in the initial problem (3.1). This
is of importance in numerical evaluations of ρφ,β(X).

Theorem 6.5. Let be X ∈ Mψ, X ≥ 0 and φ ∈ ∆2. Further suppose there are
optimal values t∗ > 0 and µ∗ ∈ R inside of (3.1) (i.e., P (X = ess sup(X)) < 1− ᾱ
by Proposition 5.5). If ψ is differentiable, then t∗ and µ∗ solve the equations (6.3)
and (6.4) for the normal derivative ψ′. If X is continuously distributed, then t∗ and
µ∗ solve the equations (6.3) and (6.4) for any subderivative ψ′ satisfying (6.1).

Proof. Let non-negative X ∈ Mψ and minimizers t∗ > 0 and µ∗ ∈ R inside of
in (3.1) be given. By the non-negativity of X we have that ρφ,β(X) = ‖X‖φ,β .
Therefore it exists a random variable Z ∈

(
Mψ

)∗
= Lφ such that

‖Z‖∗φ,β = 1 and EX Z = ‖X‖φ,β = ρφ,β(X)

by the Hahn-Banach theorem ([23, p. 112 Corollary 2]). As we have shown in the
proof of Theorem 6.4, there is Z∗ ∈ Lφ with Z∗ ∈Mφ,β and |Z| ≤ Z∗. Therefore, as
X ≥ 0, we have that EX Z ≤ EX Z∗. Conversely, it holds that EX Z∗ ≤ ‖X‖φ,β =
EX Z, as Z∗ is feasible inside of Mφ,β , from which we conclude EX Z = EX Z∗.
Applying the Fenchel–Young inequality (2.2) we obtain

EX Z∗ ≤ EX Z∗ + t∗ (β − Eφ(Z∗)) + t∗ µ∗ (1− EZ∗)

= t∗
(
β + µ∗ + E

(
|X|
t∗

− µ∗
)
Z∗ − φ(Z∗)

)
≤ t∗

(
β + µ∗ + Eψ

(
X

t∗
− µ∗

))
= ‖X‖φ,β .

By EX Z∗ = ‖X‖φ,β it follows that neither of the upper inequalties is strict and
hence Eφ(Z∗) = β as well as

E

(
X

t∗
− µ∗

)
Z∗ − φ(Z∗) = Eψ

(
X

t∗
− µ∗

)
.(6.9)

If ψ is differentiable, the only function establishing equality inside of Fenchel–
Young inequality (2.2) is the derivative ψ′ (see (6.2)). In any other case it holds
strict inequality. Hence by (6.9), we have that Z∗ = ψ′ (X

t∗ − µ∗
)
almost surely and

therefore

1 = EZ∗ = Eψ′
(
X

t∗
− µ∗

)
and β = Eφ(Z∗) = Eφ

(
ψ′
(
X

t∗
− µ∗

))
.

Thus t∗ and µ∗ solve the equations (6.3), (6.4).
Now assumeX is continuously distributed. Then the random variables ψ′ (X

t∗ − µ∗
)

coincide almost surely, for every subderivative ψ′ of ψ. This follows from the fact
that the subderivatives ψ′ of ψ are uniquely determined, apart from at most count-
ably many points. Furthermore, by the same argument as above, we have that
Z∗ = ψ′ (X

t∗ − µ∗
)
almost surely and thus the assertion. □
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6.4. Application in finance. In what follows we highlight the benefits of φ-
divergence risk measures for a problem in optimizing a portfolio (cf. also Rockafellar
et al. [37]). To this end set

W :=

{
w = (w1, . . . , wn) ∈ Rn : wi ≥ 0 and

n∑
i=1

wi = 1

}
and consider random variables X1, . . . , Xn ∈ Lψ. Xi is the loss of the i-th asset and
W constitutes all possible portfolio allocations. By denoting Xw := w1X1 + · · · +
wnXn the associated optimization problem is

min
w∈W

ρφ,β (Xw) = min
w∈W

inf
µ∈R,
t>0

t

(
β + µ+ Eψ

(
Xw

t
− µ

))
,

which determines the portfolio allocation with minimal risk based on the risk mea-
sure ρφ,β . One may restate this expression as

min
w∈W

ρφ,β (Xw) = min
w∈W

min
µ∈R,
t>0

t

(
β + µ+ Eψ

(
Xw

t
− µ

))

= min
w∈W,
µ∈R,
t>0

t

(
β + µ+ Eψ

(
Xw

t
− µ

))
.(6.10)

The striking benefit in (6.10) is that it is sufficient to execute a single minimiza-
tion problem with only two additional variables instead of two nested minimization
problems when employing (5.5). This reduces the complexity of the problem signif-
icantly. Similar results are available for Haezendonck–Goovaerts risk measures in
[8] as for Average Value-at-Risk in [40].

7. Summary

Coherent risk measures are of fundamental importance in mathematical finance.
They constitute convex functionals on appropriate Banach spaces for which the
entire and rich theory of convex analysis and convex duality applies.

This paper addresses a specific risk functional based on φ-divergence. The φ-
divergence is a non-symmetric distance, it is used to quantify aberrations from a
given probability measure. φ-divergence generalizes Kullback–Leibler divergence,
which is nowadays exhaustively used in data science.

We characterize the corresponding Banach space in detail and elaborate the dual
norm. The space is an Orlicz space and, in general, not reflexive.

The specific form of the φ-divergence risk measure allows a rich variety of equiv-
alent expressions. They can be employed mutually to exploit the specific properties
in given applications. We also exemplify the properties for a typical problem in
mathematical finance.
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