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counterparts, or by establishing some fuzzy/approximate statements without interi-
ority assumptions in various topological settings; cf. [1,3,5,7,9,10,12,17,18] among
other publications.

To obtain our major calculus results without topology, we develop a geometric
variational approach based on the new notion of set extremality in arbitrary vector
spaces and an appropriate version of the extremal principle derived in this paper
under a core qualification condition. The efficiency of such a variational approach
to the generalized differential calculus has been confirmed in the large nonconvex
framework of variational analysis, primarily in Asplund spaces as a remarkable sub-
class of Banach spaces, under certain “sequential normal compactness” (SNC) and
closedness conditions; see the books [13, 14] with the references and commentaries
therein. As shown in [17], in the case of convex subsets of normed spaces, the
closedness assumption in the convex extremal principle can be dropped provided
that the SNC property is replaced by a nonempty interior condition. Moreover, the
latter interiority condition ensures that the extremality of convex sets is equivalent
to convex separation. The results of [17] were further extended in [18] to the general
setting of LCTV spaces.

Our major attempt in this paper is to explore how far it is possible to go with
developing a reasonable convex generalized differentiation calculus in the absence of
topological structures. This question has been already raised in our recent work [8],
where some partial results are obtained in terms of algebraic cores without employ-
ing the convex set extremality. Now we are able to exploit such an extremality and
to derive in this way fully adequate convex calculus rules in general vector spaces in
terms of algebraic cores of convex sets instead of topological interiors. The obtained
results significantly strengthen the previous ones in [8]. On the other hand, some
results in vector spaces can be deduced from those in LCTV spaces by using the
so-called core convex topology introduced in [11] and further developed in [12]. We
prefer here to proceed with pure algebraic constructions by employing set extremal-
ity. Observe furthermore that algebraic results obtained in this paper give us back,
in spaces with explicitly given topologies, the corresponding topological results of
convex calculus that are well known for normals and subgradients as in [22] and also
more recent ones for set extremality, coderivative calculus, and subdifferentiation
of marginal/optimal value function established in [17,18].

The variational approach used in this paper is geometric: from the normal cone
calculus for convex sets via characterizations of set extremality to the coderivative
calculus for convex set-valued mappings, and then to the subdifferential calculus
for extended-real-valued convex functions. Finally, we derive a precise formula for
calculating the subgradient mappings for optimal value/marginal functions.

The rest of the paper is organized accordingly. Section 2 contains basic definitions
and preliminaries that are broadly used in what follows. In Section 3 we introduce
the set extremality in vector spaces, present its characterizations, and apply them
to the derivation of the basic normal cone intersection rule for convex sets. Sec-
tion 4 develops the sum rule for coderivatives of set-valued mappings with convex
graphs and its application to deriving the sum rule for subgradients of convex func-
tions. Section 5 addresses chain rules for coderivatives and subgradient mappings.
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The concluding Section 6 presents a precise calculating formula for subgradients of
convex optimal value functions under refined core qualification conditions.

Our notation is standard in convex and variational analysis; see, e.g., [14,20,21].
All the spaces under consideration are real vector spaces. Given such a space X,
its algebraic dual space is denoted by

X ′ :=
{
f : X → R

∣∣ f is a linear function
}
.

Some special symbols will be introduced in the places where the notions are defined.

2. Basic definitions and preliminaries

In this section we define the basic notions and present some preliminaries that are
needed for the formulation and proofs of the main results. The reader is referred to
the books [11, 12, 22] for related results and additional material on convex analysis
in vector and linear topological spaces. To make the paper self-contained, we give
here direct proofs of some important statements used in what follows.

Definition 2.1 (algebraic cores). Let Ω ⊂ X be a convex set. Then core or
algebraic interior of Ω is defined by

core (Ω) :=
{
x ∈ Ω

∣∣ ∀v ∈ X, ∃δ > 0, ∀t with |t| < δ : x+ tv ∈ Ω
}
.(2.1)

If X is a topological vector space, it is easy to see that

int(Ω) ⊂ core (Ω) ⊂ Ω,

where int(Ω) stands the topological interior of Ω, respectively. In the general case
of vector spaces, we can derive from the definitions that the convexity of Ω yields
the convexity of the set core (Ω).

Recall that a subset Ω of a vector spaceX is absorbing if for any v ∈ X there exists
δ > 0 such that tv ∈ Ω whenever |t| < δ. It follows directly from the definitions
that x̄ ∈ core (Ω) if and only if the set Ω − x̄ is absorbing. Observe also that

core
(
core (Ω)

)
= core (Ω).

The next proposition is used below in the proof of a refined version of the convex
separation theorem involving a nonempty convex set and a singleton.

Proposition 2.2. Given a convex set Ω ⊂ X together with arbitrary points a ∈
core (Ω) and b ∈ Ω, we have [a, b) ⊂ core (Ω).

Proof. Define xλ := λa + (1 − λ)b for any λ ∈ (0, 1) and show that xλ ∈ core (Ω).
Indeed, it follows from a ∈ core (Ω) that for each v ∈ X there exists δ > 0 with

a+ tv ∈ Ω whenever |t| < δ.

Then the convexity of the set Ω tells us that

xλ + tλv = λa+ (1− λ)b+ tλv = λ(a+ tv) + (1− λ)b ∈ Ω,

which means by definition (2.1) that xλ ∈ core (Ω). □

Now we formulate the two separation notions for convex sets exploited in the
paper.
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Definition 2.3 (convex separation). Nonempty subsets Ω1,Ω2 ⊂ X are separated
by a hyperplane if there is a nonzero linear function f : X → R such that

(2.2) sup
{
f(x)

∣∣ x ∈ Ω1

}
≤ inf

{
f(x)

∣∣ x ∈ Ω2

}
.

If we have in addition that

inf
{
f(x)

∣∣ x ∈ Ω1

}
< sup

{
f(x)

∣∣ x ∈ Ω2

}
,

which means that there exist vectors x1 ∈ Ω1 and x2 ∈ Ω2 with f(x1) < f(x2), then
the sets Ω1 and Ω2 are properly separated by a hyperplane. In the case where
Ω1 = Ω and Ω2 = {x0} with x0 /∈ Ω, we say that x0 is separated (proper separated)
from Ω by a hyperplane, respectively.

A set Ω ⊂ X is said to be core-solid if core (Ω) ̸= ∅. The following important
theorem presents a refined version of the hyperplane separation of a singleton from
a convex set in vector spaces with establishing the equivalence between separation
and proper separation in this case and deriving a core characterization of these
properties.

Given an absorbing set Ω, define the Minkowski gauge function associated with
Ω by

(2.3) pΩ(x) := inf
{
λ > 0

∣∣ x ∈ λΩ
}
.

If Ω is convex, the function pΩ : X → R is a subadditive and positively homogeneous.

Theorem 2.4 (characterization of the separation properties of a point from a
convex set). Let Ω ⊂ X be a nonempty core-solid convex set, and let x0 /∈ Ω.
Then the hyperplane separation and proper separation properties of x0 from Ω are
equivalent to each other, and they both hold if and only if x0 /∈ core (Ω).

Proof. First we verify the equivalence between the separation and proper separation
properties under consideration. It suffices to show that the hyperplane separation
property of x0 from Ω yields the proper separation one if core (Ω) ̸= ∅. To proceed,
select a nonzero linear function f : X → R such that

f(x) ≤ f(x0) for all x ∈ Ω

and show that there exists w ∈ Ω with f(w) < f(x0). Supposing the contrary tells
us that f(x) = f(x0) for all x ∈ Ω. However, it contradicts the core-solidness of Ω.
Indeed, pick x0 ∈ core (Ω) and let Θ := Ω− x0. Then 0 ∈ core (Θ), which yields

f(x) = 0 for all x ∈ Θ.

The latter implies that tv ∈ Θ for any fixed v ∈ X and small t > 0, i.e., f(tv) =
tf(v) = 0 and f ≡ 0 on X, which contradicts the assumed separation property.

Next let us prove that the cone-solidness condition core (Ω) ̸= ∅ ensures the
existence of a hyperplane which properly separates Ω and {x0}. We start with the
case where 0 ∈ core (Ω), and so Ω is an absorbing set. Consider the linear subspace
Y := span{x0} and define the function g : Y → R by g(αx0) := α for all α ∈ R. We
aim at showing that g is linear and satisfies the estimate g(y) ≤ pΩ(y) on Y , where
pΩ is the the Minkowski gauge (2.3). Indeed, take any y = αx0 with some α ∈ R
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and observe that for α ≤ 0 we immediately get g(y) = α ≤ 0 ≤ pΩ(y). If α > 0,
then

g(y) = α ≤ αpΩ(x0) = pΩ(αx0) = pΩ(y).

Since pΩ is subadditive and positively homogenous, the classical Hahn-Banach the-
orem gives us a linear function f : X → R such that f(y) = g(y) for all y ∈ Y and
that f(x) ≤ pΩ(x) for all x ∈ X. Since f(x0) = 1, the function f is not identically
zero on X, and we obtain the estimates

f(x) ≤ pΩ(x) ≤ 1 = f(x0) for all x ∈ Ω,

which verify the separation and hence proper separation properties in this case. The
remaining case where 0 /∈ core (Ω) reduces to the previous one by considering the
set Θ := Ω− w with an arbitrary vector w ∈ core (Ω).

Now we are ready to verify the claimed characterization x0 /∈ core (Ω) of the
equivalent separation properties. Assuming that x0 is properly separated from Ω by
a hyperplane gives us a nonzero linear function f ∈ X ′ with f(x) ≤ f(x0) and such
that f(w) < f(x0) for some w ∈ Ω. If x0 ∈ core (Ω), then we get x0 + t(x0 − x̄) ∈ Ω
for small t > 0, and hence arrive at the contradiction[

f
(
x0 + t(x0 − w)

)
≤ f(x0)

]
⇐⇒

[
f(w) ≥ f(x0)

]
.

Finally, let us show that the condition x0 /∈ core (Ω) is sufficient for the proper
separation of x0 from Ω. Since core (Ω) is a nonempty convex subset of X with
core (core (Ω)) = core (Ω) ̸= ∅ and since x0 /∈ core (Ω), we get by the proof above
that x0 is properly separated from the set core (Ω). It gives us a nonzero linear
function f : X → R and a vector w ∈ core (Ω) ⊂ Ω such that

f(x) ≤ f(x̄) on core (Ω) with f(w) < f(x0).

Pick now any v ∈ Ω and deduce from Proposition 2.2 that tw + (1− t)v ∈ core (Ω)
for all real numbers t ∈ (−0, 1]. It tells us that

tf(w) + (1− t)f(v) = f
(
tw + (1− t)v

)
≤ f(x0) whenever t ∈ (0, 1].

Passing there to the limit as t ↓ 0 yields f(v) ≤ f(x0), and we are done. □

3. Set extremality and normal intersection rule

In this section we introduce the concept of extremality for a pair of convex sets
in vector spaces, obtain characterizations of such a set extremality, and establish
their relationships with the separation of convex sets. The core conditions for
convex sets and their differences are crucial for these results. Then we apply the set
extremality and its characterizations to derive the intersection rule for the normal
cone to convex sets under the new core qualification condition. The obtained basic
result and its applications to calculus rules for coderivatives and subgradients, which
are established in the subsequent sections, significantly improve the previous ones
given in [8].

Let us start with defining the extremality notion for arbitrary (not necessary con-
vex) sets in vector spaces. This notion is inspired by the concept of local extremality
of set systems that plays a fundamental role in variational analysis; see, e.g., [13,14].
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Definition 3.1 (set extremality). Let Ω1 and Ω2 be nonempty subset of a vector
space X. The set system {Ω1,Ω2} is extremal in X if there exists x0 ∈ X such
that for all δ > 0 we can find t0 ∈ R with |t0| < δ satisfying(

Ω1 + t0x0
)
∩ Ω2 = ∅.

It follows directly from the definition that if two sets Ω1 and Ω2 are disjoint (i.e.,
Ω1 ∩Ω2 = ∅), then they form an extremal system. In addition, two sets Ω1 and Ω2

do not form an extremal system in X if for any v ∈ X there exists δ > 0 such that
for all t ∈ R with |t| < δ we have the condition(

Ω1 + tv
)
∩ Ω2 ̸= ∅.

Note that the introduced extremality notion is different from the local set ex-
tremality used in [13,14] along with great many publications on variational analysis
and its applications, where the set extremality was defined and employed at the
common point of the (generally nonconvex) sets in question. The global extremal-
ity framework of Definition 3.1 is a vector space extension of the corresponding
topological notions formulated and exploited in [15] in finite dimensions, in [16] in
normed spaces, and in [18] in general LCTV spaces. Similarly to the above investi-
gations in the presence of topology, the introduced notion of set extremality covers
global optimal solutions to problems of scalar constrained optimization as well as
their vector and set-valued counterparts, various equilibrium concepts in mathemat-
ics and applied sciences, etc. Moreover, extremal systems of sets naturally appear in
deriving calculus rules as shown below, where cores of convex sets in general vector
spaces play a crucial role.

To proceed, consider a nonempty convex subset Ω of a vector space X and define
the normal cone to Ω at x̄ ∈ Ω by

(3.1) N(x̄; Ω) :=
{
f ∈ X ′ ∣∣ f(x− x̄) ≤ 0 for all x ∈ Ω

}
with N(x̄; Ω) := ∅ for x̄ /∈ Ω. The next theorem provides characterizations of set
extremality for systems of convex sets and relationships with convex separation.

Theorem 3.2 (characterizations of extremal systems of convex sets). Given two
nonempty convex sets Ω1,Ω2 ⊂ X, we have the following assertions:

(i) The system {Ω1,Ω2} is extremal system in X if and only if 0 /∈ core (Ω1 −
Ω2), which implies that core (Ω1) ∩ Ω2 = ∅ and core (Ω2) ∩ Ω1 = ∅.

(ii) If the set system {Ω1,Ω2} is extremal and the set difference Ω1 − Ω2 is
core-solid, then the sets Ω1 and Ω2 are separated by a hyperplane, i.e., (2.2)
holds.

(iii) If x̄ ∈ Ω1 ∩ Ω2, then the latter is equivalent to

(3.2) N(x̄; Ω1) ∩
(
−N(x̄; Ω2)

)
̸= {0}.

(iv) The separation property (2.2) yields the set extremality.

Proof. To verify (i), let us first show that the extremality of the set systems {Ω1,Ω2}
implies that 0 /∈ core (Ω1 − Ω2). Indeed, supposing the contrary and using the
definition of cores, for any x ∈ X we find δ > 0 such that

−tx ∈ Ω1 − Ω2 ⇐⇒
(
Ω1 + tx

)
∩ Ω2 ̸= ∅ whenever |t| < δ.
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This clearly contradicts the extremality of the system {Ω1,Ω2} in X.
To justify the converse statement in (i), suppose that 0 /∈ core (Ω1 − Ω2). It

ensures the existence of x0 ∈ X such that for all δ > 0 we get a number t0 ∈ R with
|t0| < δ satisfying the condition −t0x0 /∈ Ω1−Ω2. It tells us that (Ω1+t0x0)∩Ω2 = ∅,
which therefore verifies the extremality of the set system {Ω1,Ω2}.

To prove further the symmetric implications stated in (i), suppose on the contrary
that core (Ω1)∩Ω2 ̸= ∅, which allows us to find a vector x0 ∈ core (Ω1) with x0 ∈ Ω2.
Then for any x ∈ X there exists δ > 0 such that

x0 + tx ∈ Ω1 whenever |t| < δ,

which ensures that tx ∈ Ω1 − Ω2 for all such t ∈ R. Thus we arrive at 0 ∈
core (Ω2 − Ω1), a contradiction that fully justifies (i).

Next we verify assertion (ii). The extremality of {Ω1,Ω2} tells us by (i) that
0 /∈ core (Ω1 − Ω2). Then the core-solidness assumption core (Ω1 − Ω2) ̸= ∅ allows
us to apply the result from Theorem 2.4, which ensures that the convex sets Ω :=
Ω1−Ω2 and {0} are separated by a hyperplane, which clearly reduces to the claimed
condition (2.2) and thus justifies assertion (ii).

If x̄ ∈ Ω1 ∩Ω2, then the equivalence between (2.2) and (3.2), which is claimed in
(iii), follows directly from the normal cone definition (3.1).

It remains to justify assertion (iv). Assuming that (2.2) holds with some nonzero
linear function f : X → R, choose v ∈ X with f(v) > 0. Arguing by contradiction,
suppose that the set system {Ω1,Ω2} is not extremal in X. Then for all large
number k ∈ N := {1, 2, . . .} we find x̂ ∈ X satisfying

x̂ ∈
(
Ω1 −

1

k
v
)
∩ Ω2.

It follows from the separation property (2.2) and the linearity of f that

f(x̂) +
1

k
f(v) = f

(
x̂+

1

k
v
)
≤ sup

x∈Ω1

f(x) ≤ inf
x∈Ω2

f(x) ≤ f(x̂),

which clearly yields f(v) ≤ 0, a contradiction to the choice of v. This verifies (iv)
and completes the proof of the theorem. □

Note that a nonconvex counterpart of the normal cone relation (3.2) is known in
variational analysis as the extremal principle that addresses local extremal points of
closed set systems. It is established, under a certain “sequential normal compact-
ness” condition, in terms of the Mordukhovich limiting normal cone in Asplund
spaces, i.e., such Banach spaces where each separable subspace has a separable dual
(this class includes, in particular, any reflexive Banach space); see [13] for more de-
tails. We can see that the set extremality results available for convex sets in general
vector spaces by Theorem 3.2 are significantly different from their local nonconvex
counterparts.

Next let us apply Theorem 3.2 on set extremality to establish the basic result of
convex calculus in vector spaces, which gives us a precise formula for representing
normals to the intersection of two convex sets. It is obtained under the qualification
condition requiring that the core of one of the set has common points with the other.
This result significantly extends the main one in [8, Theorem 5.4], which is derived
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without any appeal to set extremality in the case where both sets in question are
core-solids and the intersection of their cores is nonempty.

Theorem 3.3 (normal cone intersection rule in vector spaces). Let Ω1 and Ω2

be convex sets in X with the nonempty intersection under the fulfillment of the
following basic qualification condition:

(3.3) core (Ω1) ∩ Ω2 ̸= ∅.

Then the normal cone to Ω1 ∩ Ω2 at any point x̄ ∈ Ω1 ∩ Ω2 is represented by

(3.4) N(x̄; Ω1 ∩ Ω2) = N(x̄; Ω1) +N(x̄; Ω2).

Proof. The inclusion “⊂” in (3.4) follows directly from the normal cone definition
(3.1) without using the qualification condition (3.3). To prove the opposite inclusion
in (3.4), fix any x̄ ∈ Ω1 ∩ Ω2 and consider any linear function f : X → R from the
normal cone N(x̄; Ω1 ∩ Ω2). By (3.1) we have

f(x− x̄) ≤ 0 whenever x ∈ Ω1 ∩ Ω2.

Define further the convex sets in X × R by

Θ1 := Ω1 × [0,∞) and Θ2 :=
{
(x, µ) ∈ X × R

∣∣ x ∈ Ω2, µ ≤ f(x− x̄)
}
.

It follows from the construction of Θ1 with core (Θ1) ̸= ∅ due to (3.3) that

core (Θ1) = core (Ω1)× (0,∞) ̸= ∅.

Furthermore, involving the construction of Θ2 tells us that for any α > 0 we have(
Θ1 + (0, α)

)
∩Θ2 = ∅ for any α > 0.

The latter means that the set system {Θ1,Θ2} is extremal in the space X × R
according to Definition 3.1. To apply now to these sets the characterization of
the set extremality from Theorem 3.2, we need to check that core (Ω1 − Ω2) ̸= ∅.
Since core (Θ1) ̸= ∅ by the above, this follows from the fact that for any nonempty
convex sets Θ1 and Θ2 in a vector space Z the condition core (Θ1) ̸= ∅ yields
core (Θ1 − Θ2) ̸= ∅. To check it, fix z0 ∈ core (Θ1) and y0 ∈ Θ2 and then deduce
from the core definition (2.1) that for any v ∈ Z there exists δ > 0 such that

z0 + tv ∈ Θ1 whenever |t| < δ.

It readily implies that for all t ∈ R with |t| < δ we get

(z0 − y0) + tv ∈ Θ1 −Θ2,

which therefore verifies that z0 − y0 ∈ core (Θ1 − Θ2), i.e., the set Θ1 − Θ2 is
core-solid.

Applying now Theorem 3.2(ii) to the sets Θ1,Θ2 in the space Z := X × R gives
us a linear function g ∈ X ′ and a number γ ∈ R such that (g, γ) ̸= (0, 0) and that

(3.5) g(x) + λ1γ ≤ g(y) + λ2γ whenever (x, λ1) ∈ Θ1, (y, λ2) ∈ Θ2.

Using (3.5) with (x̄, 1) ∈ Θ1 and (x̄, 0) ∈ Θ2 implies that γ ≤ 0. If γ = 0, then we
get that g(x) ≡ 0 on X while satisfying the inequality

g(x) ≤ g(y) for all x ∈ Ω1 and y ∈ Ω2,



EXTREMAL SYSTEMS AND CONVEX CALCULUS IN VECTOR SPACES 1147

i.e., the sets Ω1 and Ω2 are separated by a hyperplane. Then assertion (iv) of Theo-
rem 3.2 ensures the extremality of the system {Ω1,Ω2}, which implies by assertion
(i) of Theorem 3.2 that coreΩ1 ∩ Ω2, a contradiction to the assumed qualification
condition (3.3). This confirms that γ < 0.

Employing next (3.5) with (x, 0) ∈ Θ1 for x ∈ Ω1 and (x̄, 0) ∈ Θ2, we obtain

g(x) ≤ g(x̄) for all x ∈ Ω1, and so g ∈ N(x̄; Ω1).

Using now (3.5) with (x̄, 0) ∈ Θ1 and (y, f(y − x̄)) ∈ Θ2 for y ∈ Ω2 shows that

g(x̄) ≤ g(y) + γf(y − x̄) for all y ∈ Ω2.

Dividing both sides of the last inequality by γ < 0, we arrive at

(f + g/γ)(y − x̄) ≤ 0 for all y ∈ Ω2,

which verifies by (3.1) the fulfillment of the inclusions

f ∈ −g/γ +N(x̄; Ω2) ⊂ N(x̄; Ω1 +N(x̄; Ω2),

which tells us that N(x̄; Ω1 ∩ Ω2) ⊂ N(x̄; Ω1) + N(x̄; Ω2) and thus completes the
proof of the normal cone intersection rule (3.4). □

4. Sum rules for coderivatives and subgradients

In this and subsequent sections we intend to develop a geometric variational
approach to the generalized differential calculus for convex set-valued mappings and
extended-real-valued functions in the general vector space setting. It is mainly based
on applying the basic normal cone intersection rule of Theorem 3.3 established via
the convex set extremality. This approach leads us to the essential improvement of
the corresponding calculus rules obtained in [8] under significantly more demanding
core qualification conditions on the initial data.

Here we derive a coderivative sum rule for convex set-valued mappings (i.e.,
mappings with convex graphs) and then easily obtain from it the corresponding
equality-type sum rule for subgradients of convex extended-real-valued functions.

To proceed, we first present an auxiliary result of its own interest, which calculates
the core of the convex graph of a set-valued mapping via the cores of its domain
and image sets. In fact, this lemma is a core counterpart of the finite-dimensional
result by Rockafellar [20, Theorem 6.8] that provides such a calculation for relative
interiors of convex graphs; see also [7] for its topological extension in terms of quasi-
relative interiors. Constantin Zălinescu informed us that an alternative proof of this
lemma could be found in [23, Lemma 12] and [12, Proposition 6.3.3].

Recall that the domain and graph of a set-valued mapping F : X ⇒ Y are

dom (F ) :=
{
x ∈ X

∣∣ F (x) ̸= ∅
}

and gph (F ) :=
{
(x, y) ∈ X × Y

∣∣ y ∈ F (x)
}
.

Lemma 4.1. Let F : X ⇒ Y be a set-valued with the core-solid convex graph. Then

(4.1) core (gphF ) =
{
(x, y)

∣∣ x ∈ core (domF ), y ∈ core
(
F (x)

)}
.

Proof. Considering the projection mapping P : X × Y → X defined by (x, y) → x,
we clearly have the equalities

P
(
core (gphF )

)
= core (P

(
gphF )

)
= core

(
dom (F )

)
.
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It tells that x0 ∈ core (dom (F )) for any (x0, y0) ∈ core (gph (F )). Furthermore, for
any v ∈ Y we find δ > 0 ensuring that

(x0, y0) + λ(0, v) ∈ gph (F ) for all λ ∈ R with |λ| < δ.

It implies that y0+λv ∈ F (x0) whenever |λ| < δ. This shows that y0 ∈ core (F (x0))
and thus proves the inclusion “⊂” in (4.1).

To verify next the inclusion “⊃” in (4.1), we employ the proper separation
characterization from Theorem 2.4. Pick (x0, y0) with x0 ∈ core (dom (F )) and
y0 ∈ core (F (x0)), and then suppose on the contrary that (x0, y0) /∈ core (gphF ).
By Theorem 2.4 on X ×Y and the definition of proper separation of a point from a
convex set, there exist nonzero linear functions f : X → R and g : Y → R, and also
a pair (x̄, ȳ) ∈ gph (F ) satisfying the conditions

f(x) + g(y) ≤ f(x0) + g(y0) for all (x, y) ∈ gph (F )
and f(x̄) + g(ȳ) < f(x0) + g(y0).

Putting x0 = x̄ therein tells us that

g(y) ≤ g(y0) whenever y ∈ F (x0) and g(ȳ) < g(y0),

which shows that y0 /∈ core (F (x0)), a contradiction.
In the case where x0 ̸= x̄, take 0 < t < 1 sufficiently small so that

x̃ := x0 + t(x0 − x̄) ∈ dom (F ),

which yields x0 = λx̃+ (1− λ)x̄ for some 0 < λ < 1. Choosing ỹ ∈ F (x̃) gives us

f(x̃) + g(ỹ) ≤ f(x0) + g(y0)

and ensures the existence of (x̄, ȳ) ∈ gph (F ) such that

f(x̄) + g(ȳ) < f(x0) + g(y0).

Multiplying the first inequality by λ, multiplying the second inequality by 1 − λ,
and adding them together bring us to

g(y′) < g(y0) with y′ := λỹ + (1− λ)ȳ ∈ F (x0).

In this way we arrive at the contradiction y0 /∈ core (F (x0), which therefore com-
pletes the proof of the lemma. □

Having in hand the obtained graphical core representation, we can now proceed
with deriving the refined sum rule for coderivatives of set-valued mappings. First,
let us recall the coderivative definition, which is borrowed from variational analy-
sis since in convex analysis this notion was not investigated; see [14, 21] for more
discussions.

Given a set-valued mapping F : X → Y between arbitrary vector spaces, the
coderivative of F at (x̄, ȳ) ∈ gph (F ) is a set-valued mapping D∗F (x̄, ȳ) : Y ′ ⇒ X ′

between the algebraically dual spaces with the values

(4.2) D∗F (x̄, ȳ)(g) :=
{
f ∈ X ′ ∣∣ (f,−g) ∈ N

(
(x̄, ȳ); gph (F )

)}
, g ∈ Y ′.

Recall also that the (Minkowski) sum of two set-valued mappings F1, F2 : X ⇒ Y is

(F1 + F2)(x) = F1(x) + F2(x) :=
{
y1 + y2 ∈ Y

∣∣ y1 ∈ F1(x), y2 ∈ F2(x)
}
, x ∈ X.
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It is easy to see that dom (F1 + F2) = dom (F1) ∩ dom (F2) and that the graph
of the sum F1 + F2 is convex if both mappings F1, F2 enjoy this property. Given
(x̄, ȳ) ∈ gph (F1 + F2), consider the set

S(x̄, ȳ) :=
{
(ȳ1, ȳ2) ∈ Y × Y

∣∣ ȳ = ȳ1 + ȳ2, ȳi ∈ Fi(x̄) as i = 1, 2
}
.

The following sum rule for coderivatives extends the previous one from [8, Theo-
rem 6.1], where the qualification condition requires, in particular, the core-solidness
of both convex graphs of F1 and F2. Note also that the form of the obtained
coderivative sum rule for convex set-valued mappings is significantly different from
those in nonconvex variational analysis; cf. the books [13,14,21] and the references
therein.

Theorem 4.2 (coderivative sum rule). Consider two convex set-valued mappings
F1, F2 : X ⇒ Y between vector spaces. Assume that the graph of F1 is core-solid
and

(4.3) ∃x ∈ core
(
dom (F1)

)
∩ dom (F2) with core

(
F1(x)

)
̸= ∅.

Then for all (x̄, ȳ) ∈ gph (F1 + F2) and (ȳ1, ȳ2) ∈ S(x̄, ȳ) we have

(4.4) D∗(F1 + F2)(x̄, ȳ)(g) = D∗F1(x̄, ȳ1)(g) +D∗F2(x̄, ȳ2)(g), g ∈ Y ′.

Proof. Pick f ∈ D∗(F1 + F2)(x̄, ȳ)(g) and get by the coderivative definition (4.2)
that (f,−g) ∈ N((x̄, ȳ); gph (F1 + F2)). Fix any (ȳ1, ȳ2) ∈ S(x̄, ȳ) and form the
following convex sets in the product space X × Y × Y by

Ω1 :=
{
(x, y1, y2) ∈ X × Y × Y

∣∣ y1 ∈ F1(x)
}
,

Ω2 :=
{
(x, y1, y2) ∈ X × Y × Y

∣∣ y2 ∈ F2(x)
}
.

Employing Lemma 4.1 gives us the representation

core (Ω1) =
{
(x, y1, y2) ∈ X × Y × Y

∣∣ (x, y1) ∈ core (gph (F1))
}

=
{
(x, y1, y2) ∈ X × Y × Y

∣∣ x ∈ core
(
dom (F1)

)
, y1 ∈ core

(
F1(x)

)}
,

and thus the qualification condition (4.3) ensures that core (Ω1) ∩ Ω2 ≠ ∅.
We easily deduce from the above constructions that

(4.5) (f,−g,−g) ∈ N
(
(x̄, ȳ1, ȳ2); Ω1 ∩ Ω2

)
Then applying Theorem 3.3 to the set intersection in (4.5) leads us to

(f,−g,−g) ∈ N
(
(x̄, ȳ1, ȳ2); Ω1

)
+N

(
(x̄, ȳ1, ȳ2); Ω2

)
.

Thus we arrive at the representation

(f,−g,−g) = (f1,−g, 0) + (f2, 0,−g) with (fi,−g) ∈ N
(
(x̄, ȳi); gph (Fi)

)
for i = 1, 2. The above representation reads by the coderivative definition as

f = f1 + f2 ∈ D∗F1(x̄, ȳ1)(g) +D∗F2(x̄, ȳ2)(g),

which verifies the inclusion “⊂” in (4.4). Since the opposite inclusion is trivial, we
complete the proof of the theorem. □
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As a direct consequence of the obtained coderivative sum rule, we derive now
the sum rule for subgradients of extended-real-valued convex functions defined on
arbitrary vector spaces that is counterpart of the classical result of convex analysis
in LCTV spaces (see, e.g., [22]) with the replacement of the topological interior by
the core.

Recall that the subdifferential (collections of subgradients) of an extended-real-
valued convex function φ : X → R, with its domain and epigraphical sets

dom (φ) :=
{
x ∈ X

∣∣ φ(x) < ∞
}

and epi (φ) :=
{
(x, α) ∈ X × R

∣∣ α ≥ φ(x)
}
,

is defined at a given point x̄ ∈ domφ by

∂φ(x̄) :=
{
f ∈ X ′ ∣∣ φ(x) ≥ φ(x̄) + f(x− x̄) for all x ∈ X

}
,

which can be equivalently rewritten via the coderivative as

(4.6) ∂φ(x̄) = D∗F
(
x̄, φ(x̄)

)
(1), where F (x) :=

{
α ∈ R

∣∣ α ≥ φ(x)
}
.

The function φ is said to be proper if dom (φ) ̸= ∅.

Corollary 4.3 (subdifferential sum rule). Let φi : X → R, i = 1, 2, be proper
convex functions defined on a vector space X. Assume that the epigraph of φ1 is
core-solid and that the qualification condition

(4.7) core
(
dom (φ1)

)
∩ dom (φ2) ̸= ∅

is satisfied. Then for each x̄ ∈ domφ we have the subdifferential sum rule

(4.8) ∂(φ1 + φ2)(x̄) = ∂φ1(x̄) + ∂φ2(x̄).

Proof. Given φ1 and φ2, define the set-valued mappings F1, F2 : X ⇒ R by

(4.9) Fi(x) :=
[
φi(x),∞

)
, i = 1, 2,

which have the convex graphs gph (Fi) = epi (φi), i = 1, 2. Applying Lemma 4.1 to
F1 under the qualification condition (4.7) gives us the representation

core
(
gph (F1)

)
=

{
(x, λ) ∈ X × R

∣∣ x ∈ core
(
dom (φ1)

)
, λ > φ1(x)

}
̸= ∅.

To check that the imposed qualification condition (4.7) yields the one in (4.3) of
Theorem 4.2 for the epigraphical mappings Fi from (4.9), take x ∈ core (dom (φ1))∩
dom (φ2) = core

(
dom (F1)

)
∩ dom (F2) and then get

core
(
F1(x)

)
=

(
φ1(x),∞

)
̸= ∅,

which tells us that the qualification condition (4.3) is satisfied.
Now pick any x̄ ∈ dom (φ1)∩dom (φ2) and let ȳ := φ1(x̄)+φ2(x̄). Then we have

by the subdifferential representation in (4.6) that

f ∈ D∗(F1 + F2)(x̄, ȳ)(1) whenever f ∈ ∂(φ1 + φ2)(x̄).

Applying to the latter Theorem 4.2 with ȳi = φi(x̄) as i = 1, 2 gives us

f ∈ D∗F1(x̄, ȳ1)(1) +D∗F2(x̄, ȳ2)(1) = ∂φ1(x̄) + ∂φ2(x̄),

which justifies the inclusion “⊂” in (4.8). The opposite inclusion is obvious, and
thus we are done with the proof of the corollary. □
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5. Chain rules for coderivatives and subgradients

In this section we focus on the coderivative chain rule for compositions of convex
set-valued mappings between vector spaces. It is also derived from the refined
normal core intersection rule of Theorem 3.3 and thus significantly improves the
previous result of [8]. Recall that the composition (G ◦ F ) : X ⇒ Z of set-valued
mappings F : X ⇒ Y and G : Y ⇒ Z between the corresponding vector spaces is
defined by

(G ◦ F )(x) =
⋃

y∈F (x)

G(y) :=
{
z ∈ G(y)

∣∣ y ∈ F (x)
}
, x ∈ X.

It is easy to check that G ◦F is convex provided that both F and G are convex. To
formulate the coderivative chain rule, take any z̄ ∈ (G ◦ F )(x̄) and define the set

M(x̄, z̄) := F (x̄) ∩G−1(z̄).

The following theorem provides an unimprovable coderivative chain rule for convex

set-valued compositions in the general setting of vector spaces.

Theorem 5.1 (coderivative chain rule in vector spaces). Given convex set-valued
mappings F : X ⇒ Y and G : Y ⇒ Z between vector spaces, assume that either one
of two following qualification conditions is satisfied:

(i) Graph of F is core-solid and there exists x ∈ core
(
dom (F )

)
such that

core
(
F (x)

)
∩ dom (G) ̸= ∅.

(ii) Graph of G is core-solid and there exists (x, y) ∈ X × Y such that

y ∈ F (x) ∩ core
(
dom (G)

)
and core

(
G(y)

)
̸= ∅.

Then for any (x̄, z̄) ∈ gph (G ◦ F ) and ȳ ∈ M(x̄, z̄) we have

(5.1) D∗(G ◦ F )(x̄, z̄)(h) = D∗F (x̄, ȳ) ◦D∗G(ȳ, z̄)(h) whenever h ∈ Z.

Proof. Taking any f ∈ D∗(G ◦F )(x̄, z̄)(h) and ȳ ∈ M(x̄, z̄), we get by the coderiva-
tive definition (4.2) that (f,−h) ∈ N((x̄, z̄); gph (G ◦ F )), which tells us by (3.1)
that

f(x− x̄)− h(z − z̄) ≤ 0 for all (x, z) ∈ gph (G ◦ F ).

Consider now the two convex sets in X × Y × Z defined by

(5.2) Ω1 := gph (F )× Z and Ω2 := X × gph (G)

Applying Lemma 4.1 to Ω1 from (5.2) reduces the qualification condition in (i) to

core (Ω1) = core
(
gph (F )

)
× Z

=
{
(x, y, z) ∈ X × Y × Z

∣∣ x ∈ core
(
dom (F )

)
, y ∈ core

(
F (x)

)}
,

while the qualification condition in (ii) reads by applying Lemma 4.1 to Ω2 from
(5.2) as

core (Ω2) = X × core
(
gph (G)

)
=

{
(x, y, z) ∈ X × Y × Z

∣∣ y ∈ core
(
dom (G)

)
, z ∈ core

(
G(y)

)}
.
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It follows from the above that the qualification condition in (i) ensures that core (Ω1)∩
Ω2 ̸= ∅, while the one in (ii) confirms that Ω1 ∩ core (Ω2) ̸= ∅. We also get

(f, 0,−h) ∈ N
(
(x̄, ȳ, z̄); Ω1 ∩ Ω2

)
.

Applying Theorem 3.3 to the latter inclusion tells us that

(f, 0,−h) ∈ N
(
(x̄, ȳ, z̄); Ω1 ∩ Ω2

)
= N

(
(x̄, ȳ, z̄); Ω1

)
+N

(
(x̄, ȳ, z̄); Ω2

)
.

Thus there exists g ∈ Y ′ satisfying (f, 0,−h) = (f,−g, 0) + (0, g,−h) for which

(f,−g) ∈ N
(
(x̄, ȳ); gph (F )

)
and (g,−h) ∈ N

(
(ȳ, z̄); gph (G)

)
.

This shows by the coderivative definition (4.2) that

f ∈ D∗F (x̄, ȳ)(g) and g ∈ D∗G(ȳ, z̄)(h),

which verifies the inclusion “⊂” in (5.1). The opposite inclusion is trivial. □

As in Section 4, the next result on the subdifferential chain rule is an easy conse-
quence of the corresponding chain rule for coderivatives obtained in Theorem 5.1.

Corollary 5.2 (subdifferential chain rule in vector spaces). Given a linear operator
A : X → Y and a proper convex function φ : Y → R with the core-solid epigraph,
assume that the range of A contains a point of core (dom (φ)). Picking x̄ ∈ X with
ȳ := A(x̄) ∈ dom (φ), we have the subdifferential chain rule

∂(φ ◦A)(x̄) = A∗(∂φ(ȳ)) := {
A∗g

∣∣ g ∈ ∂φ(ȳ)
}
,

where A∗ : Y ′ → X ′ is the adjoint operator A defined by

A∗g(x) := g(Ax) whenever g ∈ Y ′ and x ∈ X.

Proof. Denote G(x) := [φ(x),∞) and get by Lemma 4.1 that

core
(
gph (G)

)
=

{
(y, λ) ∈ Y × R

∣∣ y ∈ core
(
dom (φ)

)
, λ > φ(y)

}
.

Considering the composition G ◦ F with F (x) := {A(x)}, we see by the above
that the qualification condition imposed in the corollary ensures the validity of the
qualification condition assumed in (ii) of Theorem 5.1. It allows us to deduce from
Theorem 5.1 applied to this composition that

∂(φ ◦A)(x̄) = D∗(G ◦A)(1) = D∗A
(
D∗G(x̄, ȳ)(1)

)
= A∗(∂φ(ȳ)),

which therefore completes the proof of the corollary. □

6. Subgradients of marginal functions

In concluding section of the paper we obtain a precise calculation of the subgra-
dient mappings for the so-called optimal value/marginal functions defined
by

(6.1) µ(x) := inf
{
φ(x, y)

∣∣ y ∈ F (x)
}
,

where φ : X × Y → R is an extended-real-valued function, and where F : X ⇒ Y
is a set-valued mapping between vector spaces. Functions of type (6.1), which are
intrinsically nonsmooth, play a crucial role in many aspects of variational analysis,
optimization, and their applications; see, e.g., [13, 14, 21] with the references and
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commentaries therein, where the reader can find various results on upper estimates
of their subdifferentials in general nonconvex settings.

It is easy to check that the optimal value function (6.1) is convex provided that
both φ and F are convex. Convex subdifferentiation of (6.1) is significantly different
from the known developments for nonconvex marginal functions; see [15]. To the
best of our knowledge, the strongest result on calculating the convex subdifferential
of (6.1) in finite-dimensional spaces is obtained in [16, Theorem 9.1] under a certain
relative interior qualification condition. Its extension to locally convex topological
vector spaces given in [18, Theorem 8.2] requires the continuity of φ in (6.1) and
does not reduce to [15, 16] in finite dimensions. The following theorem is free of
the aforementioned continuity assumption while imposing instead a much milder
qualification condition in terms of cores of dom (φ) and gph (F ). It gives us back [16,
Theorem 9.1] when both spaces X and Y are finite-dimensional. It also extends
the very recent result of [8, Theorem 8.1] by imposing more flexible qualification
conditions.

To proceed, recall that the indicator function δΩ : X → R of a set Ω ⊂ X is
defined by δΩ(x) := 0 for x ∈ Ω and δΩ(x) := ∞ for x /∈ Ω. It is easy to check that
for any nonempty convex set Ω we have

core
(
epi (δΩ)

)
= core (Ω)× (0,∞),

and thus core
(
epi (δΩ)

)
̸= ∅ provided that Ω is core-solid. Furthermore, we get

(6.2) ∂δΩ(x̄) = N(x̄; Ω) for any x̄ ∈ Ω.

Now we are ready to derive the final result of the paper.

Theorem 6.1 (subdifferentiation of convex marginal functions). Given a convex
function φ : X×Y → R and a convex set-valued mapping F : X ⇒ Y between vector
spaces, consider the marginal function (6.1) and assume that µ(x) > −∞ for all
x ∈ X. Fix x̄ ∈ dom (µ) and assume further that the argminimum set

S(x̄) :=
{
ȳ ∈ F (x̄)

∣∣ µ(x̄) = φ(x̄, ȳ)
}

is nonempty. Then for any ȳ ∈ S(x̄) we have the equality

(6.3) ∂µ(x̄) =
⋃

(f,g)∈∂φ(x̄,ȳ)

[
f +D∗F (x̄, ȳ)(g)

]
provided that either one of two following qualification conditions is satisfied:

(6.4) core
(
epi (φ)

)
̸= ∅ and core

(
dom (φ)

)
∩ gph (F ) ≠ ∅,

(6.5) dom (φ) ∩ core
(
gph (F )

)
̸= ∅.

Proof. Let us verify the inclusion “⊂” in (6.3) while observing that the proof of the
opposite inclusion follows directly from the definitions. Pick any h ∈ ∂µ(x̄) and
ȳ ∈ S(x̄) and then consider the summation function

(6.6) Ψ(x, y) := φ(x, y) + δgph(F )(x, y) for all (x, y) ∈ X × Y.

Now we apply subdifferential sum rule from Corollary 4.3 to the summation function
in (6.6). Observe that both qualification conditions (6.4) and (6.5) ensure the
validity of the qualification condition (4.7) of Corollary 4.3: in the first case for
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φ := φ1 and δgph(F ) := φ2, and in the second case for δgph(F ) := φ1 and φ := φ2

therein. Hence we deduce from (4.8) and (6.2) that

(h, 0) ∈ ∂Ψ(x̄, ȳ) = ∂φ(x̄, ȳ) +N
(
(x̄, ȳ); gph (F )

)
.

This brings us to the relationships

(h, 0) = (f1, g1)+(f2, g2) with (f1, g1) ∈ ∂φ(x̄, ȳ) and (f2, g2) ∈ N
(
(x̄, ȳ); gph (F )

)
,

which imply in turn that g2 = −g1. It shows that (f2,−f1) ∈ N((x̄, ȳ); gph (F ))
telling us by definition (4.2) that f2 ∈ D∗F (x̄, ȳ)(g1). We get therefore that

h = f1 + f2 ∈ f1 +D∗F (x̄, ȳ)(g1),

which verifies the inclusion“⊂” in (6.3) and thus completes the proof. □
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