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If a path satisfies both Euler equation and transversality condition, then it is
overtaking optimal. This can easily be shown using the usual method. However,
the necessity of the transversality condition is difficult to verify. In usual model,
we can verify it by using a perturbation technique to the inner solution. (See
Kamihigashi [7].) This logic is no longer used if the existence of the inner solution
of the model is hard to verify directly. However, we can show the necessity of the
transversality condition for an overtaking optimal solution of the AK model under
mild conditions. (Theorem 3.3)

There is another merit in treating the overtaking optimality. That is, we can
treat a model without time-discounting. The time-discount rate was introduced
in the literature by Cass [5] and Koopmans [8] independently. The existence of a
positive time-discount rate makes the problem much easier to solve. However, such
a discount rate does not appear in the work of Ramsey [9], which is the origin of the
capital accumulation model. To our understanding, Ramsey considered that the
capital accumulation model belongs to not positive theory but normative theory,
and from the normative viewpoint, the ideal social planner must not discriminate
against future people. Fortunately, we can treat Ramsey’s original problem using
the overtaking optimality.

We stress that our assumption of the model is weak. For example, we assume
that the instantaneous utility is continuously differentiable but do not assume that
it is twice differentiable. Additionally, we do not assume the boundedness of the
utility function, and thus we treat all constant relative risk aversion (CRRA) utility
functions. If the instantaneous utility function is a CRRA function, then we can
derive a simple formula for the solution. (Theorem 4.1) Although the same formula
was presented by Barro and Sara-i-Martin [2], we additionally give a necessary and
sufficient condition for the existence of the solution, and our condition is wider than
their requirement.

Section 2 presents our model and prepares the necessary notions and definitions.
The main formula and general results are given in section 3. Section 4 considers
the case in which the instantaneous utility is a CRRA function.

2. Model and Basic Notions

2.1. Model. The classical AK model is written as

max

∫ ∞

0
e−ρtu(c(t))dt

subject to. k(0) = k̄ > 0, k(t) ≥ 0, c(t) ≥ 0,

k̇(t) = γk(t)− c(t) a.e.,

c(·) ∈ W,

where k is the amount of capital, c is the amount of private consumption, and ρ is
the time discount rate. The set W is some functional space. The equation

k̇(t) = γk(t)− c(t)
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represents two economic relationships. The first relationship is the equality between
production and consumption. That is,

κk(t) = c(t) + i(t),

where the positive value κ represents the linear production technology and i denotes
the amount of investment. The second relationship is between the capital stock and
investment. That is,

k̇(t) = i(t)− dk(t),

where d ≥ 0 is the capital wastage ratio. Combining these two equations, we have

k̇(t) = κk(t)− dk(t)− c(t) ≡ γk(t)− c(t),

where γ = κ− d, as desired.
In this paper, however, u is not necessarily bounded and ρ is not necessarily

positive, and thus,
∫∞
0 e−ρtu(c(t))dt may not be definable. Therefore, we modify

the above problem as:

max limT→∞

∫ T

0
e−ρtu(c(t))dt

subject to. k(0) = k̄ > 0, k(t) ≥ 0, c(t) ≥ 0,(2.1)

k̇(t) = γk(t)− c(t) a.e.,

c(·) ∈ W,

where lim means either lim sup or lim inf.
We make the following three assumptions in this paper.

Assumption 1. The function u is a continuous, strictly concave, and increasing
function defined on R+ and continuously differentiable on R++.

Assumption 2. The value γ is positive.

Assumption 3. The set W denotes the set of all locally integrable functions on
R+.

Note that, under Assumption 3, k must be absolutely continuous on every com-
pact set in R+.

2.2. Overtaking Optimality. We have converted the classical AK problem to
problem (2.1). However, even for this model, some problematic cases exist. If there
exist (k1(t), c1(t)) and (k2(t), c2(t)) such that

limT→∞

∫ T

0
e−ρtu(ci(t))dt = +∞

for each i, then these must be equivalent, even though c1(t) > c2(t) for every t.
This is problematic, and thus we need a criterion that can compare these processes
appropriately.

First, we define the notion of admissibility.

Definition 2.1. A pair of functions (k(t), c(t)) defined on R+ is called admissible
if the following properties hold.
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1. c(t) is integrable and k(t) is absolutely continuous on any compact interval in
R+.

1

2. k(t) ≥ 0 and c(t) ≥ 0 for all t.
3. The following differential equation

k̇(t) = γk(t)− c(t)

holds for almost all t ∈ R+.

Let A be the set of all admissible pairs, and Ak̄ be the set of all admissible pairs
such that k(0) = k̄.

Define a binary relation ≻∗ such that for any (k1(t), c1(t)), (k2(t), c2(t)) ∈ Ak̄,

(k1(t), c1(t)) ≻∗ (k2(t), c2(t)) ⇔ limT→∞

∫ T

0
e−ρt[u(c1(t))− u(c2(t))]dt > 0,

and define (k1(t), c1(t)) ≿∗ (k2(t), c2(t)) if and only if (k2(t), c2(t)) ̸≻∗ (k1(t), c1(t)).
If lim is lim sup, the maximal element of ≿∗ is called the overtaking optimal
solution of problem (2.1), and if lim is lim inf, the maximal element of ≿∗ is called
the weak overtaking optimal solution of problem (2.1). See Carlson, Haurie,
and Leizarowitz [4] for more detailed arguments.2

We mention that for (k∗(t), c∗(t)) ∈ Ak̄, if∫ ∞

0
e−ρtu(c∗(t))dt

is defined and finite, then it is a solution of (2.1) if and only if it is a weakly
overtaking optimal solution of (2.1), if and only if it is an overtaking optimal solution
of (2.1). Therefore, the notion of overtaking optimality is an extension of usual
optimality.

2.3. Euler Equation and Transversality Condition. Let (k(t), c(t)) be admis-
sible. This pair is said to satisfy the Euler equation on an interval I if and only
if c(t) is continuous, u ◦ c is continuously differentiable, and

(2.2)
d

dt
(u ◦ c)(t) = (ρ− γ)(u ◦ c)(t)

holds for all t.
In the case of the traditional model, it is said that (k∗(t), c∗(t)) is a solution only

if it satisfies Euler equation on R+. However, in our model, c∗(t) is not necessarily
continuous, and thus this statement is a little incorrect. Therefore, we extend the
above definition. An admissible pair (k(t), c(t)) satisfies the Euler equation a.e. on
an interval I if and only if there exists a continuous function c̃(t) such that (k(t), c̃(t))
is also admissible and satisfies Euler equation on I. Then, we can modify the above
claim to the following one: “(k∗(t), c∗(t)) is a solution only if it satisfies the Euler
equation a.e. on R+”.

1In this paper, the term ‘interval’ means a convex set in R that includes at least two different
points.

2In economics, our overtaking optimality is sometimes called catching-up optimality, and in
this case, our weak overtaking optimality is called overtaking optimality.
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However, in our model,
∫∞
0 e−ρtu(c∗(t))dt may be not defined, and thus this

statement is not obvious. Additionally, Euler equation is only a necessary condition
of an inner solution. This problem was solved by Hosoya [6], although the proof
is very long.

Next, again let (k(t), c(t)) be admissible. This pair is said to satisfy transver-
sality condition if and only if

(2.3) lim
t→∞

e−ρtu′(c(t))k(t) = 0.

It is also said that usually (k∗(t), c∗(t)) is a solution if and only if it satisfies Euler
equation and transversality condition. The necessity of transversality condition for
optimality cannot easily be derived. However, in this paper, the necessity of this
condition can be derived.

2.4. Linear Differential Equation. Consider the following linear differential equa-
tion:

ẋ(t) = a(t)x(t) + b(t),

where a(t), b(t) are locally integrable functions. The general solution of the above
equation is

x(t) = e
∫ t
0 a(s)ds

[
x(0) +

∫ t

0
e−

∫ s
0 a(τ)dτ b(s)ds

]
.

In the AK model, both the capital accumulation equation and Euler equation are
linear. Thus, this formula is frequently used in the proof of our main result. This
is the key idea of this paper.

3. Results

3.1. The Known Facts. In this subsection, we present results of Hosoya [6]. These
results are heavily used in this paper.

First, we define a notion of the inner solution.

Definition 3.1. Suppose that (k(t), c(t)) is admissible. We say that this pair is
positive on [0, T ] if and only if the following two statements hold.

1) k(t) > 0 for all t ∈ [0, T ].
2) There exists c > 0 such that the Lebesgue measure of the set ∆(c) = {t ∈

[0, T ]|c(t) < c} is zero.

If (k∗(t), c∗(t)) is a (weak, or strong) overtaking optimal solution, then it is called
an inner solution if and only if it is positive on [0, T ] for all T > 0.

Then, the following results hold.

Fact 1. Let T > 0, and suppose that (k∗(t), c∗(t)) is a weak overtaking optimal
solution of (2.1) and positive on [0, T ]. Then, (k∗(t), c∗(t)) satisfies Euler equation
a.e. on [0, T ].

Fact 2. Suppose that
lim
c→0

u′(c) = +∞.

If (k∗(t), c∗(t)) is a weak overtaking optimal solution of (2.1), then (k∗(t), c∗(t)) is
an inner solution, and thus Euler equation holds a.e. on R+.



944 Y. HOSOYA AND S. KUWATA

Fact 3. Suppose that (k∗(t), c∗(t)) is admissible, c∗(t) is a continuous function, and
both Euler equation on R+ and transversality condition hold. Then, (k∗(t), c∗(t))
is an overtaking optimal solution of (2.1).

3.2. Main Results. Hereafter, we assume the following.

Assumption 4. limc→0 u
′(c) = +∞ and limc→∞ u′(c) = 0.

Note that, by Assumption 4, we can define (u′)−1 : R++ → R++, and (u′)−1 is
surjective and decreasing.

For C > 0, define

(3.1) φ(C) =

∫ ∞

0
e−γt(u′)−1(Ce(ρ−γ)t)dt

and

B1 = {C > 0|φ(C) ≤ k̄}, B2 = {C > 0|φ(C) ≥ k̄}.
Note that φ is a positive and nonincreasing function of C. We can in fact show that
if both B1 and B2 are nonempty, then inf B1 ∈ B1.

Theorem 3.2. If there exists a weak overtaking optimal solution of (2.1), then both
B1, B2 are nonempty and C∗ ≡ inf B1 > 0. Moreover, the pair (k∗(t), c∗(t)) defined
by

(3.2) c∗(t) = (u′)−1(C∗e(ρ−γ)t), k∗(t) = eγt
[
k̄ −

∫ t

0
e−γsc∗(s)ds

]
is a weak overtaking optimal solution of (2.1). Furthermore, every weakly overtaking
optimal solution of (2.1) is the same as the above solution a.e..

Proof. By Facts 1-2, if (k∗(t), c∗(t)) is a weak overtaking optimal solution of (2.1),
then c∗(t) satisfies Euler equation a.e., and thus we can assume that c∗(t) is contin-
uous, and

d

dt
(u′ ◦ c∗)(t) = (ρ− γ)(u′ ◦ c∗)(t).

This implies that u′ ◦ c∗ is a solution of the following linear differential equation

ẋ(t) = (ρ− γ)x(t),

and thus,

c∗(t) = (u′)−1(u′(c∗(0))e(ρ−γ)t).

Moreover,

k̇∗(t) = γk∗(t)− c∗(t), k∗(0) = k̄,

and thus, we have

k∗(t) = eγt
[
k̄ −

∫ t

0
e−γsc∗(s)ds

]
.

Because k∗(t) ≥ 0 for all t ≥ 0, we have

k̄ ≥
∫ ∞

0
e−γtc∗(t)dt = φ(u′(c∗(0))),
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which implies that u′(c∗(0)) ∈ B1. Therefore, B1 is nonempty. If C < u′(c∗(0)) and
C ∈ B1, define

c+(t) = (u′)−1(Ce(ρ−γ)t), k+(t) = eγt
[
k̄ −

∫ t

0
e−γsc+(s)ds

]
.

Then, (k+(t), c+(t)) is admissible and c+(t) > c∗(t) for all t ≥ 0. This implies that
(k∗(t), c∗(t)) is not weakly overtaking optimal, which is a contradiction. Therefore,
we have that C ∈ B2 for every C < u′(c∗(0)), and hence, B2 is nonempty and
C∗ = inf B1 = u′(c∗(0)). This completes the proof. □

The following result presents the necessary and sufficient condition for the exis-
tence of the solution.

Theorem 3.3. Suppose that either φ is continuous or there exists C > 0 such that
k̄ ≤ φ(C) < +∞. Then, the following three requirements are equivalent.

1) There exists a weak overtaking optimal solution of (2.1).
2) There exists an overtaking optimal solution of (2.1).
3) There exists C∗ > 0 such that φ(C∗) = k̄.

Moreover, the overtaking optimal solution is given by equation (3.2) in this case.

Note that, this is a kind of results that proves equivalence between weak over-
taking optimality and overtaking optimality. A similar result is found in Zaslavski
[11], where the setup and assumptions of model is different from ours.3

We will show in the proof of this theorem that 3) implies that (k∗(t), c∗(t)) defined
in (3.2) satisfies the transversality condition. Therefore, we can say that, under
Assumptions 1, 2, 3, and 4, and either the continuity of φ or the existence of C > 0
such that k̄ ≤ φ(C) < +∞, the Euler equation and the transversality condition are
the necessary and sufficient condition for the overtaking optimality.

Proof. The fact that 2) implies 1) is obvious.
Suppose that 1) holds. By Theorem 3.2, we have that both B1 and B2 are

nonempty, and C∗ = inf B1 > 0. If φ is continuous, then we have that φ(C∗) = k̄,
and thus 3) holds. Next, suppose that there exists C > 0 such that k̄ ≤ φ(C) <
+∞. If φ(C) = k̄, then 3) holds. Otherwise, we have that k̄ < φ(C) < +∞.
Choose Cn = n

n+1C
∗ and C ′

n = n+1
n C∗. Then, Cn ∈ B2 and C ′

n ∈ B1. Because of

the monotone convergence theorem, we have that limn→∞ φ(C ′
n) = φ(C∗), which

implies that φ(C∗) ≤ k̄ and C < C∗. Therefore, for sufficiently large n, C ≤ Cn and
k̄ ≤ φ(Cn) ≤ φ(C) < +∞. Again by the monotone convergence theorem, we have
that limn→∞ φ(Cn) = φ(C∗), which implies that φ(C∗) ≥ k̄, and thus φ(C∗) = k̄
and 3) holds.

Suppose that 3) holds. Let (k∗(t), c∗(t)) be defined by (3.2). Then,

e−ρtu′(c∗(t))k∗(t) = C∗
[
k̄ −

∫ t

0
e−γsc∗(s)ds

]
→ C∗(k̄ − φ(C∗)) = 0,

3See ch.6 of Zaslavski [11]. Note that, because our model includes e−ρt, it is nonautonomous,
and thus, in this monograph, not Theorem 5.20 but Theorem 6.29 corresponds to our Theorem 3.3.
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which asserts that (k∗(t), c∗(t)) satisfies both Euler equation and transversality con-
dition. By Fact 3, we must have that this pair is an overtaking optimal solution,
and 2) holds. This completes the proof. □

4. Example

For θ > 0, the following function uθ is called the CRRA utility function.

uθ(c) =

{
c1−θ−1
1−θ if θ ≠ 1,

log c if θ = 1.

Barro and Sara-i-Martin [2] showed that under a CRRA utility function, if γ, θ, ρ
satisfy several inequalities, then the admissible pair defined by (3.2) is a (not over-
taking optimal, but usual) solution. We can extend their results. That is, there
exists an inequality that holds if and only if there exists a weak overtaking optimal
solution of (2.1), and in this case, this solution is given by (3.2).

Theorem 4.1. Suppose that u = uθ. Then, there exists a weak overtaking optimal
solution of (2.1) if and only if

(4.1) ρ− (1− θ)γ > 0,

and if so,

(4.2) c∗(t) =
(ρ− (1− θ)γ)k̄

θ
e

γ−ρ
θ

t, k∗(t) = k̄e
γ−ρ
θ

t

is overtaking optimal.4

Proof. In this case,

u′(c) = c−θ, (u′)−1(x) = x−
1
θ .

Therefore,

φ(C) =

{
C− 1

θ
θ

ρ−(1−θ)γ if ρ− (1− θ)γ > 0,

∞ otherwise.

Thus, by Theorems 3.2 and 3.3, there exists a weak overtaking optimal solution of
(2.1) if and only if (4.1) holds. In this case,

φ(C∗) = k̄ ⇔ C∗ =

(
θ

(ρ− (1− θ)γ)k̄

)θ

,

and thus,

(u′)−1(C∗e(ρ−γ)t) =
(ρ− (1− θ)γ)k̄

θ
e

γ−ρ
θ

t,

which implies that (c∗(t), k∗(t)) defined by (4.2) coincides with that defined by
(3.2), and thus this is an overtaking optimal solution of (2.1). This completes the
proof. □

4Check that this solution is the same as that given by (3.2).
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