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OPTIMAL LOCATION OF ECONOMIC ACTIVITY: THE ROLE
OF THE SOCIAL WELFARE FUNCTION
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AND FAUSTO GOZZI

ABSTRACT. In this paper we deal with a family of optimal control problems
in infinite dimension with state constraints. We approach such problems with
the dynamic programming approach identifying (in cases not yet known in the
literature) a closed-form solution v of the associated Hamilton-Jacobi-Bellman
(HJB) equation, which is a PDE in a suitable Hilbert space. Consequently we
are able prove a verification theorem, to show that v is indeed the value function,
and to provide the optimal control in closed-loop form. The abstract problem is
motivated by an economic application in the context of continuous spatiotemporal
growth models with capital diffusion, where a social planner chooses the optimal
location of economic activity across space by maximization of an utilitarian social
welfare function.

1. INTRODUCTION

1.1. The mathematical problem. In this paper we consider the following linear
controlled system in a Hilbert space H, which is both the state and the control
space:

2'(t) = Lz(t) — Ne(t), t>0.
Here z(-) : Ry — H is the state trajectory, c(-) : Ry — H is the control strategy,
L,N : H — H are suitable linear operators. We require that the state variable
satisfies the constraint

(x(t),¢) >0, vt >0,

where (-, ) denotes the inner product in H and ¢ € H is a given vector. The aim
is to maximize, over the associated set of admissible control strategies, i.e. locally
integrable ¢(-) such that the above state constraint is satisfied, a functional of the
form

/ T e (e(t)dt,
0
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where p > 0 and U is a “utility-like” function. To solve the problem we use the
dynamic programming technique in infinite dimension (see, e.g., Bensoussan et al. [2]
and Liand Yong [16]) introducing the value function V' and the associated Hamilton-
Jacobi-Bellman (HJB) equation.

The infinite dimensional dynamic programming approach in economic models
was first implemented by Fabbri and Gozzi [10] (in a different context) and then
employed, among others, in a previous work by Boucekkine et al. [3] in a problem
similar to the one presented as an application here. The novelty, with respect to
the previous contribution [3], is that here we abstract from the specific form of
the operators L, N, and of the function /. Indeed, here L, N are abstract linear
operators and we specify the properties of them (in particular the spectral properties
of L) and of the function U/ that enable us to prove our main results: the verification
theorem (Theorem 3.2); the explicit solution v of the HJB equation (Proposition
4.2); the existence and explicit expression of the optimal feedback control together
with the identification v = V' (Theorem 5.1); the long-run behavior of the optimal
state trajectory (Theorem 5.3).

1.2. The economic motivation. The problem is motivated by economic growth
models with space dimension. There is indeed a growing interest in the economic
literature in the role of space in decision-making. While the economic analysis has
incorporated the spatial dimension for quite a long time (Von Thunen [21]), it is
the rise of the so-called New Economic Geography (NEG) which did induce such
a recent boom in this literature stream (see Krugman [13] for an insightful review
of the NEG, and Fujita and Thisse [11], for a master textbook in this area). An
overwhelming part of the latter stream has been concerned with the identification
and characterization of spatial externalities and the inherent agglomeration mech-
anisms. Concretely, researchers in the area target either first nature causes for
agglomeration for given technology and demographic spatial distributions (Krug-
man [14]) or second nature causes through the identification of mechanisms (typi-
cally, economies of scale or spillovers) leading to agglomeration for example when
labor is mobile (Krugman [15]). An overwhelming majority of this paper is purely
static: individuals do not save over time and therefore no capital accumulation is
considered. Following an earlier contributions in mathematical geography by Isard
and Liossatos [12], Brito [7] is to our knowledge the first who attempted to insert
space in otherwise standard neoclassical growth models, giving rise to a bunch of
papers on optimal growth within spatiotemporal frames (in particular, Boucekkine
et al. [3,5,6], and Fabbri [9]).

From the economic point of view, this paper builds on Boucekkine et al. [3]. We
focus on the problem faced by a central planner who has to choose the optimal
distribution of economic activity (say, investment and production) over space (here
the unit circle for simplicity). We assume that technology is homogeneous across
space, which amounts to assuming that technological spillovers are quick enough
for all the locations to use the same technology. In contrast, as it is most of the
time the case, individuals are harder to move. We do not justify such an immobility
but just assume it. In other words, the central planner can move capital but not
people. Accordingly, our problem investigates a first nature cause of (potential)
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spatial externalities. Moreover, we generalize the social welfare function considered
by Boucekkine et al. [3] by introducing a form of imperfect altruism in the social
preferences. While only the Benthamite social welfare function is considered in the
latter (that is, the planner consider the sum of utilities of all the individuals present
in the economy), we consider a continuum of social welfare functions ranging from
the Benthamite to the Millian form (i.e only the average consumer is considered).
To our knowledge, this is the first time this is done within a spatial setting. Clearly,
this would allow to handle a set of new population ethics and political economy
issues, for example concerning regional particularism. FEarlier papers using this
continuum of social welfare functions in non-spatial settings have been typically
devoted to study the normative implications of 1984 Parfit’s [20] population ethics
theory in different economic contexts (see Nerlove et al. [18], Palivos and Yip [19],
and more recently, Boucekkine and Fabbri, [4]).

Importantly enough, in the induced control problem, the capital spatiotemporal
dynamics follows a parabolic PDE in the tradition opened by Isard and Liossatos
[12], and can be lifted into our abstract setting. Hence, it is possible, at the end of
the day, to individuate the optimal spatiotemporal control and dynamics.

1.3. Plan of the paper. The paper is organized as follows. Sections 2 to 5 give
all the mathematical steps needed to solve explicitly the optimal control problem.
Section 6 describes the economic application and apply the preceding mathematical
theory. Section 7 displays some complementary numerical exercises. Section 8
concludes.

2. THE OPTIMAL CONTROL PROBLEM

Let (D, D, ) be a countably generated measure space and let us consider the
separable Hilbert space H := L2(D, u; R), with its usual norm |-| and scalar product
(-,-). We identify, by the usual Riesz identification, H with its topological dual. We
shall identify the elements of H, which are equivalence classes of functions coinciding
pu—a.e., with (one of) their representative functions. So, the pointwise relationship
must be intended pu—a.e.. We consider the positive and strictly positive orthants of
H, i.e. the sets

Hy:={feH: f>0}, Hyy:={feH: f>0}
Finally, we denote
HY :=H \{f=0}.
In the following we set Ry := [0, +00).
Given this setting, we are concerned with the following optimal control problem
in the space H. Let L : D(L) C H — H be a (possibly) unbounded linear operator

and let N : H — H a linear bounded operator. Given xg € H and a control function

c€E L}OC(R+; H), we consider the following abstract state equation in H:

(2.1) 2'(t) = Lx(t) — Ne(t), x(0) = xq.

We introduce the following assumption
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Assumption 2.1. L is a closed and densely defined operator gemerating a Cy-
semigroup in H.

We use the notaton e’ for the semigroup generated by L and, according to
Bensoussan et al. [2], we define the mild solution to (2.1) as the function

t
(2.2) x(t) := el —/ =)L Ne(s)ds.

0
To stress the dependence of x on zg, ¢, we write %€, (2.2) is also a weak solution
to (2.1), i.e.
(2.3)

t t
(b)) = (20,9 + /0 (2(s), L*)ds — /0 (Ne(s), g)ds, Vo € D(L*), ¥t > 0,
where L* : D(L*) C H — H denotes the adjoint of L.

Assumption 2.2. u : D x Ry — Ry is such that u(6,-) is a utility function for
each 0 € D — i.e. increasing and concave.

Next, given v : D x Ry — R, as above u(#, -), we consider the functional

U(z) = /Du(H,Z(Q))u(dG), z e Hy,

and the functional on L} (Ry;H,)

(2.4) c— J(c) = /000 e PU(c(t))dt,

where p > 0 is a given discount factor. Notice that both ¢/ and J inherit from u
the concavity.

Remark 2.3. The choice of working only with nonnegative (or, equivalently, bounded
from below) utility function is done here just for the sake of brevity, in order to
avoid technical complications that would arise in treating the case of utility func-
tions not bounded from below. The latter case might be considered and treated as
well at the price of technical complications.

Assumptions 2.1-2.2 will be standing from now on.
Let ¢ € Hy . The aim is to maximize U/ when c ranges over the convex set

AL (z0) = {c € Li,,(Ry; Hy) : 2°°(t) € HY,  for ae. t > 0},
where HY__ is the open set
HY, :={zeH: (z,9)>0}CH.
Notice that Hﬁ - Hf 4. Hence, if the semigroup et preserves HY, i.e. it maps
HY into itself, then A% (20) is not empty when zo € HY{, as the null control ¢ = 0

belongs to it. Moreover, if also N is positivity preserving, we have the following
monotonicity property:

cl S cy = xxO:Cl 2 37330,02‘
In particular

(2.5) c1<ecr, €AY (m0) = ¢ € AT (20).
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So, given ¢ € HY ,, we are interested in the following optimal control problem:
(P%) Maximize J over the set A% (zo),

whose value function is
V#(xo) :=  sup  J(c).
c€AY | (x0)
Note that we cannot say ex ante that V¥ is finite. Sufficient conditions for finiteness
will be provided later.

Remark 2.4. Problem (P?) is the most natural one from the mathematical point
of view when ¢ is chosen suitably, in the sense that it admits an explicit solution.
However, we anticipate that the meaningful problem from the economic point of
view would be the (more difficult) one:

(Py) Maximize J over the set Ay (x)

whose value function is
Vi(xo) := sup J(c).
c€A 4 (zo)

where
Ay (z0) == {c € L (Ry; Hy) : a™C(t) € HY  for a.e. t > 0}.

Note that HY C HY,: hence, for zg € H), Ai(z0) C A%, (z0) and, consequently
V¥#(xz0) > Viy(wo). Moreover, if ¢ € A¥_ (xo) is optimal for (P¥) and belongs to
A4 (z0), then it is also clearly optimal for (Py). In the illustration of the results,
we will just test numerically, ex post, that the optimal control ¢ € .Aﬁ + (o) also
belongs to A4 (o).

3. THE HJB EQUATION AND THE VERIFICATION THEOREM

In this section we provide a verification theorem for the problem and, accordingly,
the solution in a special case. The results will be used in the next section to treat
our motivating economic application.

The Hamilton-Jacobi-Bellman (HJB) equation associated to the optimal control
problem (P¥?) is

(3.1) pv(z) = (Lx, Vou(z)) + H(Vo(z)), xe HY,,

where

H(q) := sup Hevl(g;2z), q€ H,
z€H

and
Hev(gyz) :=U(z) — (Nz,q), z€ Hy, q€H.
Notice that the above supremum may not be finite in general. A sufficient condition

for the finiteness is: U(z) < Clz|* for some C' > 0 and « € (0,1), N* preserving
H, ., and g € H;,. These will be used later.
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Definition 3.1. We call classical solution to (3.1) (on HY ) afunction v € C'(HY;
such that Vv € C(H¥,; D(L*)) and such that!

pv(z) = (z, L*Vu(z)) + H(Vv(x)), Vee HY,.

Now we turn to state our Verification Theorem. Typically, to prove such theo-
rem for infinite horizon problems, a condition on the solution v computed on the
admissible trajectories when ¢ — 400 is needed. This is exactly the analogous of
the so-called transversality condition arising in the maximum principle approach.
The condition that we shall use is

(3.2) lim e Po(z™C(t) =0, Vece AL (z0).

t—-+o0

Theorem 3.2 (Verification). Let v be a classical solution to (3.1) in HY, let
xo € HY  and let (3.2) hold. Then:

(i) v(zo) = V¥(z0);
(ii) if, moreover, there exists ¢ € A7 (xo) such that (3.2) holds and
(3.3) N*Vo(z®¢(s)) € DTU(é(s))  for a.e. s >0,
where DYU denotes the superdifferential of U, then v(xzo) = V¥ (x0) and ¢
is optimal for (P¥) starting at xo, i.e. J(¢) = V¥®(xp).
Proof. (i) Let ¢ € A% (z0). By chain’s rule in infinite dimension, we have, for every
>0,
4
dt
= e Pt ( — po(z¥(t)) + (x™C(t), L*Vou(x®¢(t))) — (Ne(t), Vv(a;xo’c(t)))>.

e~ v(2™%(1)))]

Now we add and subtract e ”'U(c(t)) to the right hand side, use the fact that v
solves HJB, and integrate over [0, t]. We get, for every ¢ > 0,

e Plu(z™0C(t)) +/O e PU(c(s))ds =

vty + [ (= T ) + How (Tole™o7(5)e(5) )b,

Observe that, since U is concave (and hence sublinear from above), and ¢(-) €
L} .(R4; Hy) then both sides of the above inequality are finite for every ¢ > 0.
Now, rearranging the terms and taking into account the definition of H, we get, for

every t > 0,
(3.4) v(wg) > e Plu(z™C(t)) +/0 e PU(c(s))ds

— with equality if ¢ = ¢ verifies (3.3) (equivalently, (3.6)) s-a.e. on [0,¢]. Since U
is nonnegative (Assumption 2.2), by monotone convergence theorem w have then it

IThis equality, in particular, implies that H(Vuv(z)) is finite for every z € HY .
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must be
¢

(3.5) lim [ e U(c(s))ds = / P U(e(s))ds = T ().
Hence, passing (3.4) to the lim; ;. and using (3.2), we conclude

v(zo) = T (c)
Then, by definition of V¥ and since ¢ € A%, (z¢) was arbitrary, we immediately get
the claim.
(ii) Notice that, by concavity of U, (3.3) is equivalent to
(3.6) é(s) € argmax, ¢ pre {U(2) — (Nz, Vu(z™(s)))}, Vs>0,

the usual closed loop condition for optimality. Hence, for ¢ = ¢ we have equality in
(3.4). Hence, passing to the lim;_, { o, and using (3.2) and (3.5), we get the equality

v(zo) = J(¢)
Since J(¢) < V¥#(x¢), combining with part (i), the claim follows. O

4. A SOLUTION OF THE HJB EQUATION
In this section we further specify the model to deal with an explicit solution. We

consider the following assumption.

Assumption 4.1.
(i) There exists an eigenvector by € Hi, for L* : D(L*) C H — H with eigen-
value \g € R. Without loss of generality we assume that |bo|g = 1.
(ii) p > Xo(1 — 7).
(111) [Nz](0) = n(0)z(0), where n € L>=(D, D, u; (0, +00)).

(iv) u(6,€) = fl__;f(H), where 5 € (0,1)U (1,00) and f € L=(D, D, Ry.).

1 WT_l . £(6) P/ .
0 [ 50 00m©) 7 nan) <o [ (DT wan) < oc.

Notice that Assumptions 4.1(iv) implies Assumption 2.2. Also notice that, in
general, by may be not unique. A sufficient condition for the uniqueness of bg is
that L* is a diagonal operator with respect to a given orthonormal basis in H. This
will be the case in Section 6.

Proposition 4.2. Let Assumption 4.1 hold. Then

(4.1) v(x) = (XW, x € Hi0+7
where

| S 1O) (n(8)b0(6)) T pu(d8)
4.2) o= p—o(1—7)

is a classical solution to (3.1) on HiOJr.
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Proof. Notice first that U is Fréchet differentiable in Hio ' and
VUE6) = F0)=(0), =€ HY,.

Hence, by straightforward computations

Hia) = 7 [ 1O 00)a0) T w(d0), g Hy,

with optimizer

(4.3) 2(q)() = argmax,p, {U(z) = (Nz,q)} = <f(‘9)) kL .

Moreover
Vo(x) = alx,by) "bo.
<J3,b()>17'Y

Plugging these expression into (3.1) and dividing all terms by S, we get the
following algebraic equation in @ € R

pa = Xo(1—7)a+7a’T /D F(6)7 (n(O)bo(6)) T u(d0),

which has a unique positive solution provided by (4.2). O

5. THE SOLUTION OF THE CONTROL PROBLEM

In order to produce an optimal control starting at zo € H io ', we study the closed
loop equation associated to the solution v and to the candidate optimal feedback
map (4.3) under Assumption 4.1:

(5.1) 2/ (t) = Lx(t) — N®z(t), x(0) = o,
where ® : H — H is the bounded linear positive operator

0 g
(5.2 0:10) = (i) (b

This linear equation admits a unique mild solution Z, which is also a weak solution.
In particular, testing against by € D(L*) and taking into account the definition of
«, it holds

— (2(t), bo) = (2(t), L"bo) — (N®&(t), bo)

_ <>\0 ~a7 [ 10)% lomo) M(d9)) ((0), bo).

Hence, taking int account the definition of «, providing

2=

(5.3) o /D F(6)7 (n(0)bo(0)) ™ pu(dB) = P—AOS—V)

we get
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ie.
<i‘(t)7 b0> = <x07 b0> egt’ t>0,

where

Ao—p
5.4 g:= .
(5.4) S
By Assumption 4.1(i), we get
(5.5) Z(t) e HY, . Yt >0.

Theorem 5.1. Let Assumption 4.1 hold, let xy € H_‘ﬁ, and let v be the solution
to (3.1) given as in Proposition 4.2. The control

1
f0) \~ ¢
_ I\ baded
an(ﬁ)bo(ﬁ) <£L'0, 0>€ )
belongs to Alfﬁ+(:1:0) and is optimal for (P%) starting at xo. Moreover, v(zg) =
V(o).

i(t.0) = [oa(0](0) =

Proof. We want to apply Theorem 3.2. First, notice that, using the concept of weak
solution (2.3) with ¢ = by, we have

%@xo’c(t), bo) = Ao(@"(t), bo) — (Ne(s),bo) Ve € AT (x0),

i.e.
t

(£0C(t), bg) = (0, bo)e 0t — /0 M=) (Ne(s),bg) Ve e Alijr(xo).
Since both n and by are nonnegative (Assumption 4.1(i) and (iii)), we have

0 < (20°(t), bo) < (0, bo)e™t Ve e AR (xo).
Hence, for every c € .AI_’er(aco),
(x™o(t), bo) 7

0 < e Pt Z0:C(4)) = e Pt
< e Po(z04(t)) = ae 1

a
L—n
Therefore, using Assumption 4.1(ii), we see that (3.2) hold. This allows to apply
part (i) of Theorem 3.2.
Let us now turn to part (ii) of Theorem 3.2, i.e. to prove the optimality of
By construction 2%0¢ = #. Hence, by (5.5) and Assumption 4.1(v), we obtain
€ Aljf ' (z0). Moreover, again by construction, ¢ verifies the optimality condition
3.6). So, Theorem 3.2(ii) applies and the proof is complete.

(20, bo)e~ (P~ Ao(=7)),

™

—

0

Assumption 5.2. L* : H — H admits an orthonormal basis of eigenvectors, i.e.
there exists an orthomormal basis {by }nen of H such that

L*b, = \pb, VYneN.
Moreover,
(5.6) A <g, VkeN\{0}.
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Theorem 5.3. Let Assumption 4.1 and 5.2 hold, and let xg € H_‘ﬂr.

&g := e 9'%(t), we have the convergence in H
o
T4(t) = (o, bo) qubk, as t — oo,
k=0
where

_ Gk
e —g’

Moreover, the speed of convergence is exponential of order

g =1, qr:

where

s:= sup {\p —g}.
keN\{0}
Proof. The equation for Z, is
(5.7) g (t) = (L — g)ag(t) — N®iy(t).

Let j:ék) (t) = (Z4(t), by), so that, by Fourier series expansion

2B () =Y 2P (t)by.
k=0

Then, setting

From the fact that 2, is also a weak solution to (5.7), we get the equations

d -, A
Z0 1) = O = 92 P(0) — (w0, bo)Gr, k€N,

We already know that, by definition of g,
i:go) (t) = <IL’0, bo).
For the others term, when k£ € N\ {0}, we have
1 — ePr—9g)t
() = (0, b)) 4 (@0, bo) G ————

g AL — 9

The claim follows by (5.6).

6. THE ECONOMIC PROBLEM

We apply the results of the previous section to an economic problem by taking

the following specifications of the general framework above:
(a) D = St := {¢£ € R? :

|¢| = 1} = R/Z; S! is topologically identified with

[0,27] C R when the extreme of the latter interval are identified; similarly,

functions on S! are identified with 27-perodic functions on R;

(b) p = Hausdorff measure on the Borel o-algebra of S!; i.e., through the identifi-

cation S' = R/Z, i =Lebesgue measure on (0, 27);

(¢) L = a(f—;g + A, where o, A > 0 are constant; accordingly, the integration with

respect to this measure will be simply denoted by d#;
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(d) f(6) =n(B)”, with > 0.
In this case Assumption 2.1 is verified L = L* and this operator admits a spectral
decomposition on the separable Hilbert space L?(S!,df;R). Moreover, there is a
doubly indexed sequence of eigenvectors and eigenvalues of L = L* which is explicit.
Indeed,
by = (271')71/2151, A=A,

and

b\ (6) = 71/ sin(k6),
b2 (0) = 7=/ cos(k0), VO €S, Vk e N\ {0}.

A\, = A —ok?,
This formal frame fits quite well optimal growth models with AK production func-
tion, one-dimensional geography and capital diffusion as in Boucekkine et al. [3,5].
Indeed, calling K(t,-) = x(t) according to the usual notation for capital in AK
models, formally the problem becomes:

V(K) := Sup)/ooo e Pt </S ‘Wn(e)ﬁde) dt,

A(Ko 11—~
where p > 0, v € (0,1), 8 >0,
A(Kp) = {c € Lj,.([0,400); L*(S',d6; R™)) :
K(t,0) > 0and K(t,0) # 0 for a.e. (t,0) € Ry x S'},
under the state PDE-constraint

oK PK

6.1) {7 B0 =055 (0) + AK(2,0) —n(0)c(t.0),  (1,0) € Ry x s!,

K(0,0) = Ko(6), 6eS!,

A few comments on the economic problem are needed at this stage. First of all,
let us comment on the objective function,

/0°° o </51 W”(9)6d9> dt,

which is indeed the social welfare function to be maximized by the central planner.
This generalizes the social welfare function adopted by Boucekkine et al. [3], which
is itself an extension of Boucekkine et al. [5]. In the latter, n(f) = 1 and in the
former 8 = 1. In this case, the planner sums all the utilities of all the individuals
in location # at time t. This corresponds to total utilitarianism or equivalently to
the Benthamite case. When = 0, one gets average utilitarianism or the Millian
social welfare function: the planner do not consider all the individuals but only the
average. In between, 8 € (0, 1), we get a continuum of intermediate configurations,
we shall refer to this case as imperfect altruism: roughly speaking, as 5 increases,
the planner takes more closely into account the welfare of his population.? Two
other parameters of the social welfare functions are interesting to comment briefly
on. Parameter p may be interpreted as the time discounting factor of the planner:

2A natural extension is to consider that [ is a function of @, which is a direct way to model
regional or local particularism. We abstract away from this in this paper.
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the bigger p, the more weight will be given to the present (or to the current gen-
erations) by the planner. More interestingly, parameter  has a double role in our
spatiotemporal frame: it captures on one hand the cost of intertemporal consump-
tion substitution faced by individuals, as in the standard non-spatial settings, but
it also indicates the degree of aversion to inequality of the planner on the other.
Thus one has therefore to expect that as « increases, the less unequal will be the
consumption distribution over space. We shall check this in the last section devoted
to numerical illustration.

Finally the state equation (6.1) gives the spatiotemporal dynamics of capital.
0%29[2( (t,6) is the diffusion term of the equation, it depicts the dynamics of capital
through space with ¢ > 0 the diffusion speed. The rest of terms are obvious. In
particular n(0)c(t,0) is the so-called dilution effect of demographic size on capital
accumulation. Notice that in this economy goods are produced and consumed
locally, only capital moves cross locations (or more precisely, capital is moved by
the planner according to the PDE above in line with Isard and Liossatos [12]).

Next, assuming that
+ 2(8-1)

(A1) / n(G)B Tl < 00, n(f) 7 df < oo,
St st

(A2) p> Al —7),

all the assumptions of the previous sections are verified. By expliciting the result
of Theorem 5.1 with these specifications, we get the following.

Theorem 6.1. Let (A1)-(A2) hold and assume that the solution K to the linear
integro-PDE

(6.2)
{‘98[:(75, 0) = U%Tfj(t, 0) + AK(t,0) — a~ Y7 (27) /2 ( . K(t, 9)d0> n(0) ",

where t € Ry, 0 € S, is such that K>0and K # 0. Then, the following claims
hold true.

(i) The value function is explicitly given by

(i) The control
ét,0) = oV (2m)71/2 ( KO(G)dH) n(0) = e,
Sl

A=p s optimal and the corresponding optimal capital is K; g is

therefore the optimal growth rate of the economy.
(i1i) If, moreover, A— o < g and

where g 1=
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where
— A(1 — y—1 -1 =1
C;EQ) = p’(ny) </Sl n(0)5+v dG) /S1 n(@)ﬁv cos(k6)dé
—A(1 - Btry—1 -1 -1
W= p(wv) (/Sl n(0) d0> /81 n(0) 7 sin(k6)dd,

then the detrended optimal capital
K, (t,) == e 9'K(t,0)

converges in L2(S',d0;RT) to the function

K2(6) := (2m) 1/ < g Ko(e)de) (1 + i (¢ sin(k6) + ¢ cos(k:G)))

k=1

as e~ (9—A+o)t

A few comments are in order here. Of course, since we are dealing with an
AK model, growth is endogenous and all variables grow at exponential rates. The
growth rates are not location-dependent. This is not surprising since technology
(though parameter A) is the same everywhere, and so are individual preferences.
Second, as in Boucekkine et al. [3], we are able to identify the optimal stationary
spatial distributions in closed-form and the corresponding convergence speeds, which
certainly speaks about the flexibility of the analytical method developed. Third,
and more importantly, 5 plays a central role in the shape of these distributions, in
particular for consumption per capita. Indeed, this distribution is uniform if and
only if the social welfare function is Benthamite (8 = 1). This is an important
property which was not of course reachable in the previous contributions to this
area as they all rely on total utilitarianism. The next section goes deeper into this
question via numerical exploration.

7. SOME NUMERICAL ILLUSTRATIONS

We shall now explore numerically some of the salient properties of the optimal
long-term distributions theoretically uncovered above. We shall in particular, high-
light the implications of two key parameters: the aversion to inequality parameter
v, and the altruism parameter 5. To make the exposition more focused on the
novelties brought by our generalization of social welfare, we shall concentrate on
consumption, which is the control variable and the sole measure of welfare in our
model. It can be shown that just as in Boucekkine et al. [3], long-term total and per-
capita capital, production and investments are lower in the more populated areas.
This has a simple explanation: to guarantee a reasonable level of consumption to
everybody, the planner needs to maintain an higher level of aggregate consumption
in more densely populated areas leading to lower investment at the same loca-
tions. It follows that in this model where the optimal spatiotemporal decisions are
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only driven by demographic heterogeneity across space, and not by technology dis-
crepancy, the key variable is consumption and the determinants behind (notably,
aversion to inequality and altruism).?

To start our numerical exercises, we need a benchmark (reasonable) calibration.
Concretely, we choose: p = 0.04, v between 0.6 and 0.9, 5 between 0 and 1 and
A = 0.08. The value of p (the discount rate parameter) is chosen consistently with
the data from Lopez [17]. Parameter -, also measuring the inverse of the intertempo-
ral substitution with the CRRA specification of preferences, can be calibrated using
relative risk aversion consistently with the values found in individual choice exper-
iments (see for example Cubitt et al. [8], and Tversky and Kahneman [22]). The
value of A is set to generate long-term growth rates of 4% to 6%, which are consis-
tent with those observed in developing countries (see e.g. World Bank Group [23]).
As to the exogenous density distribution, we assume that we have a demographic
center as depicted in Figure 1:

0.2 Population distribution N (exogenous)
. : T T T T

0.12 |

0.08

FiGURE 1

Because of the neoclassical dilution effect, the computed stationary distributions
will always deliver that optimal consumption per capita goes down with population
size over space except in the Benthamite case, which therefore features a case of
egalitarianism. More interesting insights can be gained from the numerical exercises.

The implications of the aversion to inequality parameter, vv. Here we fix the altruism

parameter 3 to 0, that is we stick to the Millian social welfare function. Needless
to say, since we are concerned with consumption per capital, the Benthamite case,
B = 1, as studied in Boucekkine et al. [3,5] is irrelevant as by the theorem just
above, this is a case where consumption is uniform across space, independently of ~.
Figure 2 delivers the stationary distributions of consumption per capita detrended

3We could have followed Allen and Arkolakis [1] and assume that the size of population drives
productivity at any location. In other words, we could have assumed population-based productivity
heterogeneity. We don’t to that to single out the pure population effect in our generalized context.
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for v = 0.6,0.75,0.9. First, as v increases, consumption is in average bigger. This
is due to the fact that, as outlined in the previous section, v also measures the
cost of intertemporal substitution in consumption: when it’s high, savings and
investment are lower and consumption is higher. But in our spatiotemporal frame,
~ also measures the planner’s aversion to inequality. One can check that as ~ rises,
consumption distributions becomes less unequal. A rough and quick verification
is to compute the ratio between the periphery plateau consumption value and its
value at the trough of the distribution: it decreases steadily.

Limit of the spatial distributions of the

0.16 detrended par-capita consumption varying vy

7=0.6
e =075
0.14 | ~4=0.9 |

0.12 |

FIGURE 2

The implications of the altruism parameter, 3. Figure 3 reports the stationary spa-

tial distribution of detrended consumption capita. For this exercise, we fix v = 0.8,
and we play on the the altruism parameter. Precisely, we compute the distributions
for the Benthamite (5 = 1), Millian (5 = 0) and an imperfect altruism (8 = 0.5)
cases. Not surprisingly, the optimal stationary distribution of consumption per
capita is uniform. More interestingly, the Millian case (§ = 0) delivers by far the
largest spatial inequality in consumption while imperfect altruism displays inter-
mediate results from this point of view. Indeed, the ratio between the periphery
plateau consumption value and its value at the trough of the distribution is larger
than 2, which exceeds the ratio between the corresponding population sizes. That is
to say at low enough values of the altruism parameter 3, the optimal spatiotemporal
dynamics amplify the neoclassical dilution effect, even in the long-run! Including
this parameter into the analysis seems therefore highly interesting from the norma-
tive point of view, and probably also from a more positive perspective in contexts
of regional particularism.

4n our calibrated example, this ratio move from 2.75 at v = 0.6, to 1.85 when v = 0.75 and
finally it is equal to 0.75 for v = 0.9. Empirical standard deviations deliver the same ranking of
course.
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Limit of the spatial distributions of the
detrended par-capita consumption varying 3

3=0
0 )\ %
‘ , I=1
0.11F
0.1F
0.09 -
0.08
0.07 |
0.06 -
0.05 -
0 1 2 3 4 5 6 7
FIGURE 3

8. CONCLUSION

In this paper, we have generalized the social welfare function typically considered
in the recent literature on spatiotemporal growth with capital diffusion. Adapt-
ing the dynamic programming method in infinite dimension used in Boucekkine et
al. [3], we have been able to solve in closed-form for the optimal controls and for the
corresponding spatial stationary distributions as well, either in the short or in the
long-run. We have found several interesting results. In particular, we prove that
the Benthamite case is the unique one for which the optimal stationary detrended
consumption spatial distribution is uniform. Interestingly enough, we also find that
as the social welfare function gets closer to the Millian case, the optimal spatiotem-
poral dynamics amplify the typical neoclassical dilution population size effect, even
in the long-run.

Further extensions with space-dependent altruism featuring regional particular-
ism are worth exploring. We could have also studied much more in detail the
interplay between altruism and aversion to inequality (that is between g and 7).
We leave it for future work.
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