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2. The Robinson-Solow-Srinivasan model

Let R1 (R1
+) be the set of real (non-negative) numbers and let Rn be the n-

dimensional Euclidean space with non-negative orthant

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi ≥ 0, i = 1, . . . , n}.

For every pair of vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, define their inner
product by

xy =

n∑
i=1

xiyi

and let x >> y, x > y, x ≥ y have their usual meaning. Namely, for a given pair of
vectors x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we say that x ≥ y, if xi ≥ yi for all
i = 1, . . . , n, x > y if x ≥ y and x ̸= y, and x >> y if xi > yi for all i = 1, . . . , n.

Let e(i), i = 1, . . . , n, be the ith unit vector in Rn, and e be an element of Rn
+

all of whose coordinates are unity. For every x ∈ Rn, denote by ∥x∥ its Euclidean
norm in Rn.

Let a = (a1, . . . , an) >> 0, b = (b1, . . . , bn) >> 0, d ∈ (0, 1),

(2.1) ci = bi/(1 + dai), i = 1, . . . , n.

We assume the following:

There exists σ ∈ {1, . . . , n} such that for all

(2.2) i ∈ {1, . . . , n} \ {σ}, cσ > ci.

A sequence {x(t), y(t)}∞t=0 is called a program if for each integer t ≥ 0

(x(t), y(t)) ∈ Rn
+ ×Rn

+, x(t+ 1) ≥ (1− d)x(t),

(2.3) 0 ≤ y(t) ≤ x(t), a(x(t+ 1)− (1− d)x(t)) + ey(t) ≤ 1.

Let T1, T2 be integers such that 0 ≤ T1 < T2. A pair of sequences

({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

)

is called a program if x(T2) ∈ Rn
+ and for each integer t satisfying T1 ≤ t < T2

relations (2.3) is valid.
For the economic interpretation of the model defined above and, in particular,

for the economic meaning of our notation see the seminal paper by M. Ali Khan
and T. Mitra [23].

Assume that w : [0,∞) → R1 is a continuous strictly increasing concave and
differentiable function which represents the preferences of the planner.

Define
Ω = {(x, x′) ∈ Rn

+ ×Rn
+ : x′ − (1− d)x ≥ 0

(2.4) and a(x′ − (1− d)x) ≤ 1}
and a correspondence Λ : Ω → Rn

+ given by

(2.5) Λ(x, x′) = {y ∈ Rn
+ : 0 ≤ y ≤ x and ey ≤ 1− a(x′ − (1− d)x)}.

For every (x, x′) ∈ Ω set

(2.6) u(x, x′) = max{w(by) : y ∈ Λ(x, x′)}.
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A golden-rule stock is x̂ ∈ Rn
+ such that (x̂, x̂) is a solution to the problem:

maximize u(x, x′) subject to
(i) x′ ≥ x; (ii) (x, x′) ∈ Ω.
It was shown in [23] that there exists a unique golden-rule stock

(2.7) x̂ = (1/(1 + daσ))e(σ).

Set

(2.8) ŷ = x̂.

For i = 1, . . . , n set

(2.9) q̂i = aibi/(1 + dai), p̂i = w′(bx̂)q̂i.

It was shown in [23] that

(2.10) w(bx̂) ≥ w(by) + p̂x′ − p̂x

for every (x, x′) ∈ Ω and for every y ∈ Λ(x, x′).
A program {x(t), y(t)}∞t=0 is good if there is a real number M such that

T∑
t=0

(w(by(t))− w(bŷ)) ≥ M for every nonnegative integer T.

A program {x(t), y(t)}∞t=0 bad if

lim
T→∞

T∑
t=0

(w(by(t))− w(bŷ)) = −∞.

The following result was proved in [23].

Proposition 2.1. Every program which is not good is bad.

The following two results were obtained in [45]. They show that an asymptotic
turnpike property holds for our infinite horizon problem.

Theorem 2.2. Assume that the function w is strictly concave. Then for every good
program {x(t), y(t)}∞t=0,

lim
t→∞

(x(t), y(t)) = (x̂, x̂).

Set

(2.11) ξσ = 1− d− (1/aσ).

Theorem 2.3. Assume that ξσ ̸= −1. Then

lim
t→∞

(x(t), y(t)) = (x̂, x̂)

for every good program {x(t), y(t)}∞t=0.

We use a notion of an overtaking optimal program introduced by Gale [15] and
von Weizsacker [44]. This optimality criterion is used in optimal control [10,47,49].

A program {x∗(t), y∗(t)}∞t=0 is overtaking optimal if

lim sup
T→∞

T∑
t=0

[w(by(t))− w(by∗(t))] ≤ 0
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for every program {x(t), y(t)}∞t=0 which satisfies x(0) = x∗(0).
The following existence result was also obtained in [45].

Theorem 2.4. Assume that for every good program {x(t), y(t)}∞t=0,

lim
t→∞

(x(t), y(t)) = (x̂, x̂).

Then for every point x0 ∈ Rn
+ there is an overtaking optimal program {x(t), y(t)}∞t=0

such that x(0) = x0.

3. Turnpike results

The study of our infinite horizon problem is based on turnpike results which are
presented in this section.

Let z ∈ Rn
+ and T ≥ 1 be a natural number. Set

U(z, T ) = sup{
T−1∑
t=0

w(by(t)) : ({x(t)}Tt=0, {y(t)}T−1
t=0 )

is a program such that x(0) = z}.
Note that U(z, T ) is a finite number [26].

Let x0, x1 ∈ Rn
+, T1, T2 be integers, 0 ≤ T1 < T2. Define

U(x0, x1, T1, T2) = sup{
T2−1∑
t=T1

w(by(t)) : ({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

)

is a program such that x(T1) = x0, x(T2) ≥ x1}.
(Here we suppose that a supremum over empty set is −∞.) Note that

U(x0, x1, T1, T2) < ∞
[26].
The next turnpike result was obtained in [26].

Theorem 3.1. Assume that each good program {u(t), v(t)}∞t=0 converges to the
golden-rule stock (x̂, x̂) :

lim
t→∞

(u(t), v(t)) = (x̂, x̂).

Let M, ϵ be positive numbers and Γ ∈ (0, 1). Then there exist a natural number
L and a positive number γ such that for each integer T > 2L, each z0, z1 ∈ Rn

+

satisfying z0 ≤ Me and az1 ≤ Γd−1 and each program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) which

satisfies

x(0) = z0, x(T ) ≥ z1,
T−1∑
t=0

w(by(t)) ≥ U(z0, z1, 0, T )− γ

there are integers τ1, τ2 such that

τ1 ∈ [0, L], τ2 ∈ [T − L, T ],

∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ ϵ for all t = τ1, . . . , τ2 − 1.

Moreover if ∥x(0)− x̂∥ ≤ γ then τ1 = 0 and if ∥x(T )− x̂∥ ≤ γ then τ2 = T .
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For every positive number M and every function ϕ : Rn
+ → R1 define

∥ϕ∥M = sup{|ϕ(z)| : z ∈ Rn and 0 ≤ z ≤ Me}.
Let integers T1, T2 satisfy 0 ≤ T1 < T2, wi : Rn

+ → R1 , i = T1, . . . , T2 − 1 be
bounded on bounded subsets of Rn

+ functions. For every pair of points z0, z1 ∈ Rn
+

define

U({wt}T2−1
t=T1

, z0, z1) = sup{
T2−1∑
t=T1

wt(y(t)) :

({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

) is a program such that x(T1) = z0, x(T2) ≥ z1},

U({wt}T2−1
t=T1

, z0) = sup{
T2−1∑
t=T1

wt(y(t)) :

({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

) is a program such that x(T1) = z0}.
(Here we assume that supremum over empty set is −∞.) It is not difficult to see
that the following result holds.

Lemma 3.2. Let integers T1, T2 satisfy 0 ≤ T1 < T2 and wi : Rn
+ → R1, i =

T1, . . . , T2−1 be bounded on bounded subsets of Rn
+ upper semicontinuous functions.

Then the following assertions hold.
1. For every point z0 ∈ Rn

+ there exists a program ({x(t)}T2
t=T1

, {y(t)}T2−1
T1

) such
that

x(T1) = z0,

T2−1∑
t=T1

wt(y(t)) = U({wt}T2−1
t=T1

, z0).

2. For every pair of points z0, z1 ∈ Rn
+ such that U({wt}T2−1

t=T1
, z0, z1) is finite there

exists a program ({x(t)}T2
t=T1

, {y(t)}T2−1
t=T1

) such that x(T1) = z0, x(T2) ≥ z1 and

T2−1∑
t=T1

wt(y(t)) = U({wt}T2−1
t=T1

, z0, z1).

Lemma 3.2 is deduced in a straightforward manner from the upper semicontin-
uous of the objective functions and the compactness of the set of trajectories on
bounded intervals.

The following stability results were obtained in [48]. They show that the turnpike
phenomenon is stable under small perturbations of the utility functions.

Theorem 3.3. Suppose that for each good program {u(t), v(t)}∞t=0,

lim
t→∞

(u(t), v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . , n}, ϵ > 0 and Γ ∈ (0, 1). Then there exist a
natural number L and a positive number γ such that for each integer T > 2L, each
z0, z1 ∈ Rn

+ satisfying z0 ≤ Me and az1 ≤ Γd−1, each finite sequence of functions
wi : R

n
+ → R1, i = 0, . . . , T − 1 which are bounded on bounded subsets of Rn

+ and
such that

∥wi − w(b(·))∥M ≤ γ
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for every integer i ∈ {0, . . . , T − 1} and every program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) such

that
x(0) = z0, x(T ) ≥ z1,

T−1∑
t=0

wt(y(t)) ≥ U({wt}T−1
t=0 , z0, z1)− γ

there exist integers τ1, τ2 such that

τ1 ∈ [0, L], τ2 ∈ [T − L, T ],

∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ ϵ for all t = τ1, . . . , τ2 − 1.

Moreover if |x(0)− x̂∥ ≤ γ, then τ1 = 0 and if ∥x(T )− x̂∥ ≤ γ, then τ2 = T .

Theorem 3.4. Suppose that for each good program {u(t), v(t)}∞t=0,

lim
t→∞

(u(t), v(t)) = (x̂, x̂).

Let M > max{(aid)−1 : i = 1, . . . , n} and ϵ > 0. Then there exist a natural
number L and a positive number γ such that for each integer T > 2L, each z0 ∈ Rn

+

satisfying z0 ≤ Me, each finite sequence of functions wi : R
n
+ → R1, i = 0, . . . , T −1

which are bounded on bounded subsets of Rn
+ and such that

∥wi − w(b(·))∥M ≤ γ

for each i ∈ {0, . . . , T − 1} and each program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) which satisfies

x(0) = z0,

T−1∑
t=0

wt(y(t)) ≥ U({wt}T−1
t=0 , z0)− γ

there are integers τ1, τ2 such that

τ1 ∈ [0, L], τ2 ∈ [T − L, T ],

∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ ϵ for all t = τ1, . . . , τ2 − 1.

Moreover if ∥x(0)− x̂∥ ≤ γ then τ1 = 0 and if ∥x(T )− x̂∥ ≤ γ then τ2 = T .

4. Optimality criterions

A program {x∗(t), y∗(t)}∞t=0 is called weakly optimal [10] if for each program

{x(t), y(t)}∞t=0

satisfying x(0) = x∗(0) the following inequality holds:

lim inf
T→∞

T∑
t=0

[w(by(t))− w(by∗(t))] ≤ 0.

A program {x∗(t), y∗(t)}∞t=0 is called weakly maximal [46] if for each integer T > 0

and each program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) satisfying x(0) = x∗(0), x(T ) ≥ x∗(T ) the

following inequality holds:

T−1∑
t=0

[w(by(t))− w(by∗(t))] ≤ 0.
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A program {x∗(t), y∗(t)}∞t=0 is called agreeable [18–20] if for all integers t ≥ 0,

u(x∗(t), x∗(t+ 1)) = w(by∗(t))

and if for any natural number T0 and any ϵ > 0 there exists an integer Tϵ > T0

such that for any integer T > Tϵ and any program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) satisfying

x(0) = x∗(0) there exists a program ({x′(t)}Tt=0, {y′(t)}
T−1
t=0 ) such that

x′(0) = x(0), x′(t) = x∗(t), t = 0, . . . , T0,

T−1∑
t=0

w(by′(t)) ≥
T−1∑
t=0

w(by(t))− ϵ.

In [27] it was shown that the following properties hold:
(a) if {x(t), y(t)}∞t=0 is a weakly maximal program and

lim sup
t→∞

∥y(t)∥ > 0

then {x(t), y(t)}∞t=0 is a good program;
(b) every weakly optimal program is weakly maximal;
(c) every agreeable program is weakly maximal.

Proposition 4.1. Suppose that for each good program {u(t), v(t)}∞t=0,

lim
t→∞

(u(t), v(t)) = (x̂, x̂).

Then every agreeable program is good.

Proof. Assume that a program {x∗(t), y∗(t)}∞t=0 is agreeable. We claim that it is
good. Properties (a) and (c) imply that it is sufficient to show that

lim sup
t→∞

∥y(t)∥ > 0.

Let us prove that

lim
t→∞

y(t) = x̂.

Fix

(4.1) M > ∥x∗(0)∥+max{(aid)−1 : i = 1, . . . , n}.
Let ϵ > 0. Theorem 3.4 implies that there exist a natural number L1 and γ > 0
such that the following property holds:

(d) for each integer T > 2L, each z0 ∈ Rn
+ satisfying z0 ≤ Me and each program

({x(t)}Tt=0, {y(t)}
T−1
t=0 ) which satisfies

x(0) = z0,

T−1∑
t=0

w(by(t)) ≥ U(z0, T )− γ

we have

∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ ϵ for all t = L, . . . , T − L− 1.

Let

S > 2L
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be an integer. By the definition of an agreeable program, there exists an integer
T > S + L and a program ({x(t)}Tt=0, {y(t)}

T−1
t=0 ) such that

x(t) = x∗(t), t = 0, . . . , S + L,

T−1∑
t=0

w(by(t)) ≥ U(z0, T )− γ.

It follows from property (d), (4.1) and the relations above that

∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ ϵ for all t = L, . . . , T − L− 1

and
∥x(t)− x̂∥, ∥y(t)− x̂∥ ≤ ϵ for all t = L, . . . , S.

Since ϵ is an arbitrary positive number and S is an arbitrary integer satisfying
S > 2L we conclude that

lim
t→∞

x(t) = x̂, lim
t→∞

y(t) = x̂.

This completes the proof of Proposition 4.1. □
Let

(4.2) M > max{(aid)−1 : i = 1, . . . , n}.
A program {x∗(t), y∗(t)}∞t=0 satisfying

x∗(0) ≤ Me

is called strongly agreeable if for all integers t ≥ 0,

u(x∗(t), x∗(t+ 1)) = w(by∗(t))

and if for every natural number T0 and every positive number ϵ there exist δ > 0
and an integer Tϵ > T0 such that for each integer T > Tϵ and each finite sequence
of functions wi : R

n
+ → R1, i = 0, . . . , T − 1 which are bounded on bounded subsets

of Rn
+ and such that

∥wi − w(b(·))∥M ≤ δ

for each i ∈ {0, . . . , T − 1} there exists a program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) which

satisfies
x(t) = x∗(t), t = 0, . . . , T0

and
T−1∑
t=0

wt(y(t)) ≥ U({wt}T−1
t=0 , x(0))− ϵ.

The following theorem is our main result.

Theorem 4.2. Suppose that for each good program {u(t), v(t)}∞t=0,

lim
t→∞

(u(t), v(t)) = (x̂, x̂).

Let

(4.2) M > max{(aid)−1 : i = 1, . . . , n}
and {x∗(t), y∗(t)}∞t=0 be a program satisfying

(4.3) x∗(0) ≤ Me.
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Then the following properties are equivalent:

(i) {x∗(t), y∗(t)}∞t=0 is strongly agreeable;
(ii) {x∗(t), y∗(t)}∞t=0 is agreeable;
(iii) {x∗(t), y∗(t)}∞t=0 is weakly maximal and good;
(iv) {x∗(t), y∗(t)}∞t=0 is weakly maximal and satisfies

lim
t→∞

(x∗(t), y∗(t)) = (x̂, x̂).

(v) {x∗(t), y∗(t)}∞t=0 is weakly maximal and satisfies

lim sup
t→∞

∥y∗(t))∥ > 0.

5. Proof of Theorem 4.2

In the proof of Theorem 4.2 we use the following two auxiliary results.

Proposition 5.1 ( [24]). Let ϵ > 0. Then there exists δ > 0 such that for each
x, x′ ∈ Rn

+ satisfying
∥x− x̂∥, ∥x′ − x̂∥ ≤ δ

there exist x̄ ≥ x′, y ∈ Rn
+ such that

(x, x̄) ∈ Ω, y ∈ Λ(x, x̄),

∥y − x̂∥ ≤ ϵ, ∥x̄− x̂∥ ≤ ϵ.

Lemma 5.2 ( [46]). Assume that

M0 > max{(aid)−1 : i = 1, . . . , n},
(x, x′) ∈ Ω and that x ≤ M0e. Then x′ ≤ M0e.

Proof of Theorem 4.2. Clearly, (i) implies (ii), (ii) implies (iii), (iii) implies (iv), (iv)
implies (v) and (v) implies (iii). In order to complete the proof of the theorem it is
sufficient to show that (iii) implies (i).

Assume that {x∗(t), y∗(t)}∞t=0 is weakly maximal and good. Then

(5.1) lim
t→∞

x∗(t) = lim
t→∞

y∗(t) = x̂.

Let T0 ≥ 1 be an integer and ϵ ∈ (0, 1). Since x̂ is the golden-rule stock there exists

δ0 ∈ (0, ϵ/8)

such that the following property holds:
(a) for each (x, x′) ∈ Ω satisfying

∥x− x̂∥, ∥x′ − x̂∥ ≤ 2δ0

and each y ∈ Λ(x, x′) we have

w(by) ≤ w(bx̂) + ϵ/8.

Proposition 5.1 implies that there exists

δ1 ∈ (0, δ0)

such that the following property holds:
(b) for each x, x′ ∈ Rn

+ satisfying

∥x− x̂∥, ∥x′ − x̂∥ ≤ δ1
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there exist x̄ ≥ x′, y ∈ Rn
+ such that

(x, x̄) ∈ Ω, y ∈ Λ(x, x̄),

∥y − x̂∥ ≤ δ0, ∥x̄− x̂∥ ≤ δ0,

|w(by)− w(bx̂)| ≤ δ0/8.

By Theorem 3.4, there exist a natural number L0 and a positive number

δ2 ∈ (0, δ1)

such that the following property holds:
(c) for each integer T > 2L0, each z0 ∈ Rn

+ satisfying z0 ≤ Me, each finite
sequence of functions wi : Rn

+ → R1, i = 0, . . . , T − 1 which are bounded on
bounded subsets of Rn

+ and such that

∥wi − w(b(·))∥M ≤ δ2

for each i ∈ {0, . . . , T − 1} and each program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) which satisfies

x(0) = z0,

T−1∑
t=0

wt(y(t)) ≥ U({wt}T−1
t=0 , z0)− 2δ2

we have

∥x(t)− x̂∥ ≤ δ1 for all t = L0, . . . , T − L0 − 1.

In view of (5.1), there exists an integer L1 ≥ 1 such that

(5.2) ∥x∗(t)− x̂∥ ≤ δ1 for all integers t ≥ L1.

Set

(5.3) Tϵ = 2(L0 + L1 + T0 + 4).

Choose a positive number δ < δ2 such that

(5.4) δ(L0 + L1 + T0 + 4) < ϵ/64.

Assume that an integer T > Tϵ, functions wi : R
n
+ → R1, i = 0, . . . , T − 1 are

bounded on bounded subsets of Rn
+,

(5.5) ∥wi − w(b(·))∥M ≤ δ

for each i ∈ {0, . . . , T − 1} and that a program ({x(t)}Tt=0, {y(t)}
T−1
t=0 ) satisfies

(5.6) x(0) = x∗(0),

and

(5.7).
T−1∑
t=0

wt(y(t)) ≥ U({wt}T−1
t=0 , x

∗(0))− δ/2.

Lemma 5.2, (4.2), (4.3) and (5.6) imply that

(5.8) x(t) ≤ Me, t = 0, . . . , T, y(t) ≤ Me, t = 0, . . . , T − 1,

(5.9) y∗(t) ≤ x∗(t) ≤ Me, t = 0, 1, . . . .
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Property (c), (4.3), (5.3), (5.4) and (5.6) imply that

(5.10) ∥x(t)− x̂∥ ≤ δ1 for all t = L0, . . . , T − L0 − 1.

In view of (5.3) and (5.10),

(5.11) ∥x(L0 + L1 + T0 + i)− x̂∥ ≤ δ1, i = 0, 1, 2, 3, 4.

By (5.2),

(5.12) ∥x∗(L0 + L1 + T0 + i)− x̂∥ ≤ δ1, i = 0, 1, 2, 3, 4.

Property (a), (5.11) and (5.12) imply that

(5.13) w(by(L0 + L1 + T0 + i)) ≤ w(bx̂) + ϵ/8, i = 0, 1, 2, 3,

(5.14) w(by∗(L0 + L1 + T0 + i)) ≤ w(bx̂) + ϵ/8, i = 0, 1, 2, 3.

It follows from (5.11), (5.12) and property (b) that there exist

x̄(L0 + L1 + T0 + 1) ∈ Rn
+, ȳ(L0 + L1 + T0) ∈ Rn

+

such that

(5.15) x̄(L0 + L1 + T0 + 1) ≥ x∗(L0 + L1 + T0 + 1),

(5.16) (x(L0 + L1 + T0), x̄(L0 + L1 + T0 + 1)) ∈ Ω,

(5.17) ȳ(L0 + L1 + T0) ∈ Λ(x(L0 + L1 + T0), x̄(L0 + L1 + T0 + 1)),

(5.18) ∥x̄(L0 + L1 + T0 + 1)− x̂∥ ≤ δ0,

(5.19) ∥ȳ(L0 + L1 + T0)− x̂∥ ≤ δ0,

(5.20) |w(bȳ(L0 + L1 + T0))− w(bx̂)| ≤ δ0/8.

Set

(5.21) x̄(t) = x(t), t = 0, . . . , L0+L1+T0, ȳ(t) = y(t), t = 0, . . . , L0+L1+T0−1.

By (5.16), (5.17) and (5.21), ({x̄(t)}L0+L1+T0+1
t=0 , {ȳ(t)}L0+L1+T0

t=0 ) is a program. In
view of (5.6), (5.15) and (5.21),

(5.22) x̄(0) = x∗(0), x̄(L0 + L1 + T0 + 1) ≥ x∗(L0 + L1 + T0 + 1).

Since the program {x∗(t), y∗(t)}∞t=0 is weakly maximal it follows from (5.22) that

(5.23)

L0+L1+T0∑
t=0

w(by∗(t)) ≥
L0+L1+T0∑

t=0

w(bȳ(t)).
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It follows from (5.14), (5.20), (5.21) and (5.23) that

(5.24)

L0+L1+T0−1∑
t=0

w(by∗(t)) ≥
L0+L1+T0∑

t=0

w(bȳ(t))− w(by∗(L0 + L1 + T0))

≥
L0+L1+T0−1∑

t=0

w(by(t)) + w(bx̂)− δ0/8− w(bx̂)− ϵ/8

=

L0+L1+T0−1∑
t=0

w(by(t))− δ0/8− ϵ/8.

It follows from (5.11), (5.12) and property (b) that there exist

x̃(L0 + L1 + T0 + 1) ∈ Rn
+, ỹ(L0 + L1 + T0) ∈ Rn

+

such that

(5.25) x̃(L0 + L1 + T0 + 1) ≥ x(L0 + L1 + T0 + 1),

(5.26) (x∗(L0 + L1 + T0), x̃(L0 + L1 + T0 + 1)) ∈ Ω,

(5.27) ỹ(L0 + L1 + T0) ∈ Λ(x∗(L0 + L1 + T0), x̃(L0 + L1 + T0 + 1)),

(5.28) ∥x̃(L0 + L1 + T0 + 1)− x̂∥ ≤ δ0, ∥ỹ(L0 + L1 + T0)− x̂∥ ≤ δ0,

(5.29) |w(bỹ(L0 + L1 + T0))− w(bx̂)| ≤ δ0/8.

Set

(5.30) x̃(t) = x∗(t), t = 0, . . . , L0+L1+T0, ỹ(t) = y∗(t), t = 0, . . . , L0+L1+T0−1.

By (5.26), (5.27) and (5.30), ({x̃(t)}L0+L1+T0+1
t=0 , {ỹ(t)}L0+L1+T0

t=0 ) is a program.
For all integers t = L0 + L1 + T0 + 1, . . . , T − 1 set

(5.31) ỹ(t) = y(t),

(5.32) x̃(t+ 1) = (1− d)x̃(t) + x(t+ 1)− (1− d)x(t).

By (5.25) and (5.32),

(5.33) x̃(t) ≥ x(t), t = L0 + L1 + T0 + 1, . . . , T.

In view of (5.31)-(5.33), ({x̃(t)}Tt=0, {ỹ(t)}
T−1
t=0 ) is a program. It follows from (5.4),

(5.5) and (5.31) that
(5.34)

T−1∑
t=0

wt(ỹ(t))−
T−1∑
t=0

wt(y(t)) ≥
L0+L1+T0∑

t=0

wt(ỹ(t))−
L0+L1+T0∑

t=0

wt(y(t))

≥
L0+L1+T0∑

t=0

w(bỹ(t))−
L0+L1+T0∑

t=0

w(by(t))

− 2δ(L0 + L1 + T0 + 2)

≥
L0+L1+T0∑

t=0

w(bỹ(t))−
L0+L1+T0∑

t=0

w(by(t))− ϵ/32.
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By (5.6), (5.7), (5.13), (5.24), (5.29), (5.30) and (5.34),

(5.35)

T−1∑
t=0

wt(ỹ(t))−
T−1∑
t=0

wt(y(t)) ≥
L0+L1+T0∑

t=0

w(bỹ(t))−
L0+L1+T0∑

t=0

w(by(t))− ϵ/32

≥
L0+L1+T0−1∑

t=0

w(by∗(t)) + w(bx̂)− δ0/8

−
L0+L1+T0−1∑

t=0

w(by(t))− w(bx̂)− ϵ/8− ϵ/32

≥ −δ0/8− ϵ/8− ϵ/8− δ0/8− ϵ/32 > −ϵ/2.

In view of (5.7) and (5.35),

T−1∑
t=0

wt(ỹ(t)) ≥ −ϵ/2 +

T−1∑
t=0

wt(y(t)) ≥ U({wt}T−1
t=0 , x

∗(0))− ϵ.

Thus the program {x∗(t), y∗(t)}∞t=0 is strongly agreeable and property (iii) holds.
Therefore (iii) implies (i) and this completes the proof of Theorem 4.2. □
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