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of the area. The current accumulation of vehicles in the zone is n(t) [veh]. The
waiting at the perimeter border vehicles are stored in a so-called ”virtual queue”
V Q(t) [veh]. The boundary transfer capacity is denoted as c [veh/s]. The output
flow in the area (trip completion rate) is presented by the unimodal MFD function
O(n) [veh/s]. O(0) = 0, and it can exhibit a range of multiple maxima with equal
flow O∗ at some horizontal interval in n. The output exit function according to [1]
presents a macroscopic fundamental diagram, MFD.

We shall distinguish Case 1 when 0∗ ≤ c and Case 2 when c ≤ O∗.
The dynamic model has the following form

dn

dt
= u(t)c−O(n),

dV Q(t)

dt
= I(t)− u(t)c,

J =

∫ T

0
(n(t) + V Q(t))dt → min,

0 ≤ u ≤ 1, 0 ≤ V Q(t), n(0) = n0, V Q(0) = V Q0.(2.1)

We shall denote
O∗ = max

n
O(n),

and
n∗ = argmin

n
∀n : {O(n) = O∗.}

Thus we have
O(n∗) = O∗.

For the right end of the possible interval with O = O∗ we shall denote

n∗∗ = argmax
n

∀n : {O(n) = O∗.}

Note that
dO(n)

dn
> 0 ∀n : {n < n∗}

and
dO(n)

dn
< 0 ∀n : {n > n∗∗}.

We also denote

t∗ = argmin
t

∀t : {n(t) = n∗},

thus
n(t∗) = n∗,

t∗ = argmin
t

∀t : {n(t) = n∗∗},

thus
n(t∗∗) = n∗∗,

and
nc = argmin

n
(O(n) = c),

thus
O(nc) = c.
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Other notation is

tc = arg(n(t) = nc),

thus

n(tc) = nc.

Also

n̄c = argmax
n

(O(n) = c),

thus

O(n̄c) = c.

Other notation is

t̄c = arg(n(t) = n̄c),

thus

n(t̄c) = n̄c.

The schematic plot of the output exit function O(n) is shown in Fig. 1.
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Figure 1. Output exit function O(n)

3. Conditions of optimality

Following Pontryagin Maximal Principle (PMP), [7], we consider the differential
system with state constraint and free end condition as

dx

dt
= f(x, u),

J =

∫ T

t0

f0(x, u)dt → min,

x(t0) = x0, u ∈ U, 0 ≤ g(x),(3.1)

and form the augmented Hamiltonian as

(3.2) H = pT f(x, u)− f0(x, u)− λg(x)
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The conditions of optimality are:

u = argmax
u

H(p, u, x)

dp

dt
= −∂H

dx
,

p(T ) = 0, 0 ≤ λ,(3.3)

and the transversality conditions for the free state variables at the end t = T as

p(T ) = 0.

In respect to the model (2.1) we have according to PMP the following:

H = pn(u(t)c−O(n)) + pV Q(I(t)− u(t)c)− n− V Q− λ(−V Q),

u = sign(pn − pV Q),

dpn
dt

= 1 +
dO

dn
pn,

dpV Q

dt
= 1− λ,

pn(T ) = 0, pV Q(T ) = 0,

0 ≤ λ, pn(T ) = pV Q(T ) = 0.(3.4)

When the switching function S = pn − pV Q = 0 we have a so-called ’singular
arc’ and the control u is not determined from the maximization of the augmented
Hamiltonian.

Intuitively it is clear that the optimal policy is to keep variable n as close to the
interval [n∗, n∗∗] as possible. If the lower constraint for the virtual queue is active,
V Q = 0, then the control is fully determined by this constraint, u = I/c. However
to strongly prove the optimality we need to construct the corresponding trajectories
for costates which satisfies the differential equations and transversality conditions
from (3.4).

4. Classification

There are the following different cases and subcases to be considered:

(1) 0∗ ≤ c and 0∗ ≥ c
(2) 0∗ ≥ c and 0∗ ≤ c
(3) n(t0) < n∗ and n(t0) > n∗∗

Thus altogether there are eight cases and subcases to be considered.

5. Optimization - Case 1

5.1. Subcase 1.1. Here we have 0∗ ≤ c, V Q > 0. We also assume that n(t0) < n∗.
We propose the following scenario and show that it is the optimal solution. The
optimal control is u = 1 while n increases to the value n = n∗. Then the control
can take any value while the condition n∗ ≤ n ≤ n∗∗ is satisfied.

To fit this scenario the costate trajectories must satisfy the conditions

(1)
pV Q(t) ≤ pn(t) < 0, λ = 0 ∀t : {t0 ≤ t < t∗ < T, }

(2)
pV Q(t) = pn(t) ≤ 0, λ = 0, ∀t : {t∗ ≤ t < T},
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(3)
pn(T ) = pV Q(T ) = 0.

Note that dO(n)/dn > 0 when n < n∗, and thus dpn/dt < dpV Q/dt when n <
n∗. These conditions easily may be satisfied according to the costate differential
equations from (3.4). The optimal trajectories of costates are schematically shown
on Fig. 2. Note that at t = t∗ we have n = n∗ and for t∗ ≤ t, n∗ ≤ n ≤ n∗∗ we
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Figure 2. Schematic optimal trajectories of costates - case 1, sub-
case 1

have dO(n)/dn = 0 and thus dpn/dt = dpV Q/dt = 1. The optimal policy according
to PMP is as follows:

(1)
u = 1 ∀t : {t0 ≤ t < t∗}, n : {n0 ≤ n < n∗, }

(2)
0 ≤ u ≤ 1, ∀t : {t∗ ≤ t ≤ T}, n : {n∗ ≤ n ≤ n∗∗}.

At the interval 2 we have the singular arc with S = dpn/dt−dpV Q/dt = 0, dS/dt =
0.

5.2. Subcase 1.2. Here we have 0∗ ≤ c. We also assume that n(t0) < n∗. Starting
from some point t = tQ < t∗ we have V Q = 0. This means that at t ≤ tQ we have
I < cu and dV Q/dt < 0. We propose the following scenario:

(1)

u = 1 ∀t : {t0 ≤ t < tQ, V Q > 0, dV Q/dt < 0, 0 < S, n : {n0 ≤ n < n(tQ), }
(2)

u = I/c ∀t : {tQ ≤ t ≤ T, V Q = 0, }
dV Q/dt = I − cu = 0, S = 0, }

Accordingly n increased if (a) I > O(n) and decreased if (b) I < O(n).
When we have subcase (a) and n = n∗, S = 0 then the control u can take
any value O∗ ≤ u ≤ I/c. If u < I/c then the constraint V Q = 0 will became
inactive.
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The behaviour of costates according to the costate equations from (3.4) will be
as follows:

(1)

0 ≥ pn > pV Q, λ = 0 ∀t : {t0 ≤ t < tQ, V Q > 0, dV Q/dt < 0, 0 < S}

(2)

0 ≥ pn = pV Q, λ = −(dO/dn)pn ≥ 0 ∀t : {tQ ≤ t ≤ T,

V Q = 0, dV Q/dt = I − cu = 0, S = 0, }
pn(T ) = pV Q(T ) = 0.

If we have subcase (a) and t∗∗ < T then we take

u = O∗/c < I/c, ∀ t : {t∗∗ ≤ t ≤ T, }

and the constraint will be inactive. The schematic costate trajectories for subcase
1.2 are shown in Fig.3.
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Figure 3. Schematic optimal trajectories of costates - case 1, sub-
case 2

5.3. Subcase 1.3. Here we have 0∗ ≤ c, V Q > 0. We also assume that n(t0) > n∗∗.
We propose the following scenario and show that it is the optimal solution. The
optimal control is u = 0 while n decreases to the value n = n∗∗. Then the control
can take any value while the condition n∗ ≤ n ≤ n∗∗ is satisfied.

To fit this scenario the costate trajectories must satisfy the conditions

(1)

pV Q(t) ≥ pn(t) < 0 λ = 0, ∀t : {t0 ≤ t < t∗∗ ≤ T},
(2)

pV Q(t) = pn(t) ≤ 0, λ = 0, ∀t : {t∗∗ ≤ t ≤ T},
(3)

pn(T ) = pV Q(T ) = 0.
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Note that we have dO(n)
dn < 0 when n > n∗∗, and thus dpn

dt >
dpV Q

dt when n >
n∗∗. These conditions easily may be satisfied according to the costate differential
equations from (3.4). The optimal trajectories of costates are schematically shown
on Fig. 4.
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Figure 4. Schematic optimal trajectories of costates - case 1, sub-
case 3

5.4. Subcase 1.4. Here we should have c ≥ O∗, and n > n∗∗, V Q = 0. This case
is not feasible because with the optimal policy u = 0 it follows that dV Q/dt = I > 0
and thus the active constraint V Q = 0 can not be kept.

6. Optimization - Case 2

6.1. Subcase 2.1. Here we have 0∗ ≥ c. We also assume that V Q > 0, and
n(t0) < n∗.

We propose the following scenario

u = 1 ∀t : {t0 ≤ t < T, V Q > 0, 0 < S.}

Accordingly n increased to the value n = nc where O(nc) = c.
The behaviour of costates according to the costate equations from (3.4) will be

as follows:

pn > pV Q, λ = 0 ∀t : {t0 ≤ t < T, V Q > 0, 0 < S}

pn(T ) = pV Q(T ) = 0, λ = 0.

The value n increases to n = nc and remains at this steady-state value.
The schematic costate trajectories for subcase 2.1 are shown in Fig.5.
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Figure 5. Schematic optimal trajectories of costates - case 2, sub-
case 1

6.2. Subcase 2.2. Here we have O∗ ≥ c. We also assume that n(t0) < n∗ and
V Q = 0 starting from the time moment t = tQ. We propose the following scenario

u = 1 ∀t : {t0 ≤ t < tQ, V Q > 0, 0 < S.}
At the moment t = tQ the constraint V Q ≤ 0 become active and we have the
singular arc with the singular control

u = I/c, ∀t : {tQ ≤ t ≤ T, V Q = 0, S = 0.}
Accordingly n achieved the value n = nI where O(nI) = I and then remained at
that point. The costates behave like this

pn > pV Q, λ = 0, ∀ t : {t0 ≤ t < tQ S > 0},

pn = pV Q, λ = −(dO/dn)pn ≥ 0, ∀ t : {tQ ≤ t ≤ T, S = 0, }
pn(T ) = pV Q(T ) = 0.

Schematic optimal trajectories of costates are similar to the shown in Fig.3.

6.3. Subcase 2.3. Here we have O∗ ≥ c. We also assume that n(t0) > n∗∗ and
V Q > 0.

We propose the following scenario

u = 0 ∀ t : {to ≤ t ≤ ts ≤ t∗∗ < T.},

u = 1 ∀ t : {ts ≤ t ≤ T.}
Here t = ts is a switching point for the control in time. It follows that ts > t̄c
because otherwise the value n∗ will never be reached with dn/dt = c − O(n) > 0.
The corresponding costate trajectories will be as follows

pn < pV Q, S < 0, ∀ t : {t0 < ts, }

pn > pV Q, S > 0, ∀ t : {ts ≤ T.}
Note that for t∗ ≤ t ≤ t∗∗ we have dpn/dt = 1 and thus dS/dt = 0. At the interval
t∗ < t ≤ T we have dpn/dt < 1 and thus dS/dt < 0. At the point t = T we have
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pn(T ) = pV Q(T ) = 0. Schematic optimal trajectories of costates are shown in Fig.
6.
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Figure 6. Schematic optimal trajectories of costates - case 2, sub-
case 3

6.4. Subcase 2.4. Here we have O∗ ≥ c. We also assume that n(t0) > n∗∗ and
V Q = 0 starting from the time moment t = tQ. We propose the following scenario

u = 0, ∀ t : {t0 ≤ t ≤ t∗∗, V Q > 0, S < 0, }

0 ≤ u ≤ 1 ∀ t : {t∗∗ ≤ tQ, V Q > 0, S = 0, }

u = I/c, V Q = 0 ∀ t : {tQ ≤ t ≤ T.}

Note that if t∗ < T then

S = 0, λ = −dO

dn
pn ≥ 0, ∀ t : {t∗ ≤ t ≤ T.}

At the moment t = tQ the constraint V Q ≤ 0 become active and we have the
singular arc with the singular control u = I/c.

The costates behave like this

pn < pV Q, λ = 0, ∀ t : {t0 ≤ t < t∗∗, V Q > 0S < 0},

pn = pV Q, S = 0, λ = 0, ∀ t : {t∗ ≤ t < t∗∗, }

pn = pV Q, S = 0, λ = −(dO/dn)pn > 0, ∀ t : {t∗ ≤ t ≤ T, }

pn(T ) = pV Q(T ) = 0.

Schematic costate trajectories are similar to shown in Fig. 4.
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7. Discussion

Theorem: The problem has linear objective integrand and convex in state vari-
ables right-hand side of the differential equations for dynamics. The costates in the
optimal solutions are negative and equal to zero at the end. Thus the scalar product
of the costate vector and the right-hand side of ODE is the concave function of the
state variables. The time is fixed. It follows that any solution satisfying the PMP
is sufficiently optimal.

Proof. According to the Krotov’s identity, [5], we have for the smooth with smooth
partial derivatives function V (t, x) and the problem (3.1) that

R(t, x, u) =
∂V

∂x
f(x, u)− f0(x) +

∂V

∂t
,

J = V (T, xT )− V (t0, x0)−
∫ T

t0

R(t, x, u)dt.

As far as

V (T, xT )− V (t0, x0) = Const,

the sufficient condition of optimality is

supuR(t, x, u) = µ(t),

when the optimal u transfers the state vector from given initial to the given end
position. Taking V (t, x) = p(t)x, and calculating ∂R

∂x = 0, we see that the solution
corresponds to the absolute maxxR(t, x, u) if the vector p(t) satisfied equations
for costates and the transversality condition p(T ) = 0. So the PMP is a sufficient
condition of optimality in this case. □

8. Conclusions

We have demonstrated the optimal solutions for all possible cases for both state
and costate variables that are satisfied the PMP. Note that according to [5] the
PMP presents here the sufficient conditions of optimality.
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