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Although the results of this paper are new, the main idea goes back to the works
of [15] and [14]. They showed convergence results for non-cooperative Bayesian
Nash equilibrium. [16] and [22] established the convergence of private core in my-
opic and non-myopic setting respectively. However, in those papers game theoretic
solution concepts were considered which are free of prices. The introduction of
prices complicates the analysis considerably as the use of the weak star topology
on the price space plays an important role. It should be also noted that in order to
make sure that bilinear form is also jointly continuous new arguments are needed
that are far from trivial.

The paper proceeds as follows. In the next section some notation and mathemat-
ical preliminaries are introduced. In section 3 the model and the main definition
are presented. Section 4 discusses the dynamic and the idea of learning. Section
5 formally introduces the limit full information economy. Section 6 contains two
examples that examine the learning process we consider in this paper. Section 7
provides conditions under which a sequence of Walrasian equilibrium allocations
converges to an equilibrium in the limit full information economy. Finally section
8 shows that any Walrasian equilibrium in the limit full information economy can
be reached as the limit of an approximate sequence of Walrasian equilibria.

2. Notation and mathematical preliminaries

Rn denotes the n-fold Cartesian product of the set of real numbers R.
2A denotes the set of all subsets of the set A.
∅ denotes the empty set.
\ denotes the set of theoretic subtraction.
If A ⊆ Y , where Y is a Banach space, clA denotes the norm closure of A. An orderd
vector space Y is a real vector space with an order relation ≥ that is compatible with
the algebraic structure of Y in the sense that it satisfies the following two properties:
(1) x ≥ y =⇒ x+ z ≥ y + z for each z ∈ Y ; and (2) x ≥ y =⇒ αx ≥ αy for each
α ≥ 0. In an ordered vector space Y the set {x ∈ Y : x ≥ 0} is called positive cone
of Y and is denoted by Y+.
If Y is a linear topological space, its dual is the space Y ∗ of all continuous linear
functionals on Y , and if p ∈ Y ∗ and x ∈ Y the value of p at x is denoted by p ·x ∈ R.
Let X and Y be two sets. The graph of the correspondence ϕ : X → 2Y is denoted
by Gϕ = {(x, y) ∈ X × Y : y ∈ ϕ(x)}. Let (Ω,F , µ) be a complete, finite measure

space and Y be a separable Banach space. The correspondence ϕ : Ω → 2Y is said
be have a measurable graph if Gϕ ∈ F⊗B(Y ), where B(Y ) denotes the Borel σ-field
on Y and ⊗ denotes the product σ-field.
Let (Ω,F , µ) be a finite measure space and Y be a Banach space. Following [7],
the function f : Ω → Y is called simple if there exist y1, y2, . . . , yn in Y and
E1, E2, . . . , En in F such that

f =
n∑

i=1

yiχEi ,

where χEi(ω) = 1 if ω ∈ Ei and χEi(ω) = 0 if ω /∈ Ei. A function f : Ω → Y is
called F-measurable if there exists a sequence of simple functions fn : Ω → Y such
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that

lim
n→+∞

‖fn(ω)− f(ω)‖ = 0 for µ− a.e.ω.

A function f : Ω → Y is called weakly measurable if for each y∗ ∈ Y ∗ the numerical
function y∗ · f is measurable.

Pettis’s Measurability Theorem: A function f : Ω → Y is measurable if and
only if

(i) f is µ-essentially separable valued, i.e., there exists E ∈ F with µ(E) = 0
and such that f(Ω \ E) is a (norm) separable subset of Y , and

(ii) f is weakly measurable.

An F-measurable function f : Ω → Y is said to be Bochner integrable if there exists
a sequence of simple function {fn : n = 1, 2, . . .} such that

lim
n→+∞

∫
ω∈Ω

‖fn(ω)− f(ω)‖dµ(ω) = 0.

In this case, for each E ∈ F , we define the integral of f , denoted by
∫
E f(ω)dµ(ω),

as ∫
E
f(ω)dµ(ω) = lim

n→+∞

∫
E
fn(ω)dµ(ω).

It is known (see Theorem 2 p. 45 in [7]) that if f : Ω → Y is an F-measurable
function, then f is Bochner integrable if and only if∫

Ω
‖f(ω)‖dµ(ω) < ∞.

For ≤ p < ∞, Lp(µ, Y ) stands for the space of equivalence classes of Bochner
integrable function f : Ω → Y such that

‖f‖p =
(∫

Ω
‖f‖pY dµ

)1/p

< ∞.

Normed by the functional ‖ · ‖ above, Lp(µ, Y ) becomes a Banach space (see [7]
p. 50). L∞(µ, Y ) stands for the space of equivalence classes of essentially bounded
Bochner integrable function f : Ω → Y . Normed by the functional ‖ · ‖∞ defined by

‖f‖∞ = ess sup‖f‖Y ,
L∞(µ, Y ) is a Banach space. The simbol Lp(µ) with 1 ≤ p ≤ ∞ denoted the space
Lp(µ, Y ) with Y = R. A Banach space Y has the Radon-Nikodym property (RNP)
with respect to the measure space (Ω,F , µ) if for each ν-continuous vector measure
G : F → Y of bounded variation, there exists some g ∈ L1(µ, Y ) such that for all
E ∈ F ,

G(E) =

∫
E
g(ω)dν(ω).

It is known that (Lp(µ, Y ))∗ = Lq(µ, Y
∗), where

1

p
+

1

q
= 1 and 1 ≤ p < ∞, if and

only if Y ∗, the norm dual of Y , has the RNP with respect to (Ω,F , µ) (see Theorem
1 p. 98 in [7]). In particular, (L1(µ, Y ))∗ = L∞(µ, Y ∗) iff Y ∗ has the RNP.
A correspondence ϕ : Ω → 2Y is said to be integrably bounded if there exists a
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function h ∈ L1(µ) such that sup{‖y‖ : y ∈ ϕ(ω)} ≤ h(ω) for µ− a.e.ω.
Below we state some basic theorems that will be useful in this paper.

Aumann measurable selection theorem: Let (Ω,F , µ) be a complete finite
measure space, Y be a complete, separable metric space and ϕ : Ω → 2Y be a
nonempty valued correspondence with a measurable graph. Then, ϕ admits a mea-
surable selection, i.e., there exists a measurable function f : Ω → Y such that
f(ω) ∈ ϕ(ω) µ-a.e..

Eberlein-Smulian theorem: In the weak topology on a normed space, compact-
ness and sequential compactness coincide. That is, a subset A of a normed space
X is weakly compact if and only if every sequence in A has a weakly convergent
subsequence in A.

James’ theorem: A nonempty weakly closed bounded subset of a Banach space is
weakly compact if and only if every continuous linear functional attains a maximum
on the set.

Alaoglu’s theorem: The closed unit ball of the norm dual of a normed space is
weak* compact.

Dominated Convergence Theorem: If fn : Ω → Y (n = 1, 2, . . .) is a sequence
of Bochner integrable functions such that for µ-a.e. ω,

lim
n→+∞

fn(ω) = f(ω) and ‖fn(ω)‖ ≤ g(ω),

where g : Ω → R is an integrable function, then f is Bochner integrable and

lim
n→+∞

∫
ω∈Ω

‖fn(ω)− f(ω)‖dµ(ω) = 0.

Let (Ω,F , µ) be a measure space and F1, F2 be two σ-fields on Ω. F1 is finer than
F2 and F2 is coarser than F1 if F2 ⊆ F1. The join of F1 and F2, denoted by
F1 ∨F2, is the smallest σ-field containing both F1 and F2. The meet of F1 and F2,
denoted by F1 ∧ F2, is the largest σ-field contained in both F1 and F2.
Let B be a sub-σ-field of F and f ∈ L1(Ω, Y ). An element g of L1(µ, Y ) is called
conditional expectation of f relative to B if g is B-measurable and∫

E
gdµ =

∫
E
fdµ for all E ∈ B.

In this case g is denoted by E[f |B] (see Definition 1 p. 121 in [7]). Moreover,
E[f |B] exists for every f ∈ L1(µ, Y ) because if f ∈ Lp(µ, Y ), with 1 ≤ p < ∞,
then ‖E[f |B]‖p ≤ ‖f‖p. Consequently E[·|B] is a linear contractive projection on
Lp(µ, Y ), 1 ≤ p < ∞ (see Theorem 4 p. 123 in [7]). Notice that if f is B-
measurable, then E[f |B] = f . Moreover, if B1 ⊆ B2 ⊆ F , then E[E[f |B1]|B2] =
E[f |B1] and E[E[f |B2]|B1] = E[f |B1], that is the smaller σ-field wins. This prop-
erty is known as the tower property.
A family of sub-σ-fields (Bt, t ∈ T ) is defined to be a filtration if Bt ⊆ Bs whenever
t ≤ s in T . A net (ft, t ∈ T ) in Lp(µ, Y ), with 1 ≤ p < ∞, over the same directed
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set T , is a martingale if E[ft|Bs] = fs for all t ≥ s (see Definition 5 p. 123 in [7]).

Martingale convergence theorem: Amartingale (ft, Bt, t ∈ T ) in Lp(µ, Y ), with
1 ≤ p < ∞, is convergent in Lp(µ, Y )-norm if and only if there exists f ∈ Lp(µ, Y )
such that ft = E[f |Bt] for all t ∈ T (see Corollary 2 p. 126 in [7]). Furtheremore, if
a martingale (ft, Bt, t ∈ T ) converges in the L1(µ, Y )-norm to f ∈ L1(µ, Y ), then it
also converges almost everywhere, i.e., limt ft(ω) = f(ω) for µ-a.e.ω (see Theorem
8 p.129 in [7]).

3. Asymmetric information economy

Let (Ω,F , µ) be a complete, finite, separable measure space, where Ω is the set
of states of nature and F is the σ-field of all the events. Let Y be an ordered
separable Banach space whose dual Y ∗ has the RNP and whose positive cone Y+
has non-empty interior. Let I be a finite set of agents.
Each agent i ∈ I is characterized by

(1) Xi : Ω → 2Y+ , where Xi(ω) is the consumption set at state ω.
(2) e(i, ·) : Ω → Y+ is the initial endowment.
(3) Fi is a sub-σ-field of F denoting the private information.
(4) Pi : LXi → 2LXi is the (strict) preference correspondence where LXi is the

set of integrable selections of Xi, that is LXi = {x ∈ L1(µ, Y+) : x(ω) ∈
Xi(ω) µ.a.e.ω}. We call LXi the set of random commodity bundles of agent
i. For each i ∈ I and each x ∈ LXi , x /∈ Pi(x) then Pi(x) is interpreted as
the set of random commodity bundles strictly preferred by i to x.

We denote by LFi
Xi

is the set of integrable selections of Xi compatible with the
private information Fi, that is

LFi
Xi

:= {x ∈ LXi : x(·) isFi −measurable}.

An asymmetric information economy E is the collection

E = {(Ω,F , µ);Y ; (Xi, e(i, ·),Fi, Pi)i∈I}.

An allocation x for the economy E is a function x : I × Ω → Y+ such that x(i, ·) ∈
LFi
Xi

for all i ∈ I. We assume that for each i ∈ I, e(i, ·) ∈ LFi
Xi
. Denoted by

LX =
∏

i∈I L
Fi
Xi
, an allocation x can be viewed as an element of LX . An allocation

x is said to be feasible if∑
i∈I

x(i, ω) =
∑
i∈I

e(i, ω) forµ− a.e.ω.

We denote by LP := {p ∈ L∞(µ, Y ∗) : ||p||∞ ≤ 1} the price space. Remember
that L∞(µ, Y ∗) = (L1(µ, Y ))∗ whenever Y ∗ (the norm dual of Y ) has the Radom-
Nikodym property. Notice that prices are not required to be non negative because,
as shown by [8], a Walrasian expectations equilibrium with exact feasibility may
not exist with positive prices (see also [3]). The couple < L1(µ, Y ), L∞(µ, Y ∗) > is
called commodity-price duality. Given a price system p ∈ LP , the value of a random
commodity bundle x ∈ LXi is denoted by p · x, where p · x =

∫
ω∈Ω p(ω) · x(ω)dµ(ω).
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Assumption 3.1. We assume that any sub-σ-field G of F (i.e. G ⊆ F) is generated
by a finite or countable partition of Ω, denoted by ΠG. Moreover, for each ω ∈ Ω,
we denote by ΠG(ω) the unique element of ΠG containing ω.

Definition 3.2. An allocation x ∈ LX is a Walrasian expectations equilibrium
(WEE) allocation if there exists a price p ∈ LP such that p 6= 0 and

(i)
∑

i∈I x(i, ω) =
∑

i∈I e(i, ω) for µ− a.e.ω
(ii) p · x(i, ·) ≤ p · e(i, ·) for all i ∈ I
(iii) yi ∈ Pi(x(i, ·)) ⇒ p · yi > p · e(i, ·).

The pair (x, p) is called Walrasian expectations equilibrium (WEE) and we denote
by W (E) the set of all Walrasian expectations equilibrium (WEE) allocations.

Remark 3.3. Observe that if the Fi-measurability assumption is omitted, then the
definition of the Walrasian expectations equilibrium reduces to the state contingent
model of [4]. Recall that there is no asymmetric information in the state contingent
model of [4], and therefore no incentives to misreport the information arise. This
state contingent model has a two period interpretation, i.e., in the first period
agents make contracts contingent on the realized state of nature in period two.
For this model to make sense one has to assume that once the state of nature is
realized an exogenous enforcer (Government or Court) makes sure that all deliveries
are executed. The lack of an exogenous enforcer, may lead people to renege ex-
post. The assumption of the private information measurability of allocations in the
definition 3.2 not only introduces asymmetric information on the [4] state contingent
model, since agents make decisions based on their own private information, but also
results in allocations that they are in the private core ( [23]) and therefore ex-post
coalitional incentive compatible, i.e., these contracts are private efficient, incentive
compatible and hence executable, (see [ [20], section 4], for a complete discussion of
those issues). Obviously, the WEE is an ex-ante concept as agents maximize before
the state of nature is realized and there is no signaling.

4. Learning process

Let T = {1, 2, . . .} be the discrete set of time horizon. For each t ∈ T , let E t be an
asymmetric information economy at time t with initial endowment et. At beginning
t = 1, the information of each individual i is given by σ-field generated by his random
initial endowment and his random strategy set, that is F1

i = σ(e1(i, ·), Xi). This
means that e1(i, ·) is F1

i -measurable and the graph of Xi, i.e. GrXi = {(ω, x) ∈
Ω × Y+ : x ∈ Xi(ω)} is an element of F1

i ⊗ B(Y ), where B(Y ) denotes the Borel
σ-algebra on Y and ⊗ denotes the product σ-algebra. At time t, there is additional
information available to agent i acquired by observing past WEE equilibria. We
can express each agent’s private information recursively by

F t+1
i = F t

i ∨ σ(xt, pt),

where σ(xt, pt) is the information that the WEE equilibrium generates at period
t, i.e. the smallest σ-field for which the equilibrium allocation and the equilibrium
price at period t are measurable, and F t

i ∨ σ(xt, pt) is the join (i.e., the smallest
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σ-field containing F t
i and σ(xt, pt)). Thus, for all i ∈ I,

if t = 1 then, F1
i = σ(e1(i, ·), Xi)

if t = 2 then, F2
i = F1

i ∨ σ(x1, p1)

if t = 3 then, F3
i = F2

i ∨ σ(x2, p2)

= F1
i ∨ σ(x1, p1) ∨ σ(x2, p2)

...

Therefore, the private information of agent i at time t is given by

F t
i = σ(e1(i, ·), Xi, (x

t−1, pt−1), (xt−2, pt−2) . . . , (xt−(t−1), pt−(t−1))) =

= F1
i ∨

(
t−1∨
k=1

σ(xk, pk)

)
,

where (xt−1, pt−1), (xt−2, pt−2) . . . , (xt−(t−1), pt−(t−1)) are past WEE equilibria. Clearly,
for each agent i and each time period t we have

F t
i ⊆ F t+1

i ⊆ F t+2
i ⊆ · · ·

Then the family of σ-field {F t
i }t∈T constitutes a filtration being F t

i ⊆ Fs
i whenever

t ≤ s.
The above expression represents a learning process for agent i and it generates a
sequence of asymmetric information exchange economies

E t = {(Ω,F , µ);Y ; (Xi, e
t(i, ·),F t

i , Pi) : i ∈ I},

where et(i, ·) ∈ L
Ft

i
Xi

= {x ∈ LXi : x(·) isF t
i − measurable} and Lt

X =
∏

i∈I L
Ft

i
Xi

denotes the set of allocations in E t.
Our framework is not a dynamic model because we repeat the economy over time
allowing each agent to refine his own private information. However, note that agents’
initial endowment varies over time and satisfies the private information measurablity
condition in each period. This includes as a particular case the situation in which
the initial endowment remains unchanged, i.e. et(i, ·) = e1(i, ·) for all i ∈ I and all
t ∈ T , as well as the case in which the initial endowment at time t is the equilibrium
allocation at the previous period xt−1. On the other hand, the (strict) preference
relation Pi as well as the random consumption set Xi do not change.
Notice also that at time of contracting agents do not consider the entire horizon,
but only the current period. Obviously, since the private information set of each
agent becomes finer over time, the information gathered at a given time t will affect
the outcome in periods t+1, t+2, . . .. Furthermore notice that for each agent i ∈ I
and each time t ∈ T ,

F t
i = F1

i ∨

(
t−1∨
k=1

σ(xk, pk)

)
,
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that is for all i and for all t, F t
i = F1

i ∨Gt, where for all t ∈ T , Gt =
∨t−1

k=1 σ(x
k, pk)

is the information generated by all past WEE equilibria until time t.

Thus, the information of each player i, after t periods, has two components. The
former is given by his initial private information F1

i which contributes to the asym-
metric part and the latter is given by the information generated by the past period
WEE equilibria which creates the common part of information since all agents see
the same outcome in each period. In the limit economy, the private information of
each agent i, F∗

i , is the initial private information information of i, F1
i , pooled the

information generated by all past period WEE equilibria, that is

F∗
i = F1

i ∨

( ∞∨
k=1

σ(xk, pk)

)
= F1

i ∨G∞.

Notice that for each agent i, the limit information F∗
i is also given by the pooled

information of i over the entire horizon, i.e., F∗
i =

∨
t∈T F t

i .

5. Limit full information economy

We define the limit full information economy as follows:

E∗ = {(Ω,F , µ);Y ; (Xi, e
∗(i, ·),F∗

i , Pi) : i ∈ I}
where, (Ω,F , µ), Y , Xi and Pi are defined as in section 3, whereas the information
of each agent i is given by the pooled information of i over the entire horizon, i.e.,

F∗
i =

∨
t∈T

F t
i for all i ∈ I.

F∗
i is all the information that agent i can learn over the entire horizon. For this

reason we call E∗ the limit full information economy .
For each i ∈ I, consistently with section 3, we denote by

L
F∗

i
Xi

= {xi ∈ LXi : xi(·) is F∗
i −measurable},

the set of random consumption bundles of i in E∗ and we assume that e∗(i, ·) ∈ L
F∗

i
Xi

.

Let L∗
X =

∏
i∈I L

F∗
i

Xi
. The notion of Walrasian expectations equilibrium in the limit

full information economy is given by adapting suitably definition 3.2.

In the limit, agents may still have different and partial information. This is the
case in which, for example, in each period the information generated by the WEE
equilibria is coarser than the information of each individual, that is σ(xt, pt) ⊆ F t

i
for any i ∈ I and any t ∈ T . In such a situation, in each period agents learn
nothing because their information do not change and even in the limit economy
the information of each agent is the initial one. Therefore, it might be the case
that in each period the same economy is replicated and consequently the equilibria
remain the same. This makes the convergence results trivial, because a constant
sequence of identical equilibria converges to itself and viceversa. On the other hand,
it might also be the case that in the limit no informational asymmetry arises and
all agents have the same information, although incomplete. Once, in the limit all
agents are fully informed, i.e., F∗

i = F for all i ∈ I, the resulting equilibrium
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coincides with a Walrasian equilibrium in the state contingent model of Arrow-
Debreu (see [6]). [19] introduce a non-trivial learning condition, according to which
the pooled information generated by all past equilibrium allocations is at least as
fine as agents’ initial information, i.e., F1

i ⊆ G∞ =
∨∞

k=1 σ(x
t, pt) for all i ∈ I.

This implies that unless already at beginning (i.e., t = 1) all agents are equally
informed, at least one agent learns something in some period, but it does not mean
that all agents learn something. Thus, under the non-trivial learning condition,
the information F t

i of each agent i converges to G∞, which is the information
generated by all the past equilibria.1 Therefore, as time goes on, the common
part of information becomes prevalent and in the limit all agents will have the
same information given by G∞. However, it still might be the case that in the
limit economy agents, although equally informed, are partially informed because
F∗
i = G∞ ⊂ F for all i ∈ I.

It can be proved that a WEE allocation is (ex-ante) efficient according to the notion
due to [23] for which agents consider only their own private information within any
coalition. Then, in the limit full information economy in which, under the non-
trivial learning condition, agents are symmetrically informed the no trade result
of [18] applies: an (ex-ante) efficient allocation cannot be improved upon even after
agents receive signals and update their knowledge about the state of nature; no
further trade arises (see Theorem 1 in [17]).2

In the next section we illustrate two asymmetric information economies where, in
the first example agents immediately become fully informed whereas, in the second
example agents will be never able to discern each state of nature.

6. Examples

Here we present two examples that examines the learning process we consider in
this paper.

Example 6.1. Consider an asymmetric information economy with three states of
nature, i.e. Ω = {ω1, ω2, ω3}, three agents, i.e. I = {1, 2, 3}, and one commodity,
i.e. Xi(ω) = R+ for any i ∈ I and any ω ∈ Ω. All agents have the same utility
function u(ω, x) =

√
x for any ω ∈ Ω and the same prior (i.e. µ({ω}) = 1

3). Given
a random bundle x : Ω → R+, the ex-ante expected utility function is given by

U(x) =
∑

ω∈Ω
1
3

√
x(ω). At time t = 1 agents’ primitives are given as follows:

(e1(1, ω1), e
1(1, ω2), e

1(1, ω3)) = (5, 5, 0); F1
1 = σ(Π1

1) where Π1
1 = {{ω1, ω2}, {ω3}};

(e1(2, ω1), e
1(2, ω2), e

1(2, ω3)) = (5, 0, 5); F1
2 = σ(Π1

2) where Π1
2 = {{ω1, ω3}, {ω2}};

(e1(3, ω1), e
1(3, ω2), e

1(3, ω3)) = (0, 0, 0); F1
3 = σ(Π1

3) where Π1
3 = {{ω1}, {ω2}, {ω3}}.

Notice that for each i ∈ I; F1
i = σ(e1(i, ·), Xi, ui). It can be shown that in equilib-

rium there is no trade, meaning that the unique Walrasian expectations equilibrium
allocation at time t = 1 is the initial endowment. At the next time period t = 2,
agents observe the equilibrium allocation and acquire the new information σ(x1, p1),
so that

F2
i = F1

i ∨ σ(x1, p1).

1Actually, the non-trivial learning condition is also necessary for F∗
i = G∞ (see [19]).

2We thank the Referee for having pointed out this remark to us.
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Since σ(x1) =
∨

i∈I σ(x
1(i, ·)) = 2Ω, from period t = 2 on, agents are fully informed

as they are able to discern each state of nature, i.e. Πt
i = {{ω1}, {ω2}, {ω3}} for any

t ≥ 2. In this example agents learn in one shot the true state of nature and become
completely informed. We remark that nothing changes if agent 3 has the coarsest
possibile information at time t = 1, i.e. Π1

3 = {{ω1, ω2, ω3}}.

The next example shows that, contrary to the previous example, it might be the
case that the true state of nature is never revealed and, even in the limit economy,
agents are partially informed.

Example 6.2. Consider an asymmetric information economy with three states of
nature, i.e. Ω = {ω1, ω2, ω3}, three agents, i.e. I = {1, 2, 3}, and two commodities,
i.e. Xi(ω) = R2

+ for any i ∈ I and any ω ∈ Ω. All agents have the same utility

function u(ω, x, y) =
√
xy for any ω ∈ Ω and the same prior (i.e. µ({ω}) = 1

3). The

ex-ante expected utility function is U(x, y) =
∑

ω∈Ω
1
3

√
x(ω)y(ω). At time t = 1

agents’ primitives are given as follows:

(e1(1, ω1), e
1(1, ω2), e

1(1, ω3)) = ((1, 3), (2, 2), (1, 3)); F1
1 = σ({{ω1, ω3}, {ω2}});

(e1(2, ω1), e
1(2, ω2), e

1(2, ω3)) = ((3, 1), (2, 2), (3, 1)); F1
2 = σ({{ω1, ω3}, {ω2}});

(e1(3, ω1), e
1(3, ω2), e

1(3, ω3)) = ((2, 2), (2, 2), (2, 2)); F1
3 = σ({{ω1, ω2, ω3}}).

Notice that for each i ∈ I; F1
i = σ(e1(i, ·), Xi, ui). It can be shown that the pair

((x, y); (p, q)) where (xi(ω), yi(ω)) = (2, 2) and (p(ω), q(ω)) = (p, p) for all i ∈ I and
all ω ∈ Ω is a WEE, so that σ((x, y), (p, q)) = {∅,Ω} ⊆ F1

i for all i ∈ I. Therefore,
at time t = 2, agents learn nothing since F2

i = F1
i for all i ∈ I. Thus, in any

subsequent period t ≥ 2, by considering et(i, ·) = e1(i, ·) and iterating the same
WEE equilibrium, we get that even in the limit economy E∗ agents will be partially
and asymmetrically informed, because F∗

i =
∨

t∈T F t
i = F1

i ⊂ F . Notice that in
this example the non-trivial learning condition does not hold.

7. Convergence of equilibria

In this section we provide an interesting convergence property of the WEE. We
will prove that any sequence of WEE has a subsequence which converges to a WEE
in the limit full information economy. This result suggests that, as the learning pro-
cess unravels near the limit, the additional information acquired does not change
drastically equilibrium outcomes. In order to appreciate the value of the next theo-
rem, one should contemplate the consequence of its failure: it would mean that small
perturbation of the information structure would have drastic effects on the equilib-
rium outcome, which would have implications on the robustness of the equilibrium
concept.
The following assumptions will be needed.

Assumption 7.1. For each i ∈ I, Xi : Ω → 2Y is a nonempty, convex, norm
compact valued and integrably bounded correspondence with F1

i -measurable graph,
that is GXi ∈ F1

i ⊗ B(Y ).

Assumption 7.2. (i) Pi(x) = {y ∈ LXi : Ui(y) > Ui(x)} for any x ∈ LXi,
where Ui : LXi → R is concave and weakly continuous (i.e. if xt converges
weakly to x∗ then Ui(x

t) converges to Ui(x
∗)).
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(ii) For every feasible allocation x, there exists an agent i ∈ I such that Pi(x(i, ·)) 6=
∅.

Assumption 7.3. For each i ∈ I, the initial endowment is such that

(i) et(i, ·) = E[e∗(i, ·)|F t
i ] for each t ∈ T ; where

(ii) in the limit economy E∗ the intial endowment e∗(i, ·) is such that for all
ω ∈ Ω and all q ∈ Y ∗, {z ∈ Xi(ω) : q · z < q · e∗(i, ω)} 6= ∅.

Remark 7.4. Assumption 7.1 is quite standard as it ensures that LX is nonempty,
convex and weakly compact. Assumption 7.2 (i) imposes that agents’ preferences
are represented by an ex-ante expected utility function Ui : LXi → R. Assumption
7.2 (ii) can be interpreted as a non-satiation of preferences at feasible allocations
and it guarantees that the equilibrium price is non null (see also Theorem 4 in [10]
and (A3) in [20]). Notice that assumption 7.3 (i) implies that (et(i, ·),F t

i , t ∈ T ) is

a martingale. Indeed by the tower property,3 being F t
i ⊆ F t+1

i for each t ∈ T , we

have that et(i, ·) = E[e∗(i, ·)|F t
i ] = E[E[e∗(i, ·)|F t+1

i ]|F t
i ] = E[et+1(i, ·)|F t

i ]. Then,
by the martingale convergence theorem et(i, ·) converges to e∗(i, ·) in L1(µ, Y )-norm
and hence weakly. Therefore, q · et(i, ω) converges to q · e∗(i, ω) for all q ∈ Y ∗, and
hence assumption 7.3 (ii) implies that for any q ∈ Y ∗ there exist z ∈ Xi(ω) and a
subsequence etn(i, ω) such that q · etn(i, ω) > q · z for any n.

Theorem 7.5. Let {E t : t ∈ T} be a sequence of asymmetric information economies
satisfying assumptions 7.1, 7.2 and 7.3. Let xt ∈ W (E t) then there exists a subse-
quence {(xtn) : n = 1, 2, . . .} of {(xt) : t ∈ T} that converges weakly to x∗ ∈ W (E∗).

7.1. Proof of Theorem 7.5. Given a sequence (xt)t∈T of allocations such that
for each period t ∈ T , xt is a WEE for the asymmetric information economy E t,
we show that there exists a subsequence xtn converging weakly to an allocation x∗,
which is a WEE for the limit full information economy E∗. The proof is split in
several lemmata.

Let Z = {(xt) : t ∈ T}. Note that for all i ∈ I and for all t ∈ T , since F t
i ⊆ F t+1

i ⊆
F∗
i it follows that L

Ft
i

Xi
⊆ L

Ft+1
i

Xi
⊆ L

F∗
i

Xi
. Hence xt(i, ·) ∈ L

F∗
i

Xi
and xt ∈ L∗

X for all
i ∈ I and all t ∈ T , implying that Z ⊆ L∗

X .
The next lemma is known as Diestel’s theorem and several alternative proofs can be
found in the literature (see [11], Theorem 3.1 in [24] and references therein, Lemma
A.3 of [14] and Lemma A.4 in [13] among others). For sake of completeness we
provide its demonstration.

Lemma 7.6. Let (Ω,F , µ) be a complete finite measure space, Y be a separable
Banach space and ϕ : Ω → 2Y be an integrably bounded, convex, weakly compact
and nonempty valued correspondence. Then, the set Lϕ = {x ∈ L1(µ, Y ) : x isF −
measurable and x(ω) ∈ ϕ(ω)µ− a.e.ω} is weakly compact in L1(µ, Y ).

Proof. First note that (L1(µ, Y ))∗ = L∞(µ, Y ∗
w∗), where w∗ denotes the weak*

topology. In order to apply James’ theorem, we consider an arbitrary element p
of L∞(µ, Y ∗

w∗) and we show that p attains its supremum on Lϕ. Note that

3If B1 ⊆ B2 ⊆ F , then E[E[f |B1]|B2] = E[f |B1] and E[E[f |B2]|B1] = E[f |B1] (see section 2).
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sup
x∈Lϕ

x · p = sup
x∈Lϕ

∫
ω∈Ω

(x(ω) · p(ω))dµ(ω) =
∫
ω∈Ω

sup
y∈ϕ(ω)

(y · p(ω))dµ(ω),

where the second equality follows from Lemma 1 in [5]. Define the correspondence
θ : Ω → 2Y by

θ(ω) = {z ∈ ϕ(ω) : z · p(ω) = sup
y∈ϕ(ω)

y · p(ω)},

which is nonempty valued because ϕ : Ω → 2Y is weakly compact valued. Define
the function F : Ω×Y → [−∞,+∞] by F (ω, z) = z ·p(ω)− supy∈ϕ(ω) y ·p(ω). Note
that for each fixed ω ∈ Ω, F (ω, ·) is continuous and for each fixed z ∈ Y , F (·, z) is
measurable. Hence F is a Caratheodory function and hence jointly measurable (see
Proposition 3.1 p. 41 in [25]). Thus the set

F−1(0) = {(ω, z) ∈ Ω× Y : F (ω, z) = 0} belongs toF ⊗ B(Y ).

Notice that Gθ = Gϕ ∩ F−1(0) and, since F−1(0) ∈ F ⊗ B(Y ) and ϕ(·) has a
measurable graph, Gθ ∈ F ⊗ B(Y ). By Aumann measurable selection theorem,
there exists a measurable selection z : Ω → Y such that z(ω) ∈ θ(ω) µ− a.e. Since
ϕ is integrably bounded, z ∈ Lϕ and

sup
x∈Lϕ

x · p =

∫
ω∈Ω

(z(ω) · p(ω))dµ(ω) = z · p.

Because p ∈ L∞(µ, Y ∗
w∗) has been chosen arbitrary, we can conclude that every

element of L1(µ, Y )∗ attains its supremum on Lϕ. This completes the proof. □

From Lemma 7.6 (see assumption 7.1), the sets L
F∗

i
Xi

are weakly compact and by

Tychonoff Product Theorem so is L∗
X =

∏
i∈I L

F∗
i

Xi
. Hence the weak closure of Z,

w−clZ is weakly compact and by Eberlein-Smulian theorem, it follows that w−clZ
is weakly sequentially compact. Then, there exists a subsequence xtn converging
weakly to x∗ ∈ w − clZ ⊆ L∗

X . We need to show that x∗ is a WEE for E∗, i.e.
x∗ ∈ W (E∗).

Lemma 7.7. For each i ∈ I, if xt(i, ·) converges weakly to x∗(i, ·) in L1(µ, Y+),

where for each t ∈ T xt(i, ·) ∈ L
Ft

i
Xi
, then for all ω ∈ Ω there exists a subsequence

xtn(i, ω) converging in norm to x∗(i, ω).

Proof. It immediately follows from the fact that for all t ∈ T and for all ω ∈ Ω,
xt(i, ω) belongs to Xi(ω) which is norm compact (see Theorem 3.28 p.86 in [1]). □

From assumption 7.3 (i), (et(i, ·),F t
i , t ∈ T ) is a martingale (see remark 7.4). Hence,

from the martingale converge theorem the sequence et(i, ·) converges to e∗(i, ·) in
L1(µ, Y )-norm (see Corollary 2 p.126 of Diestel-Uhl) and hence weakly in L1(µ, Y ).
Consequently the same is true for any subsequence of et(i, ·). By lemma 7.7, for
all ω ∈ Ω, xtn(i, ω) converges to x∗(i, ω) and etn(i, ω) to e∗(i, ω). Since for each t,
xtn(i, ·) is feasible in E tn , that is∑

i∈I
xtn(i, ω) =

∑
i∈I

etn(i, ω) forµ− a.e.ω.
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it follows that ∑
i∈I

x∗(i, ω) =
∑
i∈I

e∗(i, ω) forµ− a.e.ω.

Hence x∗ is feasible (see condition (i) in definition 3.2).

For each t ∈ T , xt ∈ W (E t) and hence there exists pt ∈ LP = {p ∈ L∞(µ, Y ∗
w∗) :

‖p‖∞ ≤ 1}, where pt 6= 0 and LP is w∗-compact by Alaoglu’s Theorem. Since
(Ω,F , µ) is separable, so is the space L1(µ, Y ). Therefore, LP is metrizable with
respect to the weak* topology (see Theorem 10.7 p.153 in [2]) and hence there exists
a subsequence ptn ∈ LP of pt that weakly* converges to p∗ ∈ LP (see [2] p.160).

Lemma 7.8. If pt converges weakly* to p∗ in L∞(µ, Y ∗
w∗), then for all ω ∈ Ω the

sequence pt(ω) converges weakly* to p∗(ω) in Y ∗.

Proof. Let ω ∈ Ω be a fixed state of nature, we need to show that for all x ∈ Y ,
pt(ω) · x converges to p∗(ω) · x. By assumption 3.1, let Π = {E1, E2, . . .} be a finite
or countable partition of Ω, then pt and p∗ can be written as

pt =

∞∑
k=1

pt,kχEk and p∗ =

∞∑
k=1

pkχEk ,

where pt,k, pk ∈ Y ∗. Note that there exists a unique event E ∈ Π containing ω,
that we denote by Π(ω). Let x be arbitrarly taken in Y . Since pt(ω′) = pt(ω) and
p∗(ω′) = p∗(ω) for all ω′ ∈ Π(ω), we have that

pt(ω) · x =

∫
ω′∈Ω

pt(ω) · x

µ(Π(ω))
χΠ(ω)(ω

′)dµ(ω′) =

∫
ω′∈Ω

pt(ω′) · x

µ(Π(ω))
χΠ(ω)(ω

′)dµ(ω′),

p∗(ω) ·x =

∫
ω′∈Ω

p∗(ω) · x

µ(Π(ω))
χΠ(ω)(ω

′)dµ(ω′) =

∫
ω′∈Ω

p∗(ω′) · x

µ(Π(ω))
χΠ(ω)(ω

′)dµ(ω′).

Note that
x

µ(Π(ω))
χΠ(ω) ∈ L1(µ, Y ) and pt ∈ L∞(µ, Y ∗).

Since pt converges weakly* to p∗ in L∞(µ, Y ∗),∫
ω′∈Ω

pt(ω′) · x

µ(Π(ω))
χΠ(ω)(ω

′)dµ(ω′)

converges to ∫
ω′∈Ω

p∗(ω′) · x

µ(Π(ω))
χΠ(ω)(ω

′)dµ(ω′),

that is pt(ω) · x converges to p∗(ω) · x. Because the choice of x in Y is arbitrary,
pt(ω) converges weakly* to p∗(ω). This completes the proof of Lemma 7.8. □

Lemma 7.9. If for every i ∈ I and every ω ∈ Ω, xt(i, ω) converges in norm to
x∗(i, ω) and pt(ω) converges weakly* to p∗(ω), then limt→+∞ pt ·xt(i, ·) = p∗ ·x∗(i, ·),
that is

lim
t→+∞

∫
ω′∈Ω

pt(ω′) · xt(i, ω′)dµ(ω′) =

∫
ω′∈Ω

p∗(ω′) · x∗(i, ω′)dµ(ω′).
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Proof. Fix i ∈ I and ω ∈ Ω. First notice that since xt(i, ω) converges in norm
to x∗(i, ω) and pt(ω) converges weakly* to p∗(ω), then pt(ω) · xt(i, ω) converges to
p∗(ω) · x∗(i, ω) (see Lemma A of [27] p.107). Moreover, given ω ∈ Ω, the function
ω ∈ Ω 7→ pt(ω) · xt(i, ω) ∈ R is dominated by an integrable function for any t ∈ T .
Indeed, being Xi integrably bounded, there exists h ∈ L1(µ) such that for µ−a.e.ω

|pt(ω′) · xt(i, ω′)| ≤ ‖pt(ω)‖Y ∗‖xt(i, ω)‖Y ≤ ‖pt‖∞‖xt(i, ω)‖Y ≤ ‖xt(i, ω)‖Y ≤ h(ω).

By the Lebesgue dominated convergence theorem,

(7.1) limt→+∞

∫
ω′∈Ω

pt(ω′) · xt(i, ω′)dµ(ω′) =

∫
ω′∈Ω

p∗(ω′) · x∗(i, ω′)dµ(ω′).

□
Applying lemma 7.9 to the sequence of i’s initial endowment we have that4

(7.2) limt→+∞pt · et(i, ·) = p∗ · e∗(i, ·).
Since xt ∈ W (E t), pt ·xt(i, ·) ≤ pt · et(i, ·) for all t ∈ T . This together with (7.1) and
(7.2) implies that p∗ · x∗(i, ·) ≤ p∗ · e∗(i, ·), showing that x∗ satisfies condition (ii)
of definition 3.2.
We now show that x∗ satisfies also condition (iii) of definition 3.2. Assume to the
contrary that there exists yi ∈ LXi such that

yi ∈ Pi(x
∗(i, ·)), and(7.3)

p∗ · yi ≤ p∗ · e∗(i, ·)(7.4)

Without loss of generality, we may assume that

(7.5) p∗ · yi < p∗ · e∗(i, ·).
Indeed, define the correspondence K : Ω → 2Y+ such that for all ω ∈ Ω

K(ω) = {z ∈ Xi(ω) : p
∗(ω) · z < p∗(ω) · e∗(i, ω)},

which is nonempty valued by assumption 7.3 (ii). Notice that K(ω) = Xi(ω)∩L(ω),
where L : Ω → 2Y is defined as L(ω) = {z ∈ Y : p∗(ω) · z < p∗(ω) · e∗(i, ω)},
and GL = {(ω, z) ∈ Ω × Y : f(ω, z) > 0} = f−1(]0,+∞[), where f(ω, z) =
p∗(ω) ·e∗(i, ω)−p∗(ω) ·z. The function f(ω, ·) is continuous, moreover from Pettis’s
measurable theorem (see Theorem 2 p.42 in [7]) we have that f(·, z) is F-measurable.
Thus f : Ω × Y → R is a Caratheodory function and therefore jointly measurable
(see Proposition 3.1 p. 41 in [25]). This implies that GL ∈ F ⊗ B(Y ) and, by
assumption 7.1, GK = GXi ∩ GL ∈ F ⊗ B(Y ). Thus we can apply the Aumann
measurable selection theorem and get a measurable function z : Ω → Y such that
z(ω) ∈ K(ω) µ-a.e. Since Xi is integrably bounded by assumption 7.1, z is also
integrable, i.e., z ∈ LXi . Note that LXi is convex because so is Xi(·). By assumption
7.2 (i) there exists α ∈ (0, 1] such that yα = αz + (1 − α)yi ∈ Pi(x

∗(i, ·)) and
p∗ · yα = αp∗ · z + (1− α)p∗ · yi < p∗ · e∗(i, ·).
Define for each t ∈ T , yti = E[yi|F t

i ] which converges in L1(µ, Y )-norm (and hence
weakly) to yi (see Corollary 2 p. 126 in [7]). By lemma 7.9 and (7.5) we have that
pt · yti ≤ pt · et(i, ·) for infinitely many t ∈ T . Since xt is a WEE, by condition

4Actually, we should consider the subsequences xtn and etn because of lemma 7.7, but we prefer
keeping the symbol xt and et for sake of simplicity.
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(iii) of definition 3.2 it follows that Ui(y
t
i) ≤ Ui(x

t(i, ·)), and hence, because of
assumption 7.2 (i), Ui(yi) ≤ Ui(x

∗(i, ·)) which contradicts (7.3). To conclude the
proof we need to show that p∗ 6= 0. Suppose ortherwise that p∗ = 0, then for any
z ∈ LXi , p

∗ · z ≤ p∗ · e∗(i, ·) and in particular for the random consumption bundle
z ∈ Pi(x

∗(i, ·)) whose existence is ensured by assumption 7.2 (ii). This is impossible
since x∗ satisfies condition (iii) of definition 3.2.

8. Stability of equilibria

Let us now show the converse of the convergence theorem 7.5, i.e., any WEE in
the limit full information economy can be reached by a sequence of approximate
equilibrium outcomes. We can view this result as a stability property of the WEE
equilibria, in the sense that we can always construct a route to reach the WEE in the
limit full information economy. This result on the approximation of equilibria has
an important interpretation as theorem 7.5. Here again in order to appreciate the
value of this result one should contemplate of its failure: if some WEE in the limit
economy failed to be approximated even by approximate outcomes, that would mean
that those equilibria are artifacts of the definition and they would be irrelevant for
analytical purposes. That would cast doubts on the value of the concept of WEE.
We assume that agents’ preferences are represented by an ex-ante expected utility
function Ui : LXi → R so that Pi(x) = {y ∈ LXi : Ui(y) > Ui(x)} for any x ∈ LXi .

Definition 8.1. Given ε > 0, an allocation x ∈ LX is an ε-Walrasian expectations
equilibrium (ε-WEE) if there exists a price p ∈ LP such that p 6= 0 and

(i)
∑

i∈I x(i, ω) =
∑

i∈I e(i, ω)µ.a.e.ω,
(ii) p · x(i, ·) ≤ p · e(i, ·) + ε for all i ∈ I,
(iii) Ui(yi) > Ui(x(i, ·)) + ε ⇒ p · yi > p · e(i, ·).

We denote by Wε(E) the set of all ε-WEE allocations.

Remark 8.2. For ε = 0, definition 8.1 coincides with definition 3.2. Clearly,
W (E) ⊆ Wε(E) for any ε > 0.

Assumption 8.3. For each i ∈ I and each t ∈ T,∑
i∈I e

t(i, ·) = E[
∑

i∈I e
∗(i, ·)|

∧
j∈I F t

j ].

Remark 8.4. By applying the same arguments used in remark 7.4, we can ob-

serve that assumption 8.3 implies that
(∑

i∈I e
t(i, ·),

∧
j∈I F t

j , t ∈ T
)

is a martin-

gale. Furthermore, assumptions 7.3 (i) and 8.3 together imply a sort of consistency
of individual and aggregate expectations. Indeed, from remark 7.4 we know that
et(i, ·) = E[et+1(i, ·)|F t

i ] and hence

(8.1)
∑
i∈I

et(i, ·) =
∑
i∈I

E[et+1(i, ·)|F t
i ].

On the other hand, by assumption 8.3 we know that

(8.2)
∑
i∈I

et(i, ·) = E

∑
i∈I

et+1(i, ·)|
∧
j∈I

F t
j

 =
∑
i∈I

E

et+1(i, ·)|
∧
j∈I

F t
j

 .
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Thus, from (8.1) and (8.2) we get that

∑
i∈I

E[et+1(i, ·)|F t
i ]− E

et+1(i, ·)|
∧
j∈I

F t
j

 = 0,

which means that what i believes his initial endowment will be in period t + 1
(private expectations), that is given by E[et+1(i, ·)|F t

i ], and what the common belief
of all agents about i’s initial endowment at period t + 1 is (common knowledge

expectations), that is given by E
[
et+1(i, ·)|

∧
j∈I F t

j

]
, must balance out on aggregate

(see also [16]).

Theorem 8.5. Let {E t : t ∈ T} be a sequence of asymmetric information economies
satisfying assumptions 7.1, 7.2 (i), 7.3 (i), 8.3 and let x∗ ∈ W (E∗). Then, for any
ε > 0, there exists {xt : t ∈ T}, where xt ∈ Wε(E t) for each t ∈ T , such that xt

converges in L1(µ, Y )-norm to x∗.

Proof. Let ε > 0 be arbitrarily fixed. Since x∗ ∈ W (E∗), there exists p∗ ∈ LP ,
p∗ 6= 0, such that all conditions in definition 3.2 hold. For each i ∈ I and each
t ∈ T , let

xt(i, ·) = E

x∗(i, ·)|∧
j∈I

F t
j

 .

Hence,
(
xt(i, ·),

∧
j∈I F t

j , t ∈ T
)
is a martingale in L

Ft
i

Xi
⊆ L1(µ, Y ) and by the mar-

tingale convergence theorem, for each i ∈ I, xt(i, ·) converges in L1(µ, Y )-norm to
x∗(i, ·). We now show that xt ∈ Wε(E t), with respect to the same non-null price
p∗ ∈ LP , for infinitely many t ∈ T .
First note that by assumption 8.3 and feasibility of x∗ we get that∑

i∈I
xt(i, ·) =

∑
i∈I

E

x∗(i, ·)|∧
j∈I

F t
j

 = E

∑
i∈I

x∗(i, ·)|
∧
j∈I

F t
j

 =

= E

∑
i∈I

e∗(i, ·)|
∧
j∈I

F t
j

 =
∑
i∈I

et(i, ·),

meaning that xt is feasible in E t for any t ∈ T and hence xt satisfies condition (i)
of definition 8.1.
Assume by the way of contradiction that for some agent i, p∗ ·xt(i, ·) > p∗ ·et(i, ·)+ε
for infinitely many t ∈ T . Since xt(i, ·) and et(i, ·) converge in L1(µ, Y )-norm
(and hence weakly) respectivey to x∗(i, ·) and e∗(i, ·), we have that p∗ · x∗(i, ·) ≥
p∗ · e∗(i, ·) + ε > p∗ · e∗(i, ·), which contradicts condition (ii) of definition 3.2. This
means that for any i ∈ I, xt(i, ·) fails condition (ii) of definition 8.1 only for finitely
many periods.
To conclude the proof we must show that for any i ∈ I, xt(i, ·) fails condition
(iii) of definition 8.1 only for finitely many period t. Suppose to the contrary that
for some agent i ∈ I and infinitely many period t ∈ T , there exists yti ∈ LXi

such that Ui(y
t
i) > Ui(x

t(i, ·)) + ε and p∗ · yti ≤ p∗ · et(i, ·). From lemma 7.6, LXi is
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weakly compact and by Eberlein-Smulian theorem it is weakly sequentially compact.
Then, there exists a subsequence ytni converging weakly to some yi ∈ LXi . Thus,
by assumption 7.2 (i) we have that Ui(yi) ≥ Ui(x

∗(i, ·)) + ε > Ui(x
∗(i, ·)) and by

lemma 7.9 p∗ · yi ≤ p∗ · e∗(i, ·), which is an absurd because x∗ ∈ W (E∗). □
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