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affine optimal control problems of the form

(1.1) min
{
J(u) :=

∫ T

0
[w(t, x(t)) + 〈s(t, x(t)), u(t)〉] dt

}
,

subject to

(1.2) ẋ(t) = a(t, x(t)) +B(t, x(t))u(t), x(0) = x0,

(1.3) u(t) ∈ U, t ∈ [0, T ].

Here the state vector x(t) belongs to Rn, the control function u has values u(t) that
belong to a given set U in Rm for almost every (a.e.) t ∈ [0, T ]. Correspondingly,
w is a scalar function on [0, T ] × Rn, s is an m-dimensional vector function (〈·, ·〉
denotes the scalar product), a and B are vector-/matrix-valued functions with ap-
propriate dimensions. The initial state x0 and the final time T > 0 are fixed. The set
of feasible control functions u, denoted in the sequel by U , consists of all Lebesgue
measurable and bounded functions u : [0, T ] → U . Accordingly, the state trajec-
tories x, that are solutions of (1.2) for feasible controls, are absolutely continuous
functions on [0, T ].

It is well known that the Pontryagin (local) maximum principle can be written
in the form of a generalized equation

(1.4) 0 ∈ F (y),

where y = (x(·), u(·), p(·)) encapsulates the state function x(·), the control function
u(·) ∈ U , and the adjoint (co-state) function p(·), and the inclusion 0 ∈ F (y)
represents the state equation, the co-state equation, and the maximization condition
in the maximum principle (the last being the inclusion of the derivative of the
associated Hamiltonian with respect to the control in the normal cone to U at u(·)).
The detailed definition of the mapping F in (1.4), called further optimality map is
given in the next section.

In the next paragraphs we remind the definition of Sbi-MR in the form used
in [10] and [11]. Let (Y, dY ), (Z, dZ), (Z̃, dZ̃) be metric spaces, with Z̃ ⊂ Z and

dZ ≤ dZ̃ on Z̃.1 Denote by BY (ŷ; a), BZ(ẑ; b) and BZ̃(ẑ; b) the closed balls in the

metric spaces (Y, dY ), (Z, dZ) and (Z̃, dZ̃) with radius a > 0 or b > 0 centered at ŷ
and ẑ, respectively.

Given a set-valued map Φ : Y ⇒ Z, gphΦ := {(y, z) ∈ Y ×Z : z ∈ Φ(y)} denotes
the graph of Φ. The inverse map, Φ−1 : Z ⇒ Y , is the set-valued map defined as
Φ−1(z) := {y ∈ Y : z ∈ Φ(y)}.

Definition 1.1. The set-valued map Φ : Y ⇒ Z is strongly bi-metrically regular
(Sbi-MR) (with disturbance space Z̃) at ŷ ∈ Y for ẑ ∈ Z̃ with constants κ ≥ 0,
a > 0 and b > 0, if (ŷ, ẑ) ∈ graph(Φ) and the following properties are fulfilled:

(i) the map BZ̃(ẑ; b) 3 z 7→ Φ−1(z) ∩BY (ŷ; a) is single-valued;
(ii) for all z, z′ ∈ BZ̃(ẑ; b)

(1.5) dY (Φ
−1(z) ∩BY (ŷ; a),Φ

−1(z′) ∩BY (ŷ; a)) ≤ κdZ(z, z
′).

1 This inequality can be understood as dZ(z) ≤ c dZ̃(z) for every z ∈ Z̃, where c is a constant.
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We stress that the difference between this notion and the standard notion of strong
metric regularity (see e.g. [4, Chapter 3]) is that the “disturbances” z have to belong

to the smaller space, Z̃ (with the bigger distance), but the Lipschitz property in
(ii) holds with respect to the smaller distance, dZ , in the right-side of (1.5). A
detailed explanation of the reasons for the appropriateness of this definition is given
in [11, Introduction].

Sufficient conditions for more specific problems and some applications of the Sbi-
MR property are presented in [10] and [11]. The main aim of the present paper is
to obtain new, more general, sufficient conditions for Strong bi-Metric Regularity
(Sbi-MR) of the optimality map F in an appropriate space setting. A new feature of
these conditions is that they involve not only the second derivative of the associated
Hamiltonian with respect to the control, but also its first derivative. Thanks to that,
they may be also fulfilled for problems with a non-convex objective functional, which
is a new founding in the optimal control context, in general.

We present the sufficient conditions for Sbi-MR in Section 2 and give a detailed
proof in Section 3. In Section 4 we specialize these conditions to the case of affine
problems with bang-bang solutions and give an example where they apply to a
non-convex problem. As an application, in Section 5 we prove that the obtained
sufficient conditions imply uniform first order convergence of the Euler discretization
scheme when applied to affine problems that are close enough to a reference one.
This result is of importance, for example, for the justification of Model Predictive
Control methods applied to affine problems.

2. Sufficient conditions for strong bi-metric regularity

We will use the following standard notations. The euclidean norm and the scalar
product in Rn (the elements of which are regarded as column-vectors) are denoted
by | · | and 〈·, ·〉, respectively. The transpose of a matrix (or vector) E is denoted
by E⊤. For a function ψ : Rp → Rr of the variable z we denote by ψz(z) its
derivative (Jacobian), represented by an (r× p)-matrix. If r = 1, ∇zψ(z) = ψz(z)

⊤

denotes its gradient (a vector-column of dimension p). Also for r = 1, ψzz(z)
denotes the second derivative (Hessian), represented by a (p × p)-matrix. For a
function ψ : Rp+q → R of the variables (z, v), ψzv(z, v) denotes its mixed second
derivative, represented by a (p× q)-matrix. The space Lk([0, T ],Rr), with k = 1, 2
or k = ∞, consists of all (classes of equivalent) Lebesgue measurable r-dimensional
vector-functions defined on the interval [0, T ], for which the standard norm ‖ · ‖k
is finite. Often the specification ([0, T ],Rr) will be omitted in the notations. As
usual, W 1,k =W 1,k([0, T ],Rr) denotes the space of absolutely continuous functions
x : [0, T ] → Rr for which the first derivative belongs to Lk. The norm in W 1,k is
defined as ‖x‖1,k := ‖x‖k + ‖ẋ‖k. Moreover, BX(x; r) will denote the ball of radius
r centered at x in a metric space X.

Allover the paper we use the abbreviation

(2.1) f(t, x, u) = a(t, x) +B(t, x)u, g(t, x, u) = w(t, x) + 〈s(t, x), u〉.

For problem (1.1)–(1.3) we make the following assumption.
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Assumption (A1). The set U is convex and compact; the functions f : R × Rn ×
Rm → Rn and g : R × Rn × Rm → R have the form as in (2.1) and are two times
differentiable in (t, x), and the derivatives are Lipschitz continuous2.

Define the Hamiltonian associated with problem (1.1)–(1.3) as usual:

H(t, x, p, u) := g(t, x, u) + 〈p, f(t, x, u)〉, p ∈ Rn.

The local form of the Pontryagin maximum (here minimum) principle for problem
(1.1)-(1.3) can be represented by the following optimality system for (x, u) and an
absolutely continuous (here Lipschitz) function p : [0, T ] → Rn: for a.e. t ∈ [0, T ]

0 = −ẋ(t) + f(t, x(t), u(t)), x(0)− x0 = 0,(2.2)

0 = ṗ(t) +∇xH(t, x(t), p(t), u(t)), p(T ) = 0,(2.3)

0 ∈ ∇uH(t, x(t), p(t), u(t)) +NU (u(t)),(2.4)

where the normal cone NU (u) to the set U at u ∈ Rm is defined in the usual way,

NU (u) =

{
{y ∈ Rn | 〈y, v − u〉 ≤ 0 for all v ∈ U} if u ∈ U,
∅ otherwise.

Assumption (A1) implies that there exists a number M > 0 such that for any
u ∈ U the corresponding solution x of (2.2) and also the solution p of (2.3) exist on
[0, T ] and

(2.5) max{|x(t)|, |ẋ(t)|, |p(t)|, |ṗ(t)|} ≤M for a.e. t ∈ [0, T ].

In what follows, M̄ will be any number larger that M .
Let us introduce the metric spaces

Y := {(x, p, u) ∈W 1,1 ×W 1,1 × L1 : x(0) = x0, p(T ) = 0} ∩ (BW 1,∞(0; M̄))2 × U .

and

Z := L∞ × L∞ × L∞ and Z̃ := L∞ × L∞ ×W 1,∞ ⊂ Z.

The distances in these spaces are induced by norms, therefore we keep the norm-
notations: for y = (x, p, u) ∈ Y

‖y‖ := ‖x‖1,1 + ‖p‖1,1 + ‖u‖1

and for z = (ξ, π, ρ) in Z or in Z̃, respectively,

‖z‖Z := ‖ξ‖1 + ‖π‖1 + ‖ρ‖∞, ‖z‖∼ := ‖ξ‖∞ + ‖π‖∞ + ‖ρ‖1,∞.

Notice that Y is a complete metric space, thanks to the compactness of the set U .
Now, we define the set-valued mapping F : Y ⇒ Z as

(2.6) F (y) :=

 −ẋ+ f(·, x, u)
ṗ+∇xH(·, y)
∇uH(·, y)

+

 0
0

NU (u)

 ,

2The assumption of global Lipschitz continuity is made for convenience. Since the analysis in
this paper is local (in a neighborhood of a reference trajectory x̂(·) in the uniform metric), it can
be replaced with local Lipschitz continuity.
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where NU (u) is the normal cone to the set U of admissible controls at u, considered
as a subset of L∞:

NU (u) :=

{
∅ if u /∈ U
{v ∈ L∞ : v(t) ∈ NU (u(t)) for a.e. t ∈ [0, T ]} if u ∈ U .

Notice that F (Y ) ⊂ Z, and ∇uH(·, y) ∈ Z̃ thanks to the affine structure of the
problem, namely, the independence of ∇uH(·, y) of u.

With these definitions, the necessary optimality conditions (2.2)–(2.4) take the form

(2.7) F (y) 3 0,

therefore F is called optimality map associated with problem (1.1)–(1.3). The main
result in this paper is a sufficient condition for Sbi-MR of the optimality mapping
F : Y ⇒ Z with perturbation space Z̃. To do this we fix a reference solution
ŷ = (x̂, p̂, û). We mention that such always exists since on assumption (A1) problem
(1.1)–(1.3) has a solution. To shorten the notations we skip arguments with “hat”
in functions, shifting the “hat” on the top of the notation of the function, so that
f̂(t) := f(t, x̂(t), û(t)), ŝ(t) = s(t, x̂(t)), Ĥ(t) := H(t, x̂(t), û(t), p̂(t)), Ĥ(t, u) :=
H(t, x̂(t), u, p̂(t)), etc. Moreover, denote

Â(t) := fx(t,x̂(t), û(t)), B̂(t) := fu(t, x̂(t), û(t)) = B(t, x̂(t))

σ̂(t) := ∇uĤ(t) = B̂(t)⊤p̂(t) + ŝ(t).

Let us introduce the following functional of L1 3 δu 7→ Γ(δu) ∈ R:

(2.8) Γ(δu) :=

∫ T

0

[
〈Ĥxx(t)δx(t), δx(t)〉+ 2〈Ĥux(t)δx(t), δu(t)〉

]
dt,

where δx is the solution of the equation ˙δx = Âδx + B̂δu with initial condition
δx(0) = 0.

Assumption (A2). There exist numbers c0, α0 > 0 and γ0 > 0 such that∫ T

0
〈σ(t), δu(t)〉 dt+ Γ(δu) ≥ c0‖δu‖21,

for every δu = u′ − u with u′, u ∈ U ∩ BL1(û;α0), and for every function σ ∈
BW 1,∞(σ̂; γ0) ∩ (−NU (u)).

Assumption (A2) will be analyzed and discussed in details in Section 4. Now we
formulate the main theorem.

Theorem 2.1. Let Assumption (A1) be fulfilled for problem (1.1)–(1.3) and let
ŷ = (x̂, p̂, û) be a solution of the optimality system (2.7) (with F defined in (2.6))

for which Assumption (A2) is fulfilled. Let, in addition, the matrix Ĥux(t)B̂(t) be
symmetric for a.e. t ∈ [0, T ]. Then the optimality map F : Y ⇒ Z is strongly

bi-metrically regular at ŷ for zero with disturbance space Z̃ ⊂ Z.
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3. Proof of the main result

The proof of Theorem 2.1 consists of several steps.
Step 1. The following result (adapted to the present problem formulation, as-

sumptions, and notations) was proved in [11, Theorem 3.1].3

Theorem 3.1. Let the assumptions in Theorem 2.1 be satisfied. Then strong bi-
metric regularity of the set-valued map y 7→ F (y) at ŷ for 0 (in the spaces as in
Theorem 2.1) is equivalent to the strong bi-metric regularity of the map y 7→ L(y),
at ŷ for 0, where

L(y) =

 −ẋ+ f̂ + Â(x− x̂) + B̂(u− û)

ṗ+∇xĤ + Ĥxy(y − ŷ)

∇uĤ + Ĥuy(y − ŷ) +NU (u)

 .

The map L represents the partial linearization of F around ŷ = (x̂, p̂, û). Thanks

to the identity Ĥuu = 0, L maps Y to Z, and moreover, ŷ solves the inclusion
L(ŷ) 3 0.

To shorten the notations, we set for this section (skipping the dependence on t)

W := Ĥxx, S := Ĥux, A := Â = f̂x, B := B̂ = B(x̂).

We remind the already introduced notation σ̂ = ∇uĤ. Then, also having in mind
the identity Ĥuu = 0, we can recast the definition of L(y) as

L(y) =

 −ẋ+ ˙̂x+A(x− x̂) +B(u− û)

ṗ− ˙̂p+W (x− x̂) + S⊤(u− û) +A⊤(p− p̂)
σ̂ + S(x− x̂) +B⊤(p− p̂) +NU (u)

 .

Due to Assumption (A1), we have that ˙̂x, A, ˙̂p, W, σ̂ ∈ L∞, and B, S ∈W 1,∞. We
remind that according to (2.7) and (2.6), û satisfies the inclusion σ̂ +NU (û) 3 0.

Step 2. Define the map Λ : L1 × Z̃ → L∞ in the following way: for u ∈ L1 and
z = (ξ, π, ρ) ∈ Z̃,

(3.1) Λ(u, z) := σ̂ + S(x[u, z]− x̂) +B⊤(p[u, z]− p̂)− ρ,

where (x[u, z], p[u, z]) is the solution of the system

ẋ = ˙̂x+A(x− x̂) +B(u− û)− ξ, x(0) = x0,(3.2)

−ṗ = − ˙̂p+W (x− x̂) + S⊤(u− û) +A⊤(p− p̂)− π, p(T ) = 0.(3.3)

Further we skip the argument z if z = 0, so that x[u] := x[u, 0], p[u] := p[u, 0],
Λ(u) := Λ(u, 0).

Lemma 3.2. Strong bi-metric regularity of the set-valued map L at ŷ for 0 (in the
spaces as in Theorem 2.1) is equivalent to strong bi-metric regularity of the map
Λ(·, 0) +NU (·) : U ⇒ L∞ at û for zero, with disturbance space W 1,∞ ⊂ L∞.

3 A Mayer problem is considered in [11], but the result also applies to Lagrange problems after
a standard transformation. Moreover, the assumptions in [11] are somewhat weaker than (A1).
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Proof. We shall prove that the bi-metric regularity of the map Λ(·, 0)+NU (·) implies
that of L, which will actually be used later. The proof of the converse is similar
and simpler.

For any z = (ξ, π, ρ) ∈ Z̃ and u ∈ L∞, we have from (3.2) that

(3.4) ‖lx(ξ)‖1,∞ ≤ c1‖ξ‖∞, ‖lx(ξ)‖1,1 ≤ c′1‖z‖Z ,
where lx : L∞ → W 1,∞ is the linear map given by lx(ξ) := x[u, z] − x[u, 0] , and
c1 and c′1 are independent of u and z. Using this and (3.3), we obtain (also in a
standard way) that

(3.5) ‖lp(ξ, π)‖1,∞ ≤ c2(‖ξ‖∞ + ‖π‖∞), ‖lp(ξ, π)‖1,1 ≤ c′2‖z‖Z ,
where lp : L∞ × L∞ →W 1,∞ is the linear map given by lp(ξ, π) := p[u, z]− p[u, 0],
and c2 and c′2 are constants such as c1 and c′1. Notice that the second inequalities
in (3.4) and (3.5) imply that for a.e. t ∈ [0, T ]

max{|x[u, z](t)|, |ẋ[u, z](t)|, |p[u, z](t)|, |ṗ[u, z](t)|} ≤M + c′′(‖ξ‖∞ + ‖π‖∞),

where c′′ is a constant. This will be used later to ensure that the appearing triples
(u, x[u, z], p[u, z]) belong to the space Y .

We may represent

Λ(u, z) = Λ(u) +Q(z),

where

Q(z) = Slx(ξ) +B⊤lp(ξ, π)− ρ, ‖Q(z)‖1,∞ ≤ c3‖z‖∼
is a linear map and c3 is a constant.

The inclusion L(y) 3 z can be equivalently reformulated as

(3.6) x = x[u, z], p = p[u, z], Λ(u, z) +NU (u) 3 0.

In view of the obtained representations, the last relations are equivalent to

x = x[u] + lx(ξ), p = p[u] + lp(ξ, η), Λ(u) +Q(z) +NU (u) 3 0.

Having in mind the estimations for ‖lx(ξ)‖1,∞, ‖lp(ξ, π)‖1,∞ and ‖Q(z)‖1,∞, obtain-
ing Sbi-MR of L from that of Λ + NU becomes a routine task. We will sketch the
rest of the proof for completeness.

First we observe that there is a constant c4 such that ‖Q(z)‖∞ ≤ c4‖z‖Z . Let κ,
α and β be the constants in the definition of the Sbi-MR of the map Λ + NU . Fix

ᾱ = (c′1 + c′2)β̄ + α, β̄ = min
{ β
c3
,
M̄ −M

c′′

}
, κ̄ = c′1 + c′2 + c4κ.

For any z ∈ Z̃ with ‖z‖∼ ≤ β̄ we have ‖Q(z)‖1,∞ ≤ β. Then there exists a unique
solution u(z) ∈ BL1(û;α) of the inclusion Λ(u, z) + NU (u) 3 0. Moreover, for

z1, z2 ∈ Z̃ with ‖zi‖∼ ≤ β̄ we have

‖u(z1)− u(z2)‖1 ≤ κ‖Q(z1 − z2)‖∞ ≤ c4κ‖z1 − z2‖Z .
From the first two relations in (3.6) we have for x(zi) = x[u(zi), zi] and p(zi) =
p[u(zi), zi]

‖x(z1)− x(z2)‖1,1 + ‖p(z1)− p(z2)‖1,1 ≤ c′1‖z1 − z2‖Z + c′2‖z1 − z2‖Z .
Thus L is Sbi-MR at ŷ for zero with constants κ̄, ᾱ, β̄. □
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Step 3. According to Lemma 3.2, it is enough to prove Sbi-MR of Λ + NU in the
spaces specified in the formulation of the lemma. It is convenient to use the notation

〈v, u〉1 :=
∫ T

0
〈v(t), u(t)〉 dt

for the duality pairing of L1 and L∞, where v ∈ L∞ and u ∈ L1. The map
Λ : L1 → L∞ is linear and continuous, and we shall show that its derivative, Λ′,
satisfies the equality

(3.7) 〈Λ′δu, δu〉1 = Γ(δu), ∀ δu ∈ L1,

where the mapping Γ : L1 → R is defined in (2.8).4 In the notations introduced in
this section the definition of Γ reads as

(3.8) Γ(δu) = 〈Wδx, δx〉1 + 2〈Sδx, δu〉1,
where δx is the solution of ˙δx = Aδx+Bδu with δx(0) = 0. Let δp be the solution
of the equation

−δ̇p = A⊤δp+Wδx+ S⊤δu, δp(T ) = 0.

Since u 7→ Λ(u) := σ̂ + S(x[u]− x̂) +B⊤(p[u]− p̂) is linear, we deduce

(3.9) Λ′(u)δu = Sδx+B⊤δp.

Integrating by parts the expression 〈δp, ˙δx〉1 we obtain the equality

〈δp,Aδx+Bδu〉1 = 〈δp, ˙δx〉1 = −〈δx, δ̇p〉1 = 〈δx,A⊤δp+Wδx+ S⊤δu〉1.
Hence,

〈δp,Bδu〉1 = 〈δx,Wδx+ S⊤δu〉1,
〈B⊤δp, δu〉1 = 〈Wδx, δx〉1 + 〈Sδx, δu〉1,

〈Sδx, δu〉1 + 〈B⊤δp, δu〉1 = 〈Wδx, δx〉1 + 2〈Sδx, δu〉1 = Γ(δu),

which implies (3.7) in view of (3.9).
Equality (3.7) allows to reformulate the inequality in Assumption (A2) as

(3.10)

∫ T

0
〈σ(t), δu(t)〉 dt+ 〈Λ′δu, δu〉1 ≥ c0‖δu‖21

with σ and δu as in (A2).

Step 4. Next, we will prove that for every α ∈ (0, α0) (see Assumption (A2)) and
for every ∆ ∈W 1,∞ with ‖∆‖1,∞ < c0α the inclusion

(3.11) Λ(u) +NU (u) 3 ∆

has a solution ũ ∈ L1 satisfying ‖ũ− û‖1 < α. For this, we consider the inclusion

(3.12) Λ(u) +NU∩BL1 (û;α)(u) 3 ∆.

This inclusion represents the standard necessary optimality condition for the prob-
lem

min

{
J0(u) :=

∫ T

0

[1
2
〈Wx[u], x[u]〉+ 〈Sx[u], u〉+ 〈∆, u〉

]}
,

4 Similar representations are known, see e.g. in [6], but in the space L2. Here the space setting
is different and the specificity of the affine problem is essential.
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where x[u] is defined around (3.2), with the control constraints u ∈ U and u ∈
BL1(û;α). This is due to the well-known fact that Λ(u) is the derivative of J0 at
u in L1 (the proof of this fact uses a similar argument as the proof of the relation
(3.7)). Due to the weak compactness of U ∩ BL1(û;α) in L1, this problem has a
solution ũ, which then is a solution of (3.12).

Now we use the relation

(3.13) NU∩BL1 (û;α)(u) = NU (u) +NBL1 (û;α)(u).

It follows from [2, Theorem 3.1], which, formulated for the particular space setting
and sets, U ⊂ L1 and V := BL1(û;α) ⊂ L1, reads as follows: the equality (3.13)
holds, provided that the set Epi sU + Epi sV is weak∗ closed, where Epi sW is the
epigraph of sW and sW : L∞ → R is the support function to the set W ⊂ L1, that is,
sW(l) := supw∈W〈l, w〉1. The weak∗ closedness of this set is proved in Proposition
3.1, case (i), in [2], which requires (in our case) that U and the interior of BL1(û;α)
have a nonempty intersection, which is obviously fulfilled.

Due to (3.13) and (3.12), there exists ν ∈ NBL1 (û;α)(ũ) such that

ν + Λ(ũ)−∆ ∈ −NU (ũ),

hence,

〈ν, û− ũ〉1 + 〈Λ(ũ)−∆, û− ũ〉1 ≥ 0.

We have 〈ν, û− ũ〉1 ≤ 0 since û ∈ BL1(û;α). Thus

〈Λ(ũ), û− ũ〉1 − 〈∆, û− ũ〉1 ≥ 0.

Since Λ is linear and satisfies (3.7), and since Λ(û) = σ̂ in view of (3.1), we obtain
that

0 ≥ 〈Λ(û), ũ− û〉1 + 〈Λ(ũ)− Λ(û), ũ− û〉1 + 〈∆, û− ũ〉1
= 〈Λ(û), ũ− û〉1 + 〈Λ′(ũ− û), ũ− û〉1 + 〈∆, û− ũ〉1
= 〈σ̂, ũ− û〉1 + Γ(ũ− û) + 〈∆, û− ũ〉1.

Moreover, we have σ̂ ∈ −NU (û). Then Assumption (A2) in the form of (3.10)
applied for δu = ũ− û and σ = σ̂ implies that

0 ≥ c0‖ũ− û‖21 + 〈∆, û− ũ〉1.
Hence,

‖ũ− û‖1 ≤
‖∆‖∞
c0

< α.

Since ũ belongs to the interior of BL1(û;α), thus NBL1 (û;α)(ũ) = {0}, we obtain

that ν = 0, therefore ũ is a solution of the inclusion (3.11).

Step 5. First, we shall estimate ‖Λ(u1)−Λ(u2)‖1,∞ for two functions u1, u2 ∈ L1.
Denote δu = u1−u2, δx = x[u1]−x[u2], δp = p[u1]−p[u2]. Then there is a constant
c1 independent of u1 and u2 such that

‖δx‖∞ ≤ c1‖δu‖1, ‖δp‖∞ ≤ c1‖δu‖1.
Using the definition of Λ and Assumption (A1) we can estimate

‖Λ(u1)− Λ(u2)‖∞ ≤ c2‖δu‖1
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with some constant c2. Then

∥∥∥ d

dt
(Λ(u1)− Λ(u2))

∥∥∥
∞

≤ ‖S(Aδx+Bδu)−B⊤(Wδx+ S⊤δu+A⊤δp)‖∞

+ ‖Ṡδx+ Ḃ⊤δp‖∞
≤ c3‖δu‖1,

where c3 is another constant and in the last estimate we use the assumed sym-
metry of SB = ĤuxB̂. Thus

(3.14) ‖Λ(u1)− Λ(u2)‖1,∞ ≤ (c2 + c3)‖u1 − u2‖1 =: c4‖u1 − u2‖1.

Now we choose the number α in such a way that

0 < α ≤ α0, c0α ≤ α0, (c0 + c4)α ≤ γ0.

Consider two disturbances ∆1, ∆2 ∈ W 1,∞ with ‖∆i‖1,∞ < c0α, and two solutions
u1, u2 ∈ BL1(û;α) of (3.11) corresponding to ∆1 and ∆2, respectively.

Let σ := Λ(u2)−∆2, by (3.14) we have

‖σ − σ̂‖1,∞ ≤ ‖Λ(u2)− Λ(û)‖1,∞ + ‖∆2‖1,∞
≤ c4‖u2 − û‖1 + c0α

< c4α+ c0α

≤ γ0.

Moreover, we have σ = Λ(u2) − ∆2 ∈ −NU (u2) because u2 solves the variational
inequality (3.11) with ∆ = ∆2. Similarly as in Step 4 we obtain the following chain
of inequalities:

0 ≥ 〈Λ(u1)−∆1, u1 − u2〉1
= 〈Λ(u2)−∆2, u1 − u2〉1 + 〈Λ(u1)− Λ(u2), u1 − u2〉1 + 〈∆2 −∆1, u1 − u2〉1
= 〈σ, u1 − u2〉1 + 〈Λ′(u1 − u2), u1 − u2〉1 + 〈∆2 −∆1, u1 − u2〉1
= 〈σ, u1 − u2〉1 + Γ(u1 − u2) + 〈∆2 −∆1, u1 − u2〉1,

Having in mind also that ‖u2 − û‖1 < α ≤ α0, we can apply Assumption (A2) (in
the form as in (3.10)) to the latter inequality. We obtain

0 ≥ c0‖u1 − u2‖21 + 〈∆2 −∆1, u1 − u2〉1,

which implies that ‖u1 − u2‖1 ≤ 1
c0
‖∆1 −∆2‖∞. This proves the Sbi-MR property

of Λ+NU with constants κ = (c0)
−1, α, and β = c0α. The proof of Theorem 2.1 is

complete.

4. Some special cases

We begin with few comments. Assumption (A2) with the particular choice σ = σ̂,
reads as

(4.1)

∫ T

0
〈σ̂(t), δu(t)〉 dt+ Γ(δu) ≥ c0‖δu‖21.
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This inequality, required for all δu ∈ U − û, is shown in [9] to be sufficient for the
property of strong metric sub-regularity, which is substantially weaker than Sbi-MR.
Moreover, the condition5∫ T

0
〈σ̂(t), δu(t)〉 dt+ 1

2
Γ(δu) ≥ c0‖δu‖21, ∀ δu ∈ U − û, ‖δu‖1 – small enough,

is sufficient for strict local optimality of û in an L1-neighborhood. This last condition
is weaker than (4.1), as shown in [9].

Assumption (A2) is fulfillled on the following (more compact) one.

Assumption (A2’). There exist numbers c0, α0 > 0 and γ0 > 0 such that

(4.2)

∫ T

0
|〈σ(t), δu(t)〉| dt+ Γ(δu) ≥ c0‖δu‖21,

for every function σ ∈ BW 1,∞(σ̂; γ0) and for every δu ∈ U − U with ‖δu‖1 ≤ α0.

Obviously (A2’) implies (A2), since for σ ∈ −NU (u) and u′ ∈ U it holds that
〈σ(t), u′(t)− u(t)〉 ≥ 0.

Now we focus on the first-order term in (4.2) under an additional condition intro-
duced in [5] in a somewhat stronger form and for box-like sets U .

Assumption (B). The set U is a convex and compact polyhedron. Moreover, there
exist numbers κ > 0 and τ > 0 such that for every unit vector e parallel to some
edge of U and for every s ∈ [0, T ] for which 〈σ̂(s), e〉 = 0 it holds that

|〈σ̂(t), e〉| ≥ κ|t− s| t ∈ [s− τ, s+ τ ] ∩ [0, T ].

The next lemma claims that Assumption (B) remains valid for all functions σ
close enough to σ̂ in W 1,∞.

Lemma 4.1. Let assumptions (A1) and (B) be fulfilled. Then there exist numbers
κ′ > 0, τ ′ > 0 and γ′ > 0 such that for every function σ ∈ BW 1,∞(σ̂; γ′), for
every unit vector e parallel to some edge of U and for every s ∈ [0, T ] for which
〈σ(s), e〉 = 0, it holds that

|〈σ(t), e〉| ≥ κ′|t− s| t ∈ [s− τ ′, s+ τ ′] ∩ [0, T ].

Proof. The proof combines arguments from the proof of Proposition 3.4 in [11] and
the proof of Proposition 4.1, therefore we only sketch it focusing on the differences
with the proofs mentioned above.

First of all, Assumption (B) implies that the reference control û is piece-wise
constant. This follows from the fact that 〈σ̂(t), e〉 has not more than T/τ + 1 zeros
in [0, T ] and U has a finite number of edges. More details are given in the proof of
Proposition 4.1 in [9].

From the definition of σ̂, (A1) and the fact that û is a piece-wise constant func-
tion we obtain that σ̂ has a piece-wise continuous derivative. Let us fix e as in

5 The left-hand side in the next inequality is just the second order Taylor expansion of the
objective functional J(u) in (1.1).
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Assumption (B), and denote σ̂e := 〈σ̂(t), e〉. Let ŝ1, . . . , ŝk be the zeros of σ̂e in
[0, T ]. For δ > 0 define

Ω(δ) := ∪k
i=1[ŝi − δ, ŝi + δ].

Choose δ > 0 so small that δ < τ and there are no other points of discontinuity of
˙̂σ in Ω(δ) except possibly ŝ1, . . . , ŝk. Denote

˙̂σ−e (ŝi) := lim
t→ŝi−0

˙̂σ(t), ˙̂σ+e (ŝi) := lim
t→ŝi+0

˙̂σ(t), i = 1, . . . , k.

By choosing δ > 0 smaller, if needed, we may ensure that

| ˙̂σ(t)− ˙̂σ−e (ŝi)| ≤
κ

4
for t ∈ [ŝi − δ, ŝi], | ˙̂σ(t)− ˙̂σ+e (ŝi)| ≤

κ

4
for t ∈ [ŝi, ŝi + δ].

Then for every i and t ∈ [ŝi − δ, ŝi] we have from Assumption (B) that

κ|t− ŝi| ≤ |σ̂e(t)− σ̂e(ŝi)|

=
∣∣∣ ∫ t

ŝi

˙̂σe(θ) dθ
∣∣∣

≤
∫ t

ŝi

| ˙̂σ−e (ŝi)| dθ +
∫ t

ŝi

| ˙̂σ−e (ŝi)− ˙̂σe(θ)| dθ

≤ |t− ŝi| | ˙̂σ−e (ŝi)|+
κ

4
|t− ŝi|

Hence,

| ˙̂σ−e (ŝi)| ≥
3κ

4
.

Analogously we obtain the same estimate for | ˙̂σ+e (ŝi)|.
Obviously there exists η > 0 such that |σ̂e(t)| ≥ η for every t ∈ [0, T ] \ Ω(δ/2).

By choosing the number γ ∈ (0, κ/4] sufficiently small we have that for every σ ∈
BW 1,∞(σ̂; γ) the function σe = 〈σ, e〉 has no zeros in [0, T ]\Ω(δ/2). Now let us take
an arbitrary σ as in the last sentence. Let s be an arbitrary zero of σe in [0, T ].
Then there exists ŝi such that |s − ŝi| ≤ δ/2. For t ∈ [s − δ/2, s + δ/2] we can
estimate

|σe(t)| =
∣∣∣ ∫ t

s
σ̇e(θ) dθ

∣∣∣
≥

∣∣∣ ∫ t

s

˙̂σe(θ) dθ
∣∣∣− ∫ t

s
|σ̇e(θ)− ˙̂σe(θ)| dθ

∣∣∣
≥

∣∣∣ ∫ t

s

˙̂σe(θ) dθ
∣∣∣− γ|t− s|.

For the last integral we have∣∣∣ ∫ t

s

˙̂σe(θ) dθ
∣∣∣ ≥ ∣∣∣ ∫ t

s
ζ(θ) dθ

∣∣∣− ∫ t

s
| ˙̂σe(θ)− ζ(θ)| dθ,

where ζ(θ) is either ˙̂σ−e (ŝi) or
˙̂σ+e (ŝi) depending on whether θ < ŝi or θ > ŝi. Thus

we can estimate

|σe(t)| ≥
3κ

4
|t− s| − κ

4
|t− s| − γ|t− s| ≥ κ

4
|t− s|.

Thus we obtain the claim of the lemma with κ′ = κ/4, τ ′ = δ/2 and γ′ = γ. □
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Proposition 4.2. Let assumptions (A1) and (B) be fulfilled. Then there exist
numbers c0, α0 > 0 and γ0 > 0 such that

(4.3)

∫ T

0
|〈σ(t), δu(t)〉| dt ≥ c0‖δu‖21,

for every function σ ∈ BW 1,∞(σ̂; γ0) and for every δu ∈ U − U with ‖δu‖1 ≤ α0.

Having at hand Lemma 4.1, the proof repeats that of Proposition 4.1 in [9].

Remark 4.3. A more slightly precise modification of the proof of Lemma 4.1 shows
that the number κ′ can be taken as any number smaller than κ (from Assumption
(B)). Moreover, the constant c0 in Proposition 4.2 is directly related with number κ′

(thus with κ). In the simplest case of scalar control and U = [u1, u2] is straightfor-
ward. As obtained in the proof of Lemma 4.1, Assumption (B) implies in this case

that σ̂ has finite number of zeros, ŝ1, . . . , ŝk, and ˙̂σ is piece-wise continuous. If the
number Q satisfies

liminf
t→ŝi

| ˙̂σ(t)| ≥ Q 1 = 1, . . . , k,

(the liminf is taken over all t at which the derivative exists) then a simple calculation
shows that the claim of Proposition 4.2 holds with any number c0 ≤ Q/(8k(u2−u1)).

Example 1. This example shows that Sbi-MR of the optimality mapping may hold
even for problems that are non-convex, namely, the objective functional J in (1.1)
is even directionally non-convex at the optimal control û. Consider the problem

min
{
J(u) :=

∫ 1

0

[
− α

2
(x(t))2 − βx(t) + u(t)

]
dt
}
,

subject to
ẋ = u, x(0) = 0, u(t) ∈ [0, 1].

Here α and β are positive parameters satisfying β > 1, 2α ≤ β.
The solution of the adjoint equation ṗ = αx + β, p(1) = 0 is strictly monotone

increasing and the switching function, σ(t) = p(t) + 1, is positive at t = 1. This
implies that only optimal control has the structure

û(t) =

{
1 for t ∈ [0, τ ],
0 for t ∈ (τ, 1].

The corresponding solutions of the primal and the adjoint equations are

x̂(t) =

{
t for t ∈ [0, τ ],
τ for t ∈ (τ, 1],

and

p̂(t) =

{
α
2 (τ

2 + t2) + βt− ατ − β for t ∈ [0, τ ],
t(ατ + β)− ατ − β for t ∈ (τ, 1].

A simple calculation shows that for β > 1, τ is given by

τ =
−(β − α) +

√
(β − α)2 + 4α(β − 1)

2α
∈ (0, 1).
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For the corresponding switching function σ̂ = p̂ + 1 we have ˙̂σ(τ) = ατ + β > β.
Then Assumption (B) is fulfilled with κ < β. According to Remark 4.3, we have∫ 1

0
|σ̂(t)δu(t)| dt ≥ β

2
‖δu‖21 ∀ δu ∈ U − U with a sufficiently small ‖δu‖1.

Moreover,

Γ(δu) = −
∫ 1

0
α(δx(t))2 dt = −α

∫ 1

0

(∫ t

0
δu(s) ds

)2
dt ≥ −α‖δu‖21.

Thus for 2α < β Assumption (A2’) is fulfilled and the optimality mapping for the
considered problem is Sbi-MR at (x̂, û, p̂) for zero. On the other hand, considering
again the expression for the second variation Γ, we see that Γ(δu) < 0, except some
specially constructed control variations δu. Thus the objective functional J(u) in
this example is not convex even directionally at the solution point û.

5. An application: uniform convergence of the Euler discretization

In this section we prove that the sufficient conditions for Sbi-MR given in Theorem
2.1 imply a property that can be called uniform strong sub-regularity concerning a
family of optimal control problems “neighboring” a given reference problem. This
property is shown to imply a uniform error estimate for the accuracy of the Euler
discretization scheme, applied to any of the problems of the family.

We consider again the reference problem (1.1)-(1.3) together with the fixed so-
lution (x̂, p̂, û) of its optimality system (2.2)–(2.4). The assumptions in Theorem
2.1 will hold in this section, with the additional assumption that f and g are time-
invariant.

Together with the reference problem, we consider a family of problems of the
same kind, each defined by a pair of time-invariant functions π := (f̃ , g̃) satisfying

Assumption (A1) (with f and g replaced with f̃ and g̃). Any such pair will be called
admissible, and (Pπ) will denote the problem corresponding to the pair π, that is,
the problem

(5.1) min
u∈U

{∫ T

0
g̃(x(t), u(t)) dt

}
subject to

(5.2) ẋ(t) = f̃(x(t), u(t)), x(0) = x0.

Due to relation (2.5), we restrict our consideration to admissible pairs π defined on
the set D := BRn(0, M̄)× U . Given a positive number ρ, we denote by Hρ the set

of all admissible pairs π = (f̃ , g̃) such that

(5.3) ‖f̃ − f‖1,∞ + ‖g̃ − g‖1,∞ ≤ ρ,

where the W 1,∞-norms are taken for functions defined on the set D.
For a given π = (f̃ , g̃) ∈ Hρ, we consider the mapping Φπ : Y → Z defined by

(5.4) Φπ(x, p, u) =

 ẋ− f̃(x, u)

ṗ+∇xH̃(x, p, u)

∇uH̃(x, p, u) +NU (u)
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where H̃ is the Hamiltonian corresponding to the pair π, and where as before
NU (u) ⊂ L∞ is the normal cone to the set U of admissible controls at u. The
following lemma is technical.

Lemma 5.1. Let π = (f̃ , g̃) belong to Hρ and φπ : Y → Z be defined as

(5.5) φπ(x, p, u) =

 φ1
π(x, p, u)

φ2
π(x, p, u)

φ3
π(x, p, u)

 :=

 f(x, u)− f̃(x, u)

∇xH̃(x, p, u)−∇xH(x, p, u)

∇uH̃(x, p, u)−∇uH(x, p, u)

 .

There exists a positive constant c such that

(5.6) dZ(φπ(y), 0) ≤ cρ ∀y ∈ Y.

Proof. Let y = (x, p, u) ∈ Y . We estimate each one of the components of φπ(y).
First,

‖φ1
π(y)‖1 = ‖f(x, u)− f̃(x, u)‖1 ≤ Tρ.

In a similar way,

‖φ2
π(y)‖1 = ‖∇xH̃(x, p, u)−∇xH(x, p, u)‖1

≤ ‖f̃x − fx‖1‖p‖∞ + ‖g̃x − gx‖1
≤ (M̄ + 1)Tρ.

Analogously,
‖φ3

π(y)‖∞ ≤ (M̄ + 1)ρ.

The result follows. □
We remind the notion of Strong Metric sub-Regularity (SMsR) for a set-valued

mapping Φ : Y → Z. We make use of this notion in the following results.

Definition 5.2. A set valued mapping Φ : Y → Z is Strongly Metrically sub-
Regular (SMsR) at y∗ for zero if 0 ∈ Φ(y∗) and there exist a, b > 0 and κ > 0 such
that for any z ∈ BZ(0, b) and any solution y ∈ BY (y

∗, a) of the inclusion z ∈ Φ(y)
it holds that dY (y, y

∗) ≤ κdZ(z, 0). We call a, b and κ the parameters of SMsR.

According to Theorem 3.1 in [9], Assumption (A2) implies that the optimality
map F in (2.6) is SMsR at ŷ for zero (see Section 4). We fix its parameters a, b > 0
and κ > 0 of SMsR.

Proposition 5.3. Let π belong to Hρ and y∗ ∈ BY (ŷ, a) be a solution of problem
(Pπ). There exists a positive constant κ′ such that

(5.7) dY (ŷ, y
∗) ≤ κ′ρ,

for all sufficiently small ρ.

Proof. We can write Φπ = φπ + F , where φπ is the map (5.5) in Lemma 5.1 and
F is the optimality mapping (2.6). Let c > 0 be the constant in that lemma, so
that dZ(φπ(y), 0) ≤ cρ for all y ∈ Y . We can choose ρ small enough to ensure
φπ(y) ∈ BZ(0, b) for all y ∈ Y . Since y∗ is a solution of problem (Pπ), the inclusion
0 ∈ φπ(y

∗) + F (y∗) is satisfied. By SMsR, we have the desired inequality with
κ′ := cκ. □
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Analogously as we defined the functional Γ; given a π ∈ H and a reference solution
y∗ of problem (Pπ), we consider the functional Γπ : L1 → R defined in terms of π
and y∗ as in (2.8). Explicitly,

Γπ(δu) =

∫ T

0

[
〈H̃xx(y

∗(t))δx(t), δx(t)〉+ 2〈 H̃ux(y
∗(t))δx(t), δu(t)〉

]
dt,

where δx is the solution of the equation ˙δx(t) = f̃x(x
∗(t), u∗(t))δx(t) + f̃u(x

∗(t),
u∗(t))δu(t) with initial condition δx(0) = 0.

The following lemma establishes an estimation involving the functionals Γπ and
Γ.

Lemma 5.4. Let π belong to Hρ and y∗ ∈ BY (ŷ, a) be a solution of problem (Pπ).
There exists a constant η > 0 such that

|Γ(v − u∗)− Γπ(v − u∗)| ≤ η ρ‖v − u∗‖21 ∀v ∈ U ,
for all sufficiently small ρ.

Proof. Using Proposition 5.3 and the Lipschitz continuity of the functions involved,
we can find positive constants cw and cs such that

(5.8) ‖Ĥxx − H̃∗
xx‖1 ≤ cwρ,

and

(5.9) ‖Ĥux − H̃∗
ux‖∞ ≤ csρ.

Let v ∈ U and v′ = v − u∗, we denote by δx̂ and δx∗ the solutions of

(5.10) ẋ = Âx+ B̂v′, x(0) = 0, ẋ = Ã∗x+ B̃∗v′, x(0) = 0,

respectively. There exist positive constants d1 and d2 such that

(5.11) max {‖δx̂‖∞, ‖δx∗‖∞} ≤ d1‖v′‖1,
and

(5.12) ‖δx̂− δx∗‖∞ ≤ d2ρ‖v′‖1.
Now,

|Γ(v′)− Γπ(v
′)| ≤

∣∣∣∣∫ T

0

[
〈 Ĥxxδx̂, δx̂〉 − 〈 H̃∗

xxδx
∗, δx∗〉

]∣∣∣∣
+ 2

∣∣∣∣∫ T

0

[
〈 Ĥuxδx̂− H̃∗

uxδx
∗, v′〉

]∣∣∣∣
≤

∫ T

0
|〈 Ĥxxδx̂, δx̂− δx∗〉|+

∫ T

0
|〈 Ĥxxδx̂− H̃∗

xxδx
∗, δx∗〉|

+ 2

∫ T

0
|〈 Ĥuxδx̂− H̃∗

uxδx
∗, v′〉|

≤ ‖Ĥxxδx̂‖1‖δx̂− δx∗‖∞ +
(
‖Ĥxx(δx̂− δx∗)‖1

+ ‖(Ĥxx − H̃∗
xx)δx

∗‖1
)
‖δx∗‖∞

+
(
‖Ĥux(δx̂− δx∗)‖∞ + ‖(Ĥux − H̃∗

ux)δx
∗‖∞

)
‖v′‖1.
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Taking (5.8)-(5.12) into account, the result follows. □

Theorem 5.5. There exist ζ, ã, b̃ > 0 and κ̃ > 0 such that if π ∈ Hζ and y∗ ∈
BY (ŷ, a) is a solution for problem (Pπ), then the map Φπ is SMsR at y∗ for zero

with parameters ã, b̃, κ̃.

Proof. Let c0, α0 > 0 and γ0 > 0 be the numbers in Assumption (A2). If y∗

is a solution for problem (Pπ), we have 0 ∈ Φπ(y
∗). By Proposition 5.3, there

exists ζ > 0 such that for any π ∈ Hζ , dY (ŷ, y
∗) < κ′ζ for some constant κ′ > 0.

We consider ζ small enough to guarantee ‖σ̂ − σ̃∗‖1,∞ ≤ γ0 (in the estimation of

‖ ˙̂σ − ˙̃σ∗‖∞ we use the symmetry of ĤuxB̂ similarly as in the estimation before
(3.14)) and ‖û− u∗‖1 < α0/2. Let α̃0 := α0/2, so BL1(u∗; α̃0) ⊂ BL1(û;α0).

By Assumption (A2),

(5.13)

∫ T

0
〈 σ̃∗, v − u∗〉+ Γ(v − u∗) ≥ c0‖v − u∗‖21 ∀v ∈ U ∩BL1(u∗; α̃0),

or

∫ T

0
〈 σ̃∗, v − u∗〉+ Γπ(v − u∗) ≥ c0‖v − u∗‖21 +

[
Γπ(v − u∗)− Γ(v − u∗)

]
,

for all v ∈ U ∩BL1(u∗; α̃0). Taking into account Lemma 5.4, we can choose ζ smaller
if needed to ensure

Γπ(v − u∗)− Γ(v − u∗) ≥ −c0
2
‖v − u∗‖21 ∀v ∈ U ∩BL1(u∗; α̃0).

Thus,

(5.14)

∫ T

0
〈σ∗, v − u∗〉+ Γπ(v − u∗) ≥ c0

2
‖v − u∗‖21 ∀v ∈ U ∩BL1(u∗; α̃0).

Let L be a bound for the Lipschitz constants of f, g and H their first derivatives
in x, and Hxu,Hup. It is easy to see that L̃ := L + 2(1 + M̄)ζ is a bound for the

Lipschitz constants of f̃ , g̃ and H̃, their first derivatives in x, and H̃xu, H̃up for all

π ∈ Hζ . Analogously, we can find a bound M̃ , depending on ζ and M̄ , for the

functions f̃ , H̃ and their derivatives (see Remark 2.1 in [9]). Finally, (5.14) implies
that the hypotheses of Theorem 3.1 in [9] are fulfilled. We conclude that Φπ is
SMsR at y∗ for zero. According to that theorem, the parameters of SMsR can be
chosen as depending only on M̃, T, c0 and L̃. This completes the proof. □

From now on, we only consider elements π ∈ Hζ , since the latter theorem ensures
that each map Φπ is SMsR at a solution y∗ ∈ BY (ŷ, a) for zero. This automatically
ensures that y∗ is the unique local solution in BY (ŷ, a) of the inclusion 0 ∈ Φπ(y).

Let {tn}Nn=0 be a grid on [0, T ] with equally spaced nodes and a step size h, that

is, tk = kT/N for i = 0, . . . , N . Given a π ∈ Hζ , the discrete time problem (Ph
π )

obtained by the Euler discretization is

(5.15) min
u∈UN

[
h

N−1∑
i=0

g̃(xi, ui)

]
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subject to

(5.16) xi+1 = xi + hf̃(xi, ui), x0 = x0.

The local form of the discrete time minimum principle implies that for any locally
optimal solution (x, u) of problem (Ph

π ) there exists a vector p = (p0, . . . , pN ) such
that

xi+1 = xi + hf̃(xi, ui), x0 = x0,(5.17)

λi = λi+1 + h∇xH̃(xi, ui, pi+1), pN = 0,(5.18)

0 ∈ ∇uH̃(xi, ui, pi+1) +NU (ui),(5.19)

where i runs between 0 and N−1. Let (xh, uh) be a solution of problem (Ph
π ) and p

h

the corresponding co-state vector, so that yh = (xh, ph, uh) satisfies (5.17)-(5.19).
In order to compare this solution with the reference solution of y∗ = (x∗, p∗, u∗)
of the continuous-time problem (Pπ), we embed the sequence (xh, ph, uh) into the
space W 1,1 ×W 1,1 × L1 considering yh = (xh, ph, uh) defined by

(5.20) xh(t) := xhi +
t− ti
h

(xhi+1−xhi ), uh(t) := uhi , ph(t) := phi +
t− ti
h

(phi+1−phi ),

for t ∈ [ti, ti+1), i = 0, . . . , N − 1.

We need the following technical assumption to apply results in [9]. It is a crucial
assumption, at least because it may happen that yh is close to some other local
solution of the continuous-time problem, and we have to eliminate this possibility.

Assumption (C1). Let π ∈ Hζ . We assume that problem (Pπ) has a solution y∗ in

BY (ŷ, a). Moreover, the embedded solution yh in (5.20) of problem (Ph
π ) belongs to

BY (y
∗, ã) for all sufficiently small h.

The following theorem is a direct consequence of Theorem 5.5 and Theorem 5.1
in [9].

Theorem 5.6. There exists a positive constant C such that for all π ∈ Hζ for
which Assumption (C1) holds, the estimate

(5.21) ‖xh − x∗‖1,1 + ‖ph − p∗‖1,1 + ‖uh − u∗‖1 ≤ Ch

holds for all sufficiently small h.

Proof. By Theorem 5.5, the parameters ã, b̃, κ̃ of SMsR of Φπ at y∗ for zero are the
same for all π ∈ Hζ satisfying Assumption (C1).

Let π ∈ Hζ . In order to make use of the SMsR property of the map Φπ, we have
to estimate the residuals

∆1 := ẋh − f̃(xh, uh),

∆2 := ṗh +∇xH̃(xh, ph, uh),

∆3 := ∇uH̃(xhi , p
h
i , u

h
i )−∇uH̃(xh, ph, uh), t ∈ [ti, ti+1), i = 0, . . . , N − 1.

Repeating the calculations in the proof of Theorem [9, Theorem 5.1], we obtain

(5.22) max {‖∆1‖1, ‖∆2‖1, ‖∆3‖∞} ≤ max {1, T} L̃(1 + 2M̃)h,
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where L̃, M̃ are the numbers in the proof of Theorem 5.5. We can choose h0 > 0
depending on L̃, M̃ , T and b so that ‖∆1‖1+‖∆2‖1+‖∆3‖∞ ≤ b for all h ≤ h0. The

claim follows from the SMsR property of Φπ with C := 3κ(1+2M̃)L̃max {1, T}. The
proof is complete since this holds for any arbitrary π ∈ Hζ satisfying Assumption
(C1). □
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