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Podczeck [43], Martins-da-Rocha [35] and Lee [34] for the existence of a Walrasian
competitive equilibrium using the Bochner integral. This lead various authors to
establish versions of Fatou’s lemma for mappings with values in a Banach space,
using either the Bochner integral or the Gelfand integral. We refer to Khan and Ma-
jumdar [27], Balder [5], Yannelis [47–49], Rustichini [44], Balder and Hess [9], Khan
and Sagara [28] for Fatou-type results dealing with Bochner integrable functions.

When the commodity space E⋆ is the topological dual of a separable Banach
space E, aggregation is usually represented by the Gelfand integral. This is the case
for models of spatial economies (Cornet and Médecin [16]) and models with differ-
entiated commodities (Ostroy and Zame [41] and Martins-da-Rocha [36]). We refer
to Martins-da-Rocha [36] and Khan and Sagara [29] for the existence of a Walrasian
competitive equilibrium using the Gelfand integral. For the Gelfand integral, ver-
sions of Fatou’s lemma have been proposed by Cornet and Médecin [17], Balder [8],
a previous version of the current paper (Cornet and Martins-da-Rocha [15]), Balder
and Sambucini [11], Khan and Sagara [31] and Greinecker and Podczeck [22]. Our
paper contributes to this literature and introduces the assumption of mean weak
boundedness that encompasses stronger conditions considered previously in approx-
imate versions of Fatou’s lemma with Gelfand integral.

In order to present our contribution, we introduce informally the following no-
tations, with full detail given in Section 2.1. The commodity space is E⋆, the
topological dual space of a separable Banach space (E, ‖·‖), the set of agents is a
finite positive measure space (Ω,A, µ), and an allocation is a mapping that assigns
to each agent a ∈ Ω a bundle f(a) ∈ X ⊆ E⋆, i.e., the commodity set X is a
given subset of the commodity space E⋆. We restrict attention to allocations f that
are feasible in the sense that: (i) f(a) ∈ X for all a, (ii) f : Ω → E⋆ is Gelfand
integrable, and (iii) f satisfies ∫

Ω
fdµ =

∫
Ω
edµ

for some exogenously given Gelfand integrable mapping e : Ω → E⋆ that represents
the agents’ initial endowments. The main approach to prove the existence of a
Walrasian competitive equilibrium involves the construction of a sequence (fn) of
Gelfand integrable feasible allocations to which will be applied a version of Fatou’s
lemma. Gelfand integrability then implies that

∀x ∈ E,

∫
Ω
〈x, fn(a)〉dµ(a) =

∫
Ω
〈x, e(a)〉dµ(a)

where 〈·, ·〉 : E×E⋆ → R is the canonical duality function. In most economic models,
the space E is a Banach lattice, with E+ denoting its nonnegative cone, and the
commodity set X is a subset of the dual nonnegative cone E⋆

+ (see Aliprantis and
Border [1] for formal definitions). Since each fn is feasible, we deduce the following
mean scalar boundedness property:

(1.1) ∀x ∈ E, sup
n

∫
Ω
|〈x, fn〉|dµ <∞.1

1Indeed, for every x ∈ E, fn(a) ∈ X ⊆ E⋆
+ implies

∫
Ω
|⟨x, fn⟩|dµ ⩽

∫
Ω
⟨x+, fn⟩dµ +∫

Ω
⟨x−, fn⟩dµ =

∫
Ω
⟨x+, e⟩dµ+

∫
Ω
⟨x−, e⟩dµ.
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In a previous version of this paper (Cornet and Martins-da-Rocha [15]), we
showed that the uniform integrability condition of Cornet and Médecin [17] and
Balder [8]

lim
α→∞

sup
n

∫
∥fn∥⋆⩾α

‖fn‖⋆ dµ = 0

can be replaced by the following mean norm boundedness condition:

sup
n

∫
Ω
‖fn‖⋆ dµ <∞.

This last condition is particularly useful when the commodity space E⋆ = M(K),
the space of signed Borel measures on a compact space K, since models with dif-
ferentiated commodities consider K as the set of commodity characteristics (see
Jones [26], Mas Colell [37], Ostroy and Zame [41], Martins-da-Rocha [36] and Grei-
necker and Podczeck [21]). Indeed, choosing the vector x to be any constant func-
tion, we get that the mean norm boundedness property follows from the mean scalar
property.

Consider now an economic environment in which agents share risks by trading
their initial endowments in an uncertain environment represented by a countably
generated probability space (S,Σ,P). In the line of Bewley [12], agents choose
contingent consumption bundles in L∞

+ (P), that is, formally E = L1(P) endowed
with the L1-norm and E⋆ = L∞(P) where ‖·‖⋆ is the (essential) sup-norm. We
point out a fundamental difference between this model and the previous model with
differentiated commodities (for which E⋆ =M(K)), since now there does not always
exist a vector x ∈ E+ = L1

+(P) such that ‖y‖⋆ = 〈x, y〉 for every y ∈ L∞
+ (P). In other

words, the mean norm boundedness condition does not necessarily follow from the
mean scalar boundedness. Thus, an additional boundedness assumption needs to be
imposed. For instance, Khan and Sagara [30, Section 7.2] assume that there exists
a uniform bound M > 0 on consumption sets; in other words, the sequence (fn) of
Gelfand integrable mappings in Fatou’s lemma is assumed to satisfy ‖fn(a)‖⋆ ⩽M
for each agent a.

The main contribution of this paper is to provide a new approximate version of
Fatou’s lemma when the sequence (fn) of Gelfand integrable mappings satisfies a
general condition that encompasses the two following important cases of (i) mean
norm boundedness and (ii) pointwise boundedness, i.e., supn ‖fn(a)‖

⋆ <∞ for a.e.
a ∈ Ω. In order to do it, the mean norm boundedness condition is replaced by the
following strictly weaker requirement:

sup
n

∫
∥fn∥⋆>ρ

‖fn‖⋆ dµ <∞

where ρ : Ω → (0,∞) is a given measurable function that is neither assumed to be
bounded nor to be integrable. If the sequence (fn) is mean norm bounded, then
ρ can be chosen to be a constant function and if the sequence (fn) is pointwise
bounded, then ρ can be chosen as follows ρ(a) := supn ‖fn(a)‖

⋆ for every a ∈ Ω.
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2. Statement of results

2.1. Gelfand integrable mappings. In the whole paper we assume that (Ω,A, µ)
is a finite complete positive measure space, (E, ‖.‖) is a separable Banach space,
with topological dual space E⋆. Let L0(R) denote the set of A-measurable functions
f : Ω → R, and let L1(R) be the space of µ-integrable real-valued functions defined
on Ω, and denote ‖·‖1 its Lebesgue semi-norm defined by ‖f‖1 :=

∫
Ω |f(a)|dµ(a).

We let L1(R) denote the corresponding quotient space. We shall mainly consider
on the space E⋆ the weak-star topology σ(E⋆, E), denoted w⋆, and the limit, the
closure of a set (etc..) for this topology will be denoted lim , cl (etc..). For x ∈ E
and f ∈ E⋆, we denote by 〈x, f〉 := f(x) the canonical dual product, and by ‖.‖⋆
the dual norm on E⋆, i.e., ‖f‖⋆ := supx̸=0 |〈f, x〉|/ ‖x‖. We denote by B and B⋆,

the closed unit balls in (E, ‖.‖) and (E⋆, ‖.‖⋆), respectively. If (xk) is a sequence in
E⋆, then we denote by Ls{xk} the set of w⋆-limit points of the set {xk : k ∈ N}.
If C ⊆ E, then C◦ := {x⋆ ∈ E⋆ : ∀x ∈ C, 〈x, x⋆〉 ≤ 0} denotes the negative polar
cone of C and if D ⊆ E⋆, then D◦ := {x ∈ E : ∀x⋆ ∈ D, 〈x, x⋆〉 ≤ 0} denotes the
negative polar cone of D. If F ⊆ E is a linear subspace of E, then the negative
polar F ◦ coincides with the orthogonal F⊥ := {x⋆ ∈ E⋆ : ∀x ∈ F, 〈x, x⋆〉 = 0}.
Note that if X is a subset of E⋆, then

X ⊆
⋂
F∈F

[X + F⊥] ⊆ clX,

where F is the collection of all finite dimensional linear subspaces of E. In particular
if E is finite dimensional, then X =

⋂
F∈F [X + F⊥].

A mapping f from Ω to E⋆ is said to beGelfand measurable, if for every x ∈ E,
the real-valued function 〈x, f〉 : a 7→ 〈x, f(a)〉 from Ω to R is measurable, which is
equivalent to saying that for each Borelian B ⊆ E⋆, f−1(B) := {a ∈ Ω : f(a) ∈ B}
belongs to A (see the Appendix), and f is said to be Gelfand integrable, if for
every x ∈ E, the function 〈x, f〉 is integrable. If f is Gelfand integrable, it can be
shown (see Diestel and Uhl [19, pp. 52-53]) that for each A ∈ A, there exists a
unique x⋆A ∈ E⋆ such that

∀x ∈ E, 〈x, x⋆A〉 =
∫
Ω
〈x, f(a)〉1A(a)dµ(a) =

∫
Ω
〈x, f〉1Adµ2

thus x⋆A is simply denoted by
∫
A fdµ.

Proposition 2.1. Let f : Ω → E⋆ be Gelfand integrable, then

‖f‖G := sup
x∈B

∫
Ω
|〈x, f(a)〉|dµ(a) <∞.

Proof. Let f be a Gelfand integrable mapping. We let Tf be the mapping from E
to L1(R) defined by

∀x ∈ E, Tf (x) := [a 7→ 〈x, f(a)〉].

2We denote by 1A the indicator function of the set A, i.e., 1A(a) = 1 if a ∈ A and 1A(a) = 0
otherwise.
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The linear mapping Tf from (E, ‖.‖) to (L1(R), ‖.‖1) has a closed graph (Diestel
and Uhl [19, pp. 52–53]). From Banach’s closed graph theorem, Tf is continuous.
Thus ‖f‖G <∞. □

Note that if f is a Gelfand measurable mapping, then the function a 7→ ‖f(a)‖⋆ is
measurable (see Proposition A.1 in the appendix). A Gelfand measurable mapping
f is said to be norm integrable if a 7→ ‖f(a)‖⋆ is integrable. Obviously, a norm
integrable mapping is Gelfand integrable but the converse is not true in general;
see Counterexample A.11 in the appendix. We recall the following notions about
sequences of integrable mappings.

Definition 2.2. A sequence (fn) of Gelfand integrable mappings from Ω to E⋆ is
said to be

(1) integrably bounded if there exists a real-valued integrable function φ ∈
L1(R) such that

sup
n

‖fn(a)‖⋆ ⩽ φ(a) a.e.,

(2) uniformly norm integrable if the sequence of real-valued functions (‖fn‖⋆)
is uniformly integrable, i.e.

lim
α→∞

sup
n

∫
{∥fn∥⋆⩾α}

‖fn(a)‖⋆ dµ(a) = 0,

(3) mean norm bounded if

sup
n

∫
Ω
‖fn(a)‖⋆ dµ(a) <∞,

(4) mean weakly bounded if the two following conditions hold:
(i) for all x ∈ E, the sequence of real-valued functions (〈x, fn〉) is mean

bounded, i.e.,

∀x ∈ E, sup
n

∫
Ω
|〈x, fn(a)〉|dµ(a) <∞,

(ii) there exists a measurable function ρ ∈ L0(R) such that

sup
n

∫
{∥fn∥⋆>ρ}

‖fn(a)‖⋆ dµ(a) <∞.

We note that (1) =⇒ (2) =⇒ (3) =⇒ (4) and the converse implications are
not true in general. Indeed, (1) =⇒ (2) is obvious, (2) =⇒ (3) holds since uni-
form norm integrability is equivalent to mean norm boundednes and equicontinuity
(see Neveu [39]), and choosing ρ = 0 we get (3) =⇒ (4). To see that the implication
(4) =⇒ (3) is not valid, we refer to Counterexample A.12 in the appendix.

Remark 2.3. When the sequence (fn) is norm bounded, in the sense that
supn ‖fn‖

⋆ <∞ almost everywhere, then (4ii) is automatically satisfied if we choose
ρ := supn ‖fn‖

⋆. Even if (fn) satisfies condition (4i), this does not necessarily imply
that (fn) is mean norm bounded. We refer to Counterexample A.12 in the appendix.
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2.2. Fatou’s lemma. Our main contribution is to provide Fatou-type results for
sequences of Gelfand integrable mappings satisfying the mean weakly boundedness
conditions and we recall that this condition has been previously proved to be a
strict weakening of the mean boundedness condition.

Before presenting our main results, we associate to every given sequence (fn)
of Gelfand integrable mappings fn : Ω → E⋆ the cone C(fn) of all vectors x ∈
E such that the sequence of real-valued functions (max{0,−〈x, fn〉}) is uniformly
integrable, i.e.,

C(fn) := {x ∈ E : the sequence (max{0,−〈x, fn〉}) is uniformly integrable} .

Our first result provides a convex version of Fatou’s lemma for Gelfand integrable
mappings.

Theorem 2.4 (Convex Fatou’s lemma). Let (Ω,A, µ) be a finite positive complete
measure space, let (E, ‖.‖) be a separable Banach space, let (fn) be a sequence of
Gelfand integrable mappings from Ω to E⋆, which is mean weakly bounded and such
that lim

∫
Ω fndµ exists in E⋆.

Then there exists a Gelfand integrable mapping f from Ω to E⋆ such that

(2.1)

∫
Ω
fdµ− lim

∫
Ω
fndµ ∈

[
C(fn)

]◦
,

and

(2.2) f(a) ∈ co Ls{fn(a)} a.e.

Moreover, f satisfies

(2.3)

∫
Ω
‖f(a)‖⋆ dµ(a) ⩽

∫
Ω
ρdµ+ sup

n

∫
{∥fn∥⋆>ρ}

‖fn(a)‖⋆ dµ(a),

where ρ ∈ L0(R) is the measurable function associated to the mean weakly bounded-
ness condition.

The proof of Theorem 2.4 is given in Section 3 as a direct consequence of The-
orem 3.2 also of interest for itself. Our second result formulates an approximate
version of Fatou’s lemma.

Theorem 2.5 (Approximate Fatou’s lemma). Let (Ω,A, µ) be a finite positive com-
plete measure space, let (E, ‖.‖) be a separable Banach space, let (fn) be a sequence
of Gelfand integrable mappings from Ω to E⋆, which is mean weakly bounded and
such that lim

∫
Ω fndµ exists in E⋆.

Then, there exist a Gelfand integrable mapping f from Ω to E⋆ satisfying the
properties (2.1), (2.2) and (2.3) of Theorem 2.4 such that for each finite dimensional
subspace F of E, there exists a Gelfand measurable mapping fF from Ω to E⋆

satisfying

∀x ∈ F,

∫
Ω
〈x, f(a)〉dµ(a) =

∫
Ω
〈x, fF (a)〉dµ(a)

together with

fF (a) ∈ Ls{fn(a)} a.e.
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and ∫
Ω
‖fF (a)‖⋆ dµ(a) ⩽

∫
Ω
ρdµ+ sup

n

∫
{∥fn∥⋆>ρ}

‖fn(a)‖⋆ dµ(a),

where ρ ∈ L0(R) is the measurable function associated to the mean weakly bounded
condition.

Theorem 2.5 will be proved in Section 4 as a consequence of Theorem 3.2. When
the sequence (fn) is mean norm bounded (i.e., when we can choose ρ = 0), we get
the following result that corresponds to Theorem 2.2 in Cornet and Martins-da-
Rocha [15] and Corollary 4.1 in Balder and Sambucini [11].

Corollary 2.6. Let (Ω,A, µ) be a finite positive complete measure space, let (E, ‖.‖)
be a separable Banach space, let (fn) be a sequence of Gelfand integrable mappings
from Ω to E⋆, which is mean norm bounded and such that lim

∫
Ω fndµ exists in E⋆.

(1) [Convex Fatou’s lemma]. There exists a Gelfand integrable mapping f from Ω
to E⋆ such that ∫

Ω
fdµ− lim

∫
Ω
fndµ ∈

[
C(fn)

]◦
together with

f(a) ∈ co Ls{fn(a)} a.e.

and ∫
Ω
‖f(a)‖⋆ dµ(a) ⩽ sup

n

∫
Ω
‖fn(a)‖⋆ dµ(a).

(2) [Approximate Fatou’s lemma]. For each finite dimensional subspace F of E,
there exist a Gelfand integrable mapping fF from Ω to E⋆ such that∫

Ω
fFdµ− lim

∫
Ω
fndµ ∈

[
C(fn)

]◦
+ F⊥,

together with

fF (a) ∈ Ls{fn(a)} a.e.

and ∫
Ω
‖fF (a)‖⋆ dµ(a) ⩽ sup

n

∫
Ω
‖fn(a)‖⋆ dµ(a).

(3) [Finite Dimensional Fatou’s lemma]. If E is finite dimensional, then there exists
a Gelfand integrable mapping fE from Ω to E⋆ such that∫

Ω
fEdµ− lim

∫
Ω
fndµ ∈

[
C(fn)

]◦
together with

fE(a) ∈ Ls{fn(a)} a.e.

and ∫
Ω
‖fE(a)‖⋆ dµ(a) ⩽ sup

n

∫
Ω
‖fn(a)‖⋆ dµ(a).

We provide hereafter a sufficient condition for a sequence of mappings to satisfy
the assumptions of Corollary 2.6. The result first appeared in Cornet and Martins-
da-Rocha [15]; see also Greinecker and Podczeck [22].
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Lemma 2.7. Let (Ω,A, µ) be a finite positive complete measure space, let (E, ‖.‖) be
a separable Banach space, and let (fn) be a sequence of Gelfand integrable mappings
from Ω to E⋆ such that

∀n ∈ N, fn(a) ∈ C⋆ + φn(a)B
⋆ a.e.,

where C⋆ ⊆ E⋆ is a closed convex cone, (φn) is a sequence of uniformly integrable
positive real-valued functions defined on Ω.

(a) −(C⋆)◦ ⊆ C(fn).

(b) If lim
∫
Ω fndµ exists in E⋆ and C⋆ has a w⋆-compact sole,3 then the sequence

(fn) is mean norm bounded.

Proof. Part (a) is obvious. We now prove Part (b). Let C⋆ be a closed convex cone
with a w⋆-compact sole. There exists e ∈ E such that for every x⋆ ∈ C⋆ \ {0},
〈e, x⋆〉 > 0 and such that the following set S := {x⋆ ∈ C⋆ : 〈e, x⋆〉 = 1} is w⋆-
compact. It follows that S is ‖.‖⋆-bounded by some m > 0. In particular, for
every x⋆ ∈ C⋆, 〈e, x⋆〉 ⩾ m ‖x⋆‖⋆. For each n ∈ N, we consider the following
correspondence Fn : a 7→ C⋆ ∩ [{fn(a)} − φn(a)B

⋆]. Applying Theorem A.2, there
exists two measurable mappings cn : Ω 7→ C⋆ and bn : Ω 7→ B⋆ such that for every
n ∈ N,

∀a ∈ Ω, fn(a) = cn(a) + φn(a)bn(a).

Since the sequence (
∫
Ω fndµ) converges, we can suppose (passing to a subsequence

if necessary) that the sequences (
∫
Ω cndµ) and (

∫
Ω φnbndµ) converges in E

⋆. Now,
let v⋆ := lim

∫
Ω cndµ, then

lim sup
n

∫
Ω
‖cn(a)‖⋆ dµ(a) ⩽

1

m
〈e, v⋆〉µ(Ω)

and the sequence (cn) is mean norm bounded. It follows that the sequence (fn) is
also mean norm bounded. □

Applying Lemma 2.7, we present hereafter a consequence of Corollary 2.6.

Corollary 2.8. Let (Ω,A, µ) be a finite positive complete measure space, let (E, ‖.‖)
be a separable Banach space, let (fn) be a sequence of Gelfand integrable mappings
from Ω to E⋆ such that

∀n ∈ N, fn(a) ∈ C⋆ + φn(a)B
⋆ a.e.,

where C⋆ is closed convex cone in E⋆ with a w⋆-compact sole, and (φn) is a sequence
of uniformly integrable positive functions. Suppose that lim

∫
Ω fndµ exists in E⋆.

(1) [Convex Fatou’s lemma]. There exists a Gelfand integrable mapping f from Ω
to E⋆ such that ∫

Ω
fdµ− lim

∫
Ω
fndµ ∈ −C⋆

together with

f(a) ∈ co Ls{fn(a)} a.e.

3That is, there exists e ∈ E, such that for each c⋆ ∈ C⋆ \ {0}, ⟨e, c⋆⟩ > 0 and S := {c⋆ ∈
C⋆ : ⟨e, c⋆⟩ = 1} is w⋆-compact.
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and ∫
Ω
‖f(a)‖⋆ dµ(a) ⩽ sup

n

∫
Ω
‖fn(a)‖⋆ dµ(a).

(2) [Approximate Fatou’s lemma]. For every finite dimensional subspace F of E,
there exists a Gelfand integrable mapping fF from Ω to E⋆ such that∫

Ω
fFdµ− lim

∫
Ω
fndµ ∈ F⊥ − C⋆

together with

fF (a) ∈ Lsn{fn(a)} a.e.

and ∫
Ω
‖fF (a)‖⋆ dµ(a) ⩽ sup

n

∫
Ω
‖fn(a)‖⋆ dµ(a).

(3) [Finite Dimensional Fatou’s lemma]. If E is finite dimensional, then there exists
a Gelfand integrable mapping fE from Ω to E⋆ such that∫

Ω
fEdµ− lim

∫
Ω
fndµ ∈ −C⋆

together with

fE(a) ∈ Ls{fn(a)} a.e.

and ∫
Ω
‖fE(a)‖⋆ dµ(a) ⩽ sup

n

∫
Ω
‖fn(a)‖⋆ dµ(a).

Remark 2.9. If E is finite dimensional, then every pointed closed convex cone has
a compact sole and Corollary 2.8 generalizes the version of Fatou’s lemma proved
in Cornet, Topuzu and Yildiz [18].

Finally, the following remark describes another framework of general equilibrium
theory with a continuum of consumers and differentiated commodities for which
Corollary 2.8 can be used to prove the existence of Walras equilibria (see Martins-
da-Rocha [36]). It should however be noticed that the convexity of preferences is
required to apply Corollary 2.8 to the commodity space M(K).

Remark 2.10. LetK be a compact metric space and let E = C(K) be the separable
Banach space of continuous real-valued functions endowed with the supremum norm.
The topological dual space E⋆ is then M(K), the space of finite Radon measures
on K. Let C(K)+ := {x ∈ C(K) : ∀t ∈ K, x(t) ⩾ 0} and M(K)+ := {f ∈
M(K) : ∀x ∈ C(K)+, 〈x, f〉 ⩾ 0} be the positive cones of C(K) and M(K),
respectively. Then the set M(K)+ is a closed convex cone with a w⋆-compact sole.
Take e in C(K) defined by e(t) = 1 for each t ∈ K; then for each m in M(K)+,
〈e,m〉 = ‖m‖⋆.
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2.3. The link with other results. In Cornet and Médecin [17], the sequence (fn)
is supposed to be integrably bounded. This implies that the sequence (fn) is mean
norm bounded. Moreover, the set C(fn) coincides with the whole space E in that
case. Hence Theorems 2.4 and 2.5 generalize Theorem 1 in Cornet and Médecin [17].

If a sequence (fn) is uniformly norm integrable, then it is mean norm bounded
and the set C(fn) coincides with the whole space E. Hence, Theorems 2.4 and 2.5
generalize Theorems 1 and 2 in Balder [8]. More precisely, in Balder [8] it is proved
that if a sequence (fn) of Gelfand integrable mappings is supposed to be uniformly
norm integrable, then for each open neighborhood W of zero, there exists a Gelfand
integrable mapping fW from Ω to E⋆ such that∫

Ω
fWdµ− lim

n

∫
Ω
fndµ ∈W and fW (a) ∈ cl Lsn{fn(a)} a.e.

Since uniform norm integrability of the sequence (fn) implies that the sequence
(fn) is mean norm bounded and C(fn) = E, we can apply Theorem 2.5 to a finite

dimensional subspace F of E such that F⊥ ⊆ W . Thus there exists a Gelfand
integrable mapping fF from Ω to E⋆ such that∫

Ω
fFdµ− lim

n

∫
Ω
fndµ ∈ F⊥ ⊆W and fF (a) ∈ Lsn{fn(a)} a.e.

Note that the above proof leads to the statement that fF (a) ∈ Lsn{fn(a)} which is
more precise than the one in Balder [8], ti.e., fW (a) ∈ cl Lsn{fn(a)}.

3. A more general version of Theorem 2.4 and its proof

Our proof of Fatou’s lemma relies on a straightforward extension of the important
result by Komlós (Theorem A.8 in Appendix). We first recall the following definition
of Komlós convergence, simply called K-convergence in the following.

Definition 3.1. Let (Ω,A, µ) be a finite positive complete measure space and let
(E, ‖.‖) be a separable Banach space. A sequence (fn) of mappings from Ω to E⋆

is said to be K-convergent to a mapping f : Ω → E⋆, denoted

fn
K−−−→ f,

if for every strictly increasing function φ : N → N, there exists a null set N ∈ A
(i.e., µ(N) = 0) such that

∀a ∈ Ω \N, (1/n)
n∑

k=1

fφ(k)(a)
w⋆

−−→ f(a).

We now state the following theorem, which is more general than Theorem 2.4
and is also of interest for itself.

Theorem 3.2. Let (Ω,A, µ) be a finite positive complete measure space, let (E, ‖.‖)
be a separable Banach space, and let (fn) be a sequence of Gelfand integrable map-
pings from Ω to E⋆ which is mean weakly bounded.

Then there exists a strictly increasing function θ : N → N and a Gelfand integrable
mapping f from Ω to E⋆ such that
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(a) the sequence (fθ(n)) K-converges to f , and∫
Ω
‖f(a)‖⋆ dµ(a) ⩽

∫
Ω
ρdµ+ lim inf

n

∫
{‖fθ(n)‖⋆

>ρ}

∥∥fθ(n)(a)∥∥⋆ dµ(a)
where ρ ∈ L0(R) is the measurable function associated to mean weakly
boundedness;

(b) We have

∀A ∈ A, ∀x ∈ C(fn),

∫
A
〈x, f(a)〉dµ(a) ⩽ lim inf

n

∫
A
〈x, fθ(n)(a)〉dµ(a); 4

(c) there exists ξ ∈ L0(R) such that for every finite dimensional subspace F
of E,

f(a) ∈ coLs{fθ(n)(a)}+ ξ(a)B⋆ ∩ F⊥ a.e..

In particular f(a) ∈ co Ls{fθ(n)(a)} a.e.

We recall that a sequence (fn) of Gelfand integrable mappings from Ω to E⋆

is said to be weakly convergent to a Gelfand integrable mapping f , if for every
x ∈ E, the sequence of real-valued functions 〈x, fn〉 : a 7→ 〈x, fn(a)〉 converges to the
function 〈x, f〉 : a 7→ 〈x, f(a)〉 for the weak topology σ(L1(R), L∞(R)). A family
H of Gelfand integrable mappings from Ω to E⋆ is said to be uniformly weak
integrable if for every x ∈ E, the family (〈x, f〉)f∈H of real-valued functions is
uniformly integrable.

A direct consequence of Theorem 3.2 is the following weak sequential compactness
criteria.

Corollary 3.3. Let (Ω,A, µ) be a finite positive complete measure space and let
(E, ‖.‖) be a separable Banach space. If H is a family of Gelfand integrable mappings
from Ω to E⋆ which is uniformly weak integrable and there exists a measurable
function ρ ∈ L0(R) such that

sup
n

∫
{∥fn∥⋆>ρ}

‖fn‖⋆ dµ <∞

then H is weakly sequentially compact.

Proof. Consider a sequence (fn) of mappings in H. Since (fn) is uniformly weak
integrable, for every x ∈ E, the sequence (〈x, fn〉) of real-valued functions is mean
bounded in the sense of property (4i) of Definition 2.2. Moreover, the set C(fn)

coincides with the whole space E. Since (fn) also satisfies property (4ii), we deduce
that (fn) is mean weakly bounded. We can then apply part (a) of Theorem 3.2
and get the existence of a Gelfand integrable mapping f together with a strictly
increasing function θ : N → N such that (fθ(n)) K-converges to f . Moreover since
C(fn) = E, from part (b) of Theorem 3.2, we get that∫

Ω
〈x, f(a)〉dµ = lim

n

∫
Ω
〈x, fθ(n)(a)〉dµ.

4Recall that C(fn) is the set of all vectors x ∈ E such that the sequence (max{0,−⟨x, fn⟩}) is

uniformly integrable.
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Fix an arbitrary h ∈ L∞(R). Observe that the sequence (hfn) satisfied the same
properties as the sequence (fn). Applying the above argument, we deduce that∫

Ω
h(a)〈x, f(a)〉dµ = lim

n

∫
Ω
h(a)〈x, fθ(n)(a)〉dµ.

In particular (fθ(n)) weakly converges to f . □

Remark 3.4. If a sequence (fn) of Gelfand integrable mappings is uniformly norm
integrable, then (fn) is uniformly weak integrable and C(fn) = E. In particular, if
H is a family of uniformly norm integrable mappings, then H is weakly sequentially
compact.

The proof of Theorem 3.2 will be given in three steps corresponding to part (a),
(b) and (c).

3.1. Proof of Part (a). The following proposition is an extension to vector-valued
mappings, of the important result by Komlós (Theorem A.8 in Appendix).

Proposition 3.5. Let (Ω,A, µ) be a finite positive complete measure space, let
(E, ‖.‖) be a separable Banach space, and let (fn) be a sequence of Gelfand in-
tegrable mappings from Ω to E⋆, which is mean weakly bounded. Then, passing
to a subsequence if necessary, we can assume that (fn) K-converges to a Gelfand
integrable mapping f from Ω to E⋆. Moreover, we have

∀x ∈ E,

∫
Ω
|〈x, f(a)〉|dµ(a) ⩽ sup

n

∫
Ω
|〈x, fn(a)〉|dµ(a)

and ∫
Ω
‖f(a)‖⋆ dµ(a) ⩽

∫
Ω
ρdµ+ lim inf

n

∫
{∥fn∥⋆>ρ}

‖fn(a)‖⋆ dµ(a)

where ρ ∈ L0(R) is the measurable function associated to the mean weakly bounded-
ness condition.

Remark 3.6. Observe that if the sequence (fn) is mean norm bounded, then we
can choose ρ := 0 and get that∫

Ω
‖f(a)‖⋆ dµ(a) ⩽ lim inf

n

∫
Ω
‖fn(a)‖⋆ dµ(a).

Proof of Proposition 3.5. Since the sequence (fk) satisfies property (4ii), there exists
a measurable function ρ ∈ L0(R) such that

sup
k

∫
{∥fk∥⋆>ρ}

‖fk(a)‖⋆ dµ(a) <∞.

Passing to a subsequence if necessary, we can assume that

lim inf
k

∫
{∥fk∥⋆>ρ}

‖fk(a)‖⋆ dµ(a) = lim
k

∫
{∥fk∥⋆>ρ}

‖fk(a)‖⋆ dµ(a).

For each k ∈ N, we let ψk : Ω → R be defined by

∀a ∈ Ω, ψk(a) :=

{
‖fk(a)‖⋆ , if ‖fk(a)‖⋆ > ρ(a)

0, otherwise.
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Let (xj) be a ‖.‖-dense sequence in E. We define for each j, k ∈ N,

φj,k(a) := 〈xj , fk(a)〉 and φ∞,k := ψk.

Since the sequence (fk) is mean weakly bounded and the sequence (ψk) is mean
bounded, then, for every j ∈ N ∪ {∞},

sup
k

∫
Ω
|φj,k(a)|dµ(a) <∞.

It is now possible to apply Komlós’ Theorem (Theorem A.8 in Appendix) repeatedly
in a diagonal procedure. Passing to a subsequence if necessary, this yields a family
(φj)j∈N∪{∞} of integrable real-valued functions such that for every j ∈ N∪{∞} and
every strictly increasing function θ : N → N

1

n

n∑
k=1

φj,θ(k)(a) −→ φj(a) a.e.

Choosing θ : k 7→ k, we get that for every j ∈ N,

(3.1) 〈xj ,
1

n

n∑
k=1

fk(a)〉 −→ φj(a) a.e.

and

(3.2)
1

n

n∑
k=1

ψk(a) −→ φ∞(a) a.e.

Fix a ∈ Ω outside the exceptional null-set and for each n ∈ N, define

gn(a) :=
1

n

n∑
k=1

fk(a).

Then applying (3.2), lim supn ‖gn(a)‖
⋆ ⩽ max{ρ(a), φ∞(a)} < ∞. Now, from

Banach-Alaoglu’s Theorem and passing to a subsequence if necessary, we get that
(gn(a)) converges to some f(a) ∈ E⋆ (for the w⋆-topology). Applying (3.1), for
every j ∈ N,

〈xj , f(a)〉 = φj(a).

We have thus proved that for every j ∈ N and every strictly increasing function
θ : N → N,

〈xj ,
1

n

n∑
k=1

fθ(k)(a)〉 −→ 〈xj , f(a)〉 a.e.

Since the sequence (xj) is ‖.‖-dense in E, it follows that for every strictly increasing
function θ : N → N

(3.3)
1

n

n∑
k=1

fθ(k)(a)
w⋆

−−→ f(a) a.e.

i.e., the sequence (fn) K-converges to f , in particular, the mapping f is Gelfand
measurable.
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For every x ∈ E, we have

1

n

n∑
k=1

〈x, fk(a)〉 −→ 〈x, f(a)〉 a.e.

Applying Fatou’s lemma for positive real-valued functions,∫
Ω
|〈x, f(a)〉|dµ(a) ⩽ lim inf

n

∫
Ω

1

n

n∑
k=1

|〈x, fk(a)〉|dµ(a)

⩽ sup
n

∫
Ω
|〈x, fn(a)〉|dµ(a).

Hence the mapping f is Gelfand integrable and

‖f‖G ⩽ sup
n

‖fn‖G .

Moreover, ‖f(a)‖⋆ ⩽ lim infn ‖gn(a)‖⋆ for almost every a in Ω. Applying Fatou’s
lemma for positive functions, we deduce that∫

Ω
‖f(a)‖⋆ dµ(a) ⩽

∫
Ω
ρdµ+ lim inf

n

1

n

n∑
k=1

∫
{∥fk∥⋆>ρ}

‖fk(a)‖⋆ dµ(a)

⩽
∫
Ω
ρdµ+ lim inf

k

∫
{∥fk∥⋆>ρ}

‖fk(a)‖⋆ dµ(a).

□
Remark 3.7. We refer to Balder [6] and Balder and Hess [10] for other extensions
of Komlós’ result, mainly in the case of Bochner integration.

3.2. Proof of Part (b). The proof of Part (b) follows from the following proposi-
tion.

Proposition 3.8. Let (fn) be a sequence of Gelfand integrable mappings from Ω
to E⋆, K-converging to a Gelfand integrable mapping f : Ω → E⋆. Then

∀x ∈ C(fn), ∀A ∈ A,
∫
A
〈x, f(a)〉dµ(a) ⩽ lim inf

n

∫
A
〈x, fn(a)〉dµ(a).

Proof. Let A ∈ A and let x ∈ C(fn), passing to a subsequence if necessary, we can
assume that

α := lim inf
k

∫
A
〈x, fk〉dµ = lim

k

∫
A
〈x, fk〉dµ.

We define, for each k ∈ N, the function φk : Ω → R, by:
φk(a) := −〈x, fk(a)〉− = −max{0,−〈x, fk(a)〉}.

Note that the sequence of real-valued functions (φk) is uniformly integrable over A.
Moreover, for every k ∈ N, we have 〈x, fk(a)〉 ⩾ φk(a) for each a ∈ A. Applying
Komlós’ Theorem (Theorem A.8 in Appendix), we can pass to a subsequence if
necessary and deduce the existence of an integrable real-valued function φ ∈ L1(R)
such that

1

n

n∑
k=1

φk(a) −→ φ(a) for a.e. a ∈ A.
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From the uniform integrability (which follows from the definition of the set C(fn)),
we get

1

n

n∑
k=1

∫
A
φkdµ −→

∫
A
φdµ,

so it follows that

α−
∫
A
φdµ = lim

n

[
1

n

n∑
k=1

∫
A
(〈x, fk(a)〉 − φk(a))dµ(a)

]
.

Since the sequence (fk) is K-convergent to f ,

1

n

n∑
k=1

〈x, fk(a)〉 −→ 〈x, f(a)〉 for a.e. a ∈ A.

Since 〈x, fk(a)〉 ⩾ φk(a) for each k ∈ N, we apply Fatou’s lemma (for real-valued
functions)

α−
∫
A
φdµ ⩾

∫
A
[〈x, f〉 − φ] dµ =

∫
A
〈x, f〉dµ−

∫
A
φdµ.

Consequently

α := lim infn
∫
A〈x, fn(a)〉dµ(a) ≥

∫
A〈x, f(a)〉dµ(a). □

3.3. Proof of Part (c). We now prove a lower closure result as a consequence of
the Komlós convergence of a sequence of mappings. The proof will be given in two
steps; first we consider the finite dimensional case, and second the general case of a
separable Banach space.

The finite dimensional version is based on the following result by Page [42]. For
the sake of completeness, we propose a simple and direct proof.

Proposition 3.9 (Page [42]). Let E be a finite dimensional vector space and let
(fn) be a sequence of integrable mappings from Ω to E⋆ that is mean norm bounded
and K-converges to an integrable mapping f : Ω → E⋆. Then

f(a) ∈ coLsn{fn(a)} a.e.

Remark 3.10. When E is finite dimensional, a sequence of functions is mean norm
bounded if, and only if, it is mean weakly bounded.

Proof of Proposition 3.9. Let (fn) be a sequence of mean norm bounded mappings
from Ω to E⋆, K-converging to f : Ω → E⋆. Following Gaposhkin’s lemma A.9, there
exists a strictly increasing function θ : N → N such that for each n, fθ(n) = gn+hn,
where the sequence (gn) is uniformly integrable and the sequence (hn) converges
almost everywhere to 0. Since (fθ(n)) K-converges to f , it follows that (gn) K-
converges to f . From Proposition 3.8, the sequence (gn) weakly converges to f .
Now applying Proposition C in Artstein [3], we get that f(a) ∈ coLs{gn(a)} almost
everywhere. Since Ls{gn(a)} ⊆ Ls{fn(a)}, it follows that f(a) ∈ coLs{fn(a)} a.e.

□
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Remark 3.11. The proof of Proposition 3.9 is based on Proposition C in Art-
stein [3]. However, Proposition C in Artstein [3] can be seen as a corollary of
Propositions 3.5, 3.8 and 3.9. Indeed, let (fn) be a sequence of integrable map-
pings from Ω to E⋆ (E is finite dimensional) such that (fn) weakly converges to an
integrable mapping f . The sequence (fn) is then mean norm bounded. Applying
Propositions 3.5 and 3.9, there exists a strictly increasing function θ : N → N and an
integrable mapping g such that (fθ(n)) K-converges to g and g(a) ∈ coLs{fθ(n)(a)}
almost everywhere. Since (fn) weakly converges, it follows from Proposition IV.2.3
in Neveu [39] that (fn) is uniformly integrable. Applying Proposition 3.8, the
sequence (fθ(n)) weakly converges to g. Hence g = f almost everywhere and
f(a) ∈ coLs{fn(a)} almost everywhere.

Applying Proposition 3.9, we now provide a proof of the lower closure result in
the general setting.

Proposition 3.12. Let (fn) be a sequence of Gelfand integrable mappings from Ω
to E⋆ that is mean weakly bounded and K-converges to a Gelfand integrable mapping
f : Ω → E⋆. Then there exists ξ ∈ L∞(R+) such that for every finite dimensional
subspace F of E,

f(a) ∈ coLs{fn(a)}+ ξ(a)B⋆ ∩ F⊥ a.e.

Proof. Since the sequence (fn) is mean weakly bounded, there exists a measurable
function ρ ∈ L0(R+) such that

sup
n

∫
{∥fn∥⋆>ρ}

‖fn(a)‖⋆ dµ(a) <∞.

We let for each n ∈ N,

∀a ∈ Ω, ψn(a) :=

 ‖fn(a)‖⋆ if ‖fn(a)‖⋆ > ρ(a) ,

0 elsewhere.

The sequence (ψn) is mean norm bounded. Applying Komlós’ Theorem (Theo-
rem A.8 in Appendix) and passing to a subsequence if necessary, we can suppose
that the sequence (ψn) is K-convergent to an integrable function ψ ∈ L1(R). Let F
be a finite dimensional subspace of E. We consider π the projection mapping from
E⋆ to F ⋆, defined by

∀x⋆ ∈ E⋆, π(x⋆) = [x ∈ F 7→ 〈x, x⋆〉].

Observe that the sequence (ψn, π(fn)) is K-convergent to (ψ, π(f)). Applying
Proposition 3.9,

(ψ(a), π(f(a))) ∈ coLs {(ψn(a), π(fn(a)))} a.e.

Let a ∈ Ω outside the exceptional null set. There exists a finite set I, a finite family
(λi)i∈I ∈ [0, 1]I such that

∑
i∈I λi = 1, and there exists a finite family (θi)i∈I of

strictly increasing functions from N to N, such that

(ψ(a), π(f(a))) =
∑
i∈I

λi lim
n

(
ψθi(n)(a), π(fθi(n)

(a))
)
.
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Recall that ‖fn(a)‖⋆ ⩽ max{ρ(a), ψn(a)}. Let i ∈ I, since the sequence (ψφi(n)(a))
converges, passing to a subsequence if necessary, we can suppose that the se-
quence (fφi(n)(a)) w

⋆-converges to some hi(a) ∈ Ls{fn(a)} ⊆ E⋆ with ‖hi(a)‖⋆ ⩽
max{ρ(a), ψ(a)}. It follows that

π(f(a)) =
∑
i∈I

λiπ(hi(a)) ∈ π (coLs{fn(a)}) .

Note that
∥∥∑

i∈I λihi(a)
∥∥⋆ ⩽ ∑

i∈I λi ‖hi(a)‖
⋆ ⩽ max{ρ(a), ψ(a)}, hence

f(a) ∈ coLs{fn(a)}+ ρ(a)B⋆ ∩ F⊥,

where ξ(a) := max{ρ(a), ψ(a)}+ ‖f(a)‖⋆. □
The proof of Part (c) of Theorem 3.2 follows from Proposition 3.12 and the

following proposition.

Proposition 3.13. Let L be a multifunction from Ω to E⋆, let f be a mapping
from Ω to E⋆ and let ξ be a positive real-valued function such that for every finite
dimensional subspace F of E,

f(a) ∈ L(a) + ξ(a)B⋆ ∩ F⊥ a.e.

Then
f(a) ∈ clL(a) a.e.

Proof. Let (ei) be a dense sequence in E, and for each n ∈ N, let Fn be the vector
subspace of E generated by {e0, e1, . . . , en}. Clearly there exists Ω′ ⊆ Ω such that
µ(Ω \ Ω′) = 0 and

∀a ∈ Ω′, f(a) ∈
⋂
n∈N

(
L(a) + ρ(a)B⋆ ∩ F⊥

n

)
.

Let a ∈ Ω′, there exists a sequence (zn(a)) in E
⋆ satisfying f(a)− zn(a) ∈ L(a) and

zn(a) ∈ ρ(a)B⋆ ∩ F⊥
n . Passing to a subsequence if necessary, we can suppose that

(zn(a)) w
⋆-converges to z(a). It follows that f(a)− z(a) ∈ clL(a). Moreover, since

zn(a) ∈ F⊥
n , we deduce that for every i, 〈ei, z(a)〉 = 0. In particular z(a) = 0, hence

f(a) belongs to clL(a). □

4. Proof of Theorem 2.5

We start by proving Theorem 2.5 when (Ω,A, µ) is non-atomic and then we
provide the proof in the general case.

4.1. The case (Ω,A, µ) is non-atomic. Since the sequence (fn) is mean weakly
bounded, there exists a measurable function ρ ∈ L0(R+) such that

sup
n

∫
{∥fn∥⋆>ρ}

‖fn(a)‖⋆ dµ(a) <∞.

We let for each n ∈ N,

∀a ∈ Ω, ψn(a) :=

 ‖fn(a)‖⋆ if ‖fn(a)‖⋆ > ρ(a),

0 elsewhere.
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Then the sequence (ψn) is clearly mean bounded.
Let F be a finite dimensional linear subspace of E. Let π be the projection

mapping from E⋆ to F ⋆, the algebraic dual of F , defined by

∀x⋆ ∈ E⋆, π(x⋆) := [x ∈ F 7→ 〈x, x⋆〉].

Let ‖·‖⋆F be the norm on F ⋆ defined by

∀x⋆ ∈ E⋆, ‖π(x⋆)‖⋆F :=
∑
x∈BF

|〈x, x⋆〉|

where BF is a finite basis of F . We define ξn : Ω → R (n ∈ N) be defined by

ξn(a) := ‖π(fn(a))‖⋆F .

Since the sequence (fn) is mean weakly bounded, the sequence (ξn) is mean bounded.
Applying Theorem 3.2 to the sequence (ψn, ξn, fn), we can suppose, passing to a

subsequence if necessary, that there exists a Gelfand integrable mapping f from Ω
to E⋆ and integrable functions ψ, ξ from Ω to [0,+∞) such that

(ψn, ξn, fn)
K−−−−−→ (ψ, ξ, f) a.e.

In particular, we have

∀x ∈ C(fn),

∫
Ω
〈x, f〉dµ ⩽ lim inf

∫
Ω
〈x, fn〉dµ

and

(ψ(a), ξ(a), f(a)) ∈ coLs{(ψn(a), ξn(a), fn(a))}+ (R× R× F )⊥ a.e.

It follows that

(ψ(a), ξ(a), π[f(a)]) ∈ coLs{(ψn(a), ξn(a), π[fn(a)])} a.e.

Following Carathéodory’s theorem, we let I := {1, . . . , ℓ+3}, where ℓ is the dimen-
sion of F . Then, for almost every a ∈ Ω, there exists (λi(a))i∈I ∈ [0, 1]I such that∑

i∈I λi(a) = 1 and (θi)i∈I strictly increasing functions from N to N, such that

(ψ(a), ξ(a), π[f(a)]) =
∑
i∈I

λi(a) lim
n
(ψθi(n)(a), ξθi(n)(a), π[fθi(n)(a)]).

In particular, for each i ∈ I, ψi(a) := limn ψθi(n)(a) <∞. Recall that∥∥fθi(n)(a)∥∥⋆ ⩽ max{ρ(a), ψθi(n)(a)}.

It follows that there exists si(a) ∈ Ls{fn(a)} such that a subsequence of (fθi(n)(a))
w⋆-converges to si(a). In particular, we have

(ψ(a), ξ(a), π[f(a)]) =
∑
i∈I

λi(a)(ψi(a), ξi(a), π[si(a)]) a.e.

and for each i ∈ I,

‖si(a)‖⋆ ⩽ max{ρ(a), ψi(a)} and ‖π(si(a))‖⋆F ⩽ ξi(a).
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Applying Theorem A.2, Proposition A.6 and Corollary A.3 in the Appendix, we
can suppose that for each i ∈ I, the functions λi, ψi and ξi are measurable and the
mappings si are Gelfand measurable selections of Ls{fn(·)}. Note that∫

Ω

∑
i∈I

λi(a) ‖π(si(a))‖⋆F dµ(a) ⩽
∫
Ω

∑
i∈I

λi(a)ξidµ ⩽
∫
Ω
ξdµ <∞.

Applying the Extended Lyapunov Theorem A.10 in the Appendix, there exists a
measurable partition (Bi)i∈I of Ω such that the mapping Φ := (ψi, ξi, π(si(.))) is
integrable over Bi and such that∫

Ω

∑
i∈I

λi(a)Φ(a)dµ(a) =
∑
i∈I

∫
Bi

Φ(a)dµ(a).

Then fF :=
∑

i∈I 1Bisi is a Gelfand measurable selection of the correspondence
a 7−→ Ls{fn(a)}, and moreover∫

Ω
‖π(fF (a))‖⋆F dµ(a) ⩽

∑
i∈I

∫
Bi

‖π(si(a))‖⋆F dµ(a) ⩽
∫
Ω
ξdµ <∞.

It follows that π(fF ) is integrable. Now

π(

∫
Ω
fFdµ) =

∑
i∈I

∫
Bi

π[si(a)]dµ(a)

=

∫
Ω

∑
i

λi(a)π[si(a)]dµ(a) =

∫
Ω
π(f)dµ.

Hence ∫
Ω
π(f)dµ =

∫
Ω
π(fF )dµ.

4.2. The general case. We now provide the proof of Theorem 2.5 in the general
case, i.e., without assuming anymore that (Ω,A, µ) is non-atomic. Using a classical
argument, the set Ω can be partitioned into a non-atomic part Ωna ∈ A and a purely
atomic part Ωpa ∈ A, so that the set Ωpa can be written as the disjoint union of at
most countably many measurable atoms (Ai)i∈I (I ⊆ N). Furthermore, for every
i ∈ I and every n ∈ N , the measurable mapping fn : Ω → E⋆ takes a constant value
f in ∈ E⋆ for a.e. a ∈ Ai. Since the sequence (fn) is mean weakly bounded, for each
i ∈ I, the sequence (f in) is norm bounded, and thus remains in a w⋆-compact subset
of E⋆ by Alaoglu’s theorem. Consequently, by a diagonal extraction argument, we
can pass to a sequence and get that for every i ∈ I, the sequence (f in) w

⋆-converges
to some element f i ∈ E⋆. We let fpa : Ωpa → E⋆ be defined by fpa(a) = f i if
a ∈ Ai.

We prove that fpa satisfies conditions similar to (2.1), (2.2) and (2.3) of Theo-
rem 2.4 when Ω is replaced by Ωpa. Since (fn(a)) w

⋆-converges to fpa(a) for a.e.
a ∈ Ωpa, we have

(4.1) fpa(a) ∈ Ls{fn(a)} a.e. in Ωpa.
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Moreover, we also have ‖fpa(a)‖⋆ ⩽ lim inf ‖fn(a)‖⋆ for a.e. a ∈ Ωpa which implies

(4.2)

∫
Ωpa

‖fpa(a)‖⋆ dµ ⩽
∫
Ωpa

ρdµ+ sup

∫
Ωpa

1{∥fn∥⋆>ρ} ‖fn‖
⋆ dµ.

Fix an arbitrary x ∈ E. By condition (4i), we have

sup
n

∫
Ωpa

|〈x, fn〉|dµ <∞.

We can then apply Fatou’s lemma to deduce that∫
Ωpa

|〈x, fpa〉|dµ ⩽ lim inf

∫
Ωpa

|〈x, fn〉|dµ.

We have thus proved that fpa : Ωpa → E⋆ is Gelfand integrable. Now fix x ∈ C(fn).

Recall that the sequence (〈x, fn〉−) is uniformly integrable. Since (fn(a)) converges
to fpa(a) for almost every a ∈ Ωpa, we deduce that

(4.3)

∫
Ωpa

〈x, fpa〉dµ ⩽ lim inf

∫
Ωpa

〈x, fn〉dµ.

We now consider the non-atomic part Ωna. Applying the version of Fatou’s lemma
proved previously to the non-atomic part Ωna, we get the existence of a Gelfand
integrable function fna from Ωna to E⋆ satisfying

(4.4) ∀x ∈ C(fn),

∫
Ωna

〈x, fna〉dµ ⩽ lim inf

∫
Ωna

〈x, fn〉dµ,

(4.5) fna(a) ∈ co Ls{fn(a)} a.e. in Ωna,

(4.6)

∫
Ωna

‖fna‖⋆ dµ ⩽
∫
Ωna

ρdµ+ sup
n

∫
Ωna

1{∥fn∥⋆>ρ} ‖fn‖
⋆ dµ.

Moreover, for every finite dimensional subspace F of E, there exists fnaF : Ωna → E⋆

such that
fnaF (a) ∈ Ls{fn(a)} a.e. in Ωna

and

∀x ∈ F,

∫
Ωna

〈x, fna〉dµ =

∫
Ω
〈x, fnaF 〉dµ.

We now define the mapping f : Ω → E⋆ by f(a) := fpa(a) if a ∈ Ωpa and f(a) :=
fna(a) if a ∈ Ωna. Combining (4.1) and (4.5), we deduce that f satisfies (2.2).
Combining (4.2) and (4.6), we deduce that f satisfies (2.1). Combining (4.3) and
(4.4), for every x ∈ C(fn)∫

Ω
〈x, f〉µ ⩽ lim inf

∫
Ωpa

〈x, fn〉dµ+ lim inf

∫
Ωna

〈x, fn〉dµ

⩽ lim inf

∫
Ω
〈x, fn〉dµ = lim

∫
Ω
〈x, fn〉dµ.

This proves that f satisfies (2.1). We now define the mapping fF : Ω → E⋆ by
fF (a) := fpa(a) if a ∈ Ωpa and fF (a) := fnaF (a) if a ∈ Ωna. One checks that the
mapping fF satisfies the conditions of Theorem 2.5. □
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Appendix A. Appendix

A.1. Measurable mappings. Let (Ω,A, µ) be a complete finite measure space
and let (E, ‖.‖) be a separable Banach space. We note B the Borel σ-algebra of
(E⋆, w⋆). We recall that a mapping f from Ω to E⋆ is said to be Gelfand measurable
if, for every x ∈ E, the function a 7→ 〈x, f(a)〉 is measurable, and f is said to be
measurable, if for every B ∈ B, f−1(B) belongs to A.

Proposition A.1. Let f be a mapping from Ω to E⋆. Then f is Gelfand measurable
if, and only if, it is measurable. Moreover, if f is measurable, then the function
a 7→ ‖f(a)‖⋆ is measurable.

Proof. Let (xi) a norm dense sequence in B the unit ball of E. For each i ∈ N and
each α > 0, we let Vi,α := {x⋆ ∈ E⋆ : |〈xi, x⋆〉| < α}. We note D the σ-algebra
generated by the family of all Vi,α. Since Vi,α is open in (E⋆, w⋆), we have D ⊆ B.
It follows that if f is measurable, then f is Gelfand measurable. Note that⋃

i∈N

⋂
n>0

Vi,α+1/n = αB⋆ = {x⋆ ∈ E⋆ : ‖x⋆‖⋆ ⩽ α} ∈ D.

Consequently, if f is Gelfand measurable, then the mapping a 7→ ‖f(a)‖⋆ is mea-
surable.

Let d be the following distance defined on E⋆,

∀(x⋆, y⋆) ∈ E⋆ × E⋆, d(x⋆, y⋆) =
∑
i⩾0

|〈xi, x⋆ − y⋆〉|
2i

.

Let Bd be the Borel σ-algebra defined by d. Note that Bd ⊆ D. The topology
defined by the distance d coincide with the w⋆-topology on closed bounded subsets
of E⋆. It follows that if W is a w⋆-open subset of E⋆, then for each k ∈ N, W ∩kB⋆

is d-open, in particular, W ∩ kB⋆ ∈ D. Since W =
⋃

kW ∩ kB⋆, it follows that
W ∈ D, and then B ⊆ D. Hence B = D and the result follows. □

A.2. Measurable selections. Let (Ω,A, µ) be a complete finite measure space
and let (E, ‖.‖) be a separable Banach space. A multifunction F from Ω into E⋆

is said to be graph measurable if the graph GF of F belongs to the σ-algebra
A⊗ B, where

GF := {(a, x⋆) ∈ Ω× E⋆ : x⋆ ∈ F (a)}.
A mapping f from Ω to E⋆ is a selection of F if f(a) ∈ F (a) for almost every a ∈
Ω. We recall the following classical result providing the existence of a measurable
selection.

Theorem A.2 (Aumann Selection Theorem). Let (E, ‖.‖) be a separable Banach
space, let (Ω,A, µ) be a complete finite measure space, and let F be a graph mea-
surable multifunction from Ω to E⋆ with nonempty values. Then there exists a
measurable selection f of F .

The proof of this theorem is given in Castaing–Valadier [14, Theorem III.22,
p.74]. We provide hereafter a direct application of this theorem.
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Corollary A.3. Let (E, ‖.‖) be a separable Banach space, let (Ω,A, µ) be a complete
finite measure space, let F be a graph measurable multifunction from Ω to E⋆ with
non-empty values, let I be a finite set, and let f be a measurable selection of F .
Suppose that for almost every a ∈ Ω, for each i ∈ I, there exist λi(a) ∈ [0, 1] and
fi(a) ∈ F (a) such that

f(a) =
∑
i∈I

λi(a)fi(a) and
∑
i∈I

λi(a) = 1.

Then for each i ∈ I, λi may be chosen as a measurable function from Ω to [0, 1]
and fi may be chosen as a measurable selection of F .

Proof. We let Σ(I) be the set of all (αi) ∈ [0, 1]I such that
∑

i αi = 1. Let π be the
linear mapping from Σ(I)× (E⋆)I to E⋆ defined by

∀((αi), (x
⋆
i )) ∈ Σ(I)× (E⋆)I , π((αi), (x

⋆
i )) :=

∑
i∈I

αix
⋆
i .

For each a ∈ Ω, we let

H(a) := π−1({f(a)}) ∩
(
Σ(I)× F (a)I

)
.

The multifunction H is graph measurable with non empty values. The end proof
of the proof then follows from the application of Theorem A.2 to the multifunction
H. □

A.3. Measurability of limes superior. We consider (E, ‖.‖) a separable Banach
space and (Ω,A, µ) a (possibly not complete) finite measure space. A multifunction
F from Ω into E⋆ is said to be measurable if for each w⋆-open subset V of E⋆, the
set F−(V ) := {a ∈ Ω : F (a) ∩ V 6= ∅} belongs to A.

Proposition A.4. Let F be a multifunction from Ω to E⋆.

(1) Suppose that (Ω,A, µ) is complete. If F is graph measurable, then F is measur-
able.

(2) Suppose that F is closed valued. If F is measurable, then F is graph measurable.

Proof. Part (1) follows directly from the Projection Theorem in Castaing–Valadier [14,
Theorem III.23]. Now we prove Part (2) of the proposition. Since (E, ‖.‖) is a sep-
arable Banach space, E⋆ is the countable union of w⋆-compact metrizable subsets.
It follows from Schwartz [46] that E⋆ is a Lusin space, in particular, there exists
a separable and completely metrizable topology τ , stronger than the w⋆ topology,
but generating the same Borel sets. Since F is w⋆-closed valued, it is τ -closed
valued. Applying Proposition III.13 in Castaing–Valadier [14], the graph of F is
measurable. □

Proposition A.5. Let F and Fn, n ∈ N be graph measurable multifunctions from Ω
into E⋆.

(1) If (Ω,A, µ) is complete, then the multifunction clF defined by a 7→ clF (a) is
graph measurable.

(2) The multifunctions
⋃

n Fn and
⋂

n Fn are graph measurable.
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Proof. We start by proving Part (1). Since the multifunction F is graph measurable,
by Proposition A.4, F is measurable. Let V be a w⋆-open subset of E⋆. For each
a ∈ A,

F (a) ∩ V 6= ∅ ⇐⇒ [clF (a)] ∩ V 6= ∅.
It follows that if F is measurable, then clF is measurable. Once again applying
Proposition A.4, the multifunction clF is graph measurable.

Part (2) is an immediate consequence of the following equalities:

Graph (∪nFn) = ∪nGraph (Fn) and Graph (∩nFn) = ∩nGraph (Fn) . □
If (Cn) is a sequence of subsets of E⋆, we denote by LsCn the sequential limes

superior of (Cn) relative to w⋆, i.e., a vector x ∈ E⋆ belongs to LsCn if there exists
a strictly increasing function θ : N → N and a sequence (xn) such that lim xn = x
and xn ∈ Cθ(n) for each n ∈ N.

Proposition A.6. Let (Fn) be a sequence of graph measurable multifunctions from Ω
into E⋆. The multifunction a 7→ LsFn(a) is graph measurable. In particular, if
(fn) is a sequence of measurable mappings from Ω to E⋆, then the multifunction
a 7→ Ls{fn(a)} is graph measurable.

Proof. Note that if (Cn) is a sequence of non-empty subsets of E⋆, then

LsCn =
⋃
p∈N

Ls(Cn ∩ pB⋆).

Indeed, let x ∈ LsCn. There exists a sequence (xn) and a strictly increasing function
θ : N → N such that xn ∈ Cθ(n) for each n ∈ N and

xn
w⋆

−−−→ x.

It follows that the sequence (xn) is ‖.‖⋆-bounded. Hence following Proposition A.5,
without any loss of generality, we can suppose that there exists a w⋆-compact convex
and metrizable subset K of E⋆, such that

∀a ∈ Ω,
⋃
n

Fn(a) ⊆ K.

This implies that

LsFn(a) =
⋂
n

cl
⋃
p⩾n

Fp(a).

Following Proposition A.5, the multifunction a 7→ LsFn(a) is graph measurable.
This ends the proof of Proposition A.6. □
Remark A.7. We refer to Hess [23] for related results on the measurability of the
limes superior.

A.4. Komlós limits. Let (E, ‖.‖) be a separable Banach space and let (Ω,A, µ)
be a finite measure space. A sequence (fn) of mappings from Ω to E⋆ is said to
be K-convergent to a mapping f : Ω → E⋆, if for every strictly increasing function
θ : N → N,

1

n

n∑
i=1

fθ(i)(a)
w⋆

−−−−→ f(a) a.e.
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We now state the following fundamental result for real-valued functions.

Theorem A.8 (Komlós [33]). Suppose that (fn) is a sequence of integrable real-
valued functions such that

sup
n

∫
Ω
|fn|dµ < +∞.

Then there exist an integrable real-valued function f : Ω → R and a strictly increas-
ing function θ : N → N such that (fθ(n)) is K-convergent to f .

A.5. Gaposhkin. Gaposhkin [20, Lemma C.I] states:

Lemma A.9 (Gaposhkin’s lemma). Let E be a finite dimensional vector space, let
(Ω,A, µ) be a finite measure space, and let (fn) be a mean norm bounded sequence of
integrable mappings from Ω to E⋆. Then there exists a strictly increasing function
θ : N → N such that for each n ∈ N, fθ(n) = gn + hn, where the sequence (gn) is
uniformly integrable and the sequence (hn) converges almost everywhere to 0.

A.6. Lyapunov. The following theorem, due to Balder [7], is a consequence of the
classical Lyapunov theorem.

Theorem A.10 (Extended Lyapunov). Let (Ω,A, µ) be a non-atomic finite mea-
sure space, let I be a finite set, let ℓ ∈ N, let (fi)i∈I be a family of measurable
functions from (Ω,A, µ) to Rℓ, and let (λi)i∈I be measurable functions from Ω to
[0, 1] satisfying

∑
i∈I λi(a) = 1 together with∫

Ω

∑
i∈I

λi(a)|fi(a)|dµ(a) < +∞.

Then there exists a measurable partition (Bi)i∈I of Ω such that for each i ∈ I, the
function fi is integrable over Bi and∫

Ω

∑
i∈I

λi(a)fi(a)dµ(a) =
∑
i∈I

∫
Bi

fidµ.

A.7. Counterexamples. We first illustrate the fact that a Gelfand integrable map-
ping may not be norm integrable.

Counterexample A.11. Let E = L1(T,B(T ), λ) be the space of real-valued
functions defined on T := [0,+∞) and integrable with respect to the Lebesgue
measure λ. Then (E, ‖.‖1) is a separable Banach space whose topological dual is
E⋆ = L∞(T,B(T ), λ). We let Ω := [0, 1], A := B([0, 1]) and µ the Lebesgue measure
on [0, 1]. For each a ∈ Ω, we let

f(a) := t 7→ (1/a) exp(−|t+ ln a|).
Then the mapping f is Gelfand measurable but not norm integrable. Indeed, for
each t ∈ T :∫

Ω
|f(a, t)|dµ(a) =

∫
[0,+∞[

exp(−|t− x|)dλ(x) = 2− exp(−t).

It follows from Fubini-Lebesgue theorem, that for all x ∈ E,∫
Ω
|〈x, f(a)〉|dµ(a) =

∫
T
|x(t)|

∫
Ω
|f(a, t)|dµ(a)dµ(t) ⩽ 2 ‖x‖1 < +∞.
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Hence, the mapping f is Gelfand integrable. However, ‖f(a)‖⋆ = 1/a for a.e.
a ∈ Ω := [0, 1] and the function a 7→ ‖f(a)‖⋆ is not integrable.

We provide hereafter a sequence of Gelfand integrable mappings which is mean
weakly bounded and almost everywhere bounded, but which is not mean bounded.

Counterexample A.12. Let E = L1(T,B(T ), λ) be the space of real-valued func-
tions defined on T := [0,+∞) and integrable with respect to the Lebesgue mea-
sure λ. Then (E, ‖.‖1) is a separable Banach space whose topological dual is
E⋆ = L∞(T,B(T ), λ). We let Ω := [0, 1], A := B([0, 1]) and µ be the Lebesgue
measure on [0, 1]. For each n ∈ N, for each a ∈ Ω, we let

fn(a) := t 7→ 1

a1−
1
n

exp(−|t+ ln a|).

For each n ∈ N, fn is Gelfand measurable but the sequence (fn) is not mean norm
bounded. Indeed, for each t ∈ T ,∫

Ω
|fn(a, t)|dµ(a) ⩽

∫
Ω

1

a
exp(−|t+ ln a|)dµ(a) ⩽ 2− exp(−t).

It follows from Fubini-Lebesgue theorem, that for all x ∈ E,∫
Ω
|〈x, fn(a)〉|dµ(a) =

∫
T
|x(t)|

∫
Ω
|fn(a, t)|dµ(a)dµ(t) ⩽ 2 ‖x‖1 <∞.

Hence the sequence (fn) is mean weakly bounded. However,

‖fn(a)‖⋆ =
1

a1−
1
n

a.e.

Thus the sequence (fn) is a.e. bounded. However, for each n ∈ N,∫
Ω
‖fn(a)‖⋆ dµ(a) =

∫
Ω
a−1+ 1

ndµ(a) = n,

hence the sequence (fn) is not mean norm bounded.
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