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game can be defined as usual: a profile of actions is in the core of this game if it is

not blocked by any coalition, the very definition of blocking has to take the actions

of the complementary coalition into account due to the presence of externalities.

Aumann [6, 7] introduces two core concepts for strategic form games: α-core and

β-core. A pair of an action profile and a payoff profile is in the α-core of a game

if the grand coalition’s aggregate payoff from the action profile is equivalent to the

aggregate payoff profile, and no coalition has an alternative action which makes all

of its members better off, independently of the actions of the other players. The

α-core is a “pessimistic” solution concept in terms of the perception of the members

of the blocking coalition’s capability to react the outsiders’ actions. The β-core, on

the other hand, is a stronger solution concept such that the blocking coalition is per-

mitted to counteract to each action of the complementary coalition so as to achieve

a higher aggregate payoff. It is as if a blocking coalition announces its intention to

block, forces the complementary coalition to move first, and then responds, rather

than the reverse order of moves. Hence, the members of the blocking coalition

has an “optimistic” perspective in terms of their reaction capability to outsiders’

actions.

Scarf [34], by using the methods he developed in his 1967 paper on the core of a

characteristic function-form game, provides a result on the nonemptiness of the α-

core of a strategic-form game. Until the work of Zhao [45], the β-core existence result

has been absent.1 Zhao [45] provides, under the transferable utility assumption, a

result on the nonemptiness of the β-core of a game with continuous payoff functions.

A transferable-utility β-core existence result has direct relevance to many economic

problems in which agents have incentive to cooperate and transfers are allowed. For

example, in oligopoly markets, acting cooperatively yields firms higher payoffs which

can then be redistributed among them. In these markets, cooperation with side

payments can be interpreted as overt collusion. However, this profitable merger will

not take place unless firms could split the monopoly profits without any objection.

An element of a β-core describes an allocation of the profits in a monopoly merger.

Therefore, the nonemptiness of β-core provides a necessary condition for monopoly

merger. In other words, the monopoly merger can only take place if the original

market has a nonempty core.

Many economic problems are suitably modeled by games with discontinuous pay-

off functions. The seminal works of Dasgupta and Maskin [15], Simon-Zame [36]

1In his paper, Scarf provides a counterexmaple to the nonemptiness of the β-core. There are
existence results for stronger solution concepts such as strong Nash equilibrium in the literature,
see Ichiishi [19, Chapter 2] for a detailed discussion and [32] for a recent work. Zhao’s work is
the first paper which provides a direct existence result when the utilities are transferable. See also
[44, 46] and [27] on a discussion of different cooperative solution concepts for strategic-form games.
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and Reny [28] initiate a rich and evolving literature on the existence of an equi-

librium in games with possibly discontinuous payoffs.2 The purpose of this paper

is to generalize Zhao’s [1999b] result to games with possibly discontinuous payoff

functions. In line with the recent literature on discontinuous games, we define a

class of games with possibly discontinuous payoffs, which we call reaction-secure

games, and provide sufficcient conditions such that these games have a nonempty

transferable-utility β-core.3

The paper is organized as follows. Section 2 defines the basic concepts and

notations, Section 3 presents two theorems on the nonemptiness of the β-core of

discontinuous games of general n-player games with transferable utilities, and also

it connects these results to hybrid solutions, and Section 4 concerns a special case of

two-player games and it presents four propositions complementing the two theorems

by showing that this special setup allows us to weaken (even drop some of) the

convexity and separability assumptions, and a proposition on the nonemptiness of

the nontransferable utility β-core of discontinuous games. Section 5 illustrates the

applications of our results to Bertrand duopoly and Cournot oligopoly games, and

Section 6 concludes.

2. Notational and conceptual preliminaries

A (strategic form) game is a list G = (Xi, ui)i∈N where N = {1, . . . , n} is the

finite collection of players, Xi is a nonempty set of actions for player i and ui : X →
R represents the payoff function of player i defined on the set of action profiles

X =
∏

i∈N Xi. Let G = (Xi, ui)i∈N be a game such that Xi is a nonempty subset

of a finite dimensional Euclidean space.4 for each player i. Then G is said to be

(i) compact if Xi is compact for each i ∈ N,

(ii) concave if Xi is convex and ui is concave for each i ∈ N,

(iii) bounded if ui is bounded for each i ∈ N.

Let G = (Xi, ui)i∈N be a game. A coalition is an element S in N = 2N\∅. Let
N̊ denote the set of all coalitions excluding the grand coalition. The set of actions

available to a coalition S is denoted as XS =
∏

i∈S Xi, and the vector of utility func-

tions of coalition S as uS = (ui)i∈S .
5 For each coalition S, let −S = N\S denote the

2See [12] and [29] for two symposia, and [31] for a survey on the recent developments in the
discontinuous games literature.
3Recently, an existence result for the α-core of a game with possibly discontinuous payoff functions
has been provided by [38], with or without transferable utilities. Since the TU β-core is contained
in the TU α-core, this paper also provides an existence result for the TU α-core.
4The results presented in this paper can easily be generalized to arbitrary topological vector spaces.
5We drop the subscript N for the grand coalition, and when it is clear from the context, we use i
instead of {i}.
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complementary coalition. An imputation is a payoff vector v ∈ Rn. An imputation is

x-feasible if
∑

i∈N ui(x) =
∑

i∈N vi. A coalition S ∈ N̊ blocks an imputation v ∈ Rn

if there exists f : X−S → XS such that
∑

i∈S ui (fS(z−S), z−S) >
∑

i∈S vi and the

the grand coalition blocks v if there exists x ∈ X such that
∑

i∈N ui (x) >
∑

i∈S vi.

Definition 2.1. A pair of an action profile and imputation (x∗, v∗) ∈ X ×Rn is in

the β-core6 of a game G = (Xi, ui)i∈N if v∗ is x∗-feasible and is not blocked by any

coalition.

Note that a pair of an action profile and an imputation (x∗, v∗) is in the β-core

of the game if x∗ maximizes the payoff of the grand coalition, v∗ is the maximum

payoff of the grand coalition and no coalition has a reaction function which yields

itself a strictly higher payoff depending on the complementary coalition’s action.

An action profile x is a Nash equilibrium of G if no player has a strategy which

gives her strictly higher payoff than x assuming that the others do not change their

actions. The (transferable utility) β-core differs from the Nash equilibrium in three

aspects. First, the coalitions are allowed to act together. Second, coalition members

can transfer their payoff among each other. Third, the complementary coalitions

are allowed to punish the deviants while the deviants are allowed to react to the

actions of the complementary coalitions. As we note in the introduction, another

closely related solution concept is the α-core; the main difference is that it does not

allow the blocking coalition to counteract the complementary coalition’s action. By

definition, for a game, its β-core is contained in its α-core, for both transferable and

nontransferable utilities; see [7], [34] and [45] for a detailed comparison of the two

core concepts.

Next, we introduce two weak continuity concepts, inspired by the pioneering

work of Reny [28], which imposes topological assumptions on the game itself. For

a bounded game G, let

(2.1) X =

{
(x, v) ∈ X × Rn|

∑
i∈N

vi =
∑
i∈N

ui(x), inf
z∈X

ui(z) ≤ vi ∀i ∈ N

}
denote the set of all pairs of action profiles x and x-feasible imputations v such that

the imputations are bounded below by players’ lowest possible payoffs. It is clear

that X contains the β-core of G. Let X̄ denote the (topological) closure of X . Note
that if the game is compact and bounded, then X̄ is compact.

6In this definition, and in the definitions of an imputation, feasibility and blocking concepts above,
we assume the utilities are ”transferable.” Since all of our results but one (Proposition 4.8) as-
sume transferable utilities, we abbreviated the notation and do not explicitly refer to transferable
utility in the definitions for the convenience of the reader. Moreover, when we refer to the core
of nontransferable utility games, we explicitly mention that the utilities are nontransferable; see
Definitions 4.6 and 4.7 and Proposition 4.8.
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Definition 2.2. A bounded, compact game G is reaction-secure (RS) if for each

(x, v) ∈ X̄ that is not in the β-core of G, there exist an open neighborhood Ux,v of

(x, v), yx,vN ∈ X, wx,v
N ∈ R, and for each S ∈ N̊ there exist wx,v

S ∈ R and a function

δx,vS : X−S → XS such that

(i)
∑

i∈N ui(y
x,v
N ) ≥ wx,v

N

(ii) for all S ∈ N̊ and for all z−S ∈ X−S ,
∑

i∈S ui(δ
x,v
S (z−S), z−S) ≥ wx,v

S ,

(iii) for each (x′, v′) ∈ Ux,v there exists S ∈ N such that
∑

i∈S v
′
i < wx,v

S .

Remark 2.3. If a pair of action profile and imputation (x, v) is not in the β-core of

G, then by definition at least one coalition blocks v. The reaction-security (RS) im-

poses the following structure on the blockings: (a) an open neighborhood of (x, v)

does not contain a point in the β-core of G, i.e. the payoff at each point in the

neighborhood is blocked by at least one coalition, (b) the identity of the blocking

coalition is allowed to vary, but each coalition’s reaction function must remain un-

changed. This type of security notion is inspired by the pioneering work of Reny

[28]. His notion of better-reply-security assumes that every action profile which is

not a Nash equilibrium of G (a) has a neighborhood which does not contain a Nash

equilibrium, i.e. at each point in the neighborhood at least one player deviates

at it, (b) the identity of the deviant is allowed to vary, but his deviation strategy

must remain same in response to the remaining players’ tremble on the neighbor-

hood. A weakening of Reny’s better-reply-security notion is provided by Barelli and

Meneghel [8] and Reny [30] that allows each player has multiple deviation strategies

which change upper semicontinuously in response to the remaining players’ trem-

ble on the neighborhood.7 In particular, they define the following weak continuity

concept.

A bounded, compact game G is correspondence-secure (CS) if for

each x ∈ X that is not a Nash equilibrium of G, there exist an open

neighborhood Ux of x, and for each player i ∈ N, vxi ∈ R and an

upper semicontinuous, u.s.c. hereafter,8 correspondence ψx
i : Ux ↠

Xi with compact and nonempty values9 such that
(i) ui(z

′
i, z−i) ≥ vxi for each i ∈ N, z ∈ Ux and z′i ∈ ψx

i (z),

(ii) for each x′ ∈ Ux there exists i ∈ N such that ui(x
′) < vxi .

7See also [26], [39], [18], [13], [25], [2, 3], [21], [40] and [24] on the continuity postulate in economic
theory, and generalizations and applications of Reny’s better-reply-security notion.
8A correspondence with compact values whose range is a compact Hausdorff space is u.s.c. if and
only if its graph is closed in the product topology; see Aliprantis-Border [1, Lemma 17.11, p. 561].
9Reny [30] assumes ψx

i also has convex values, but for finite dimensional spaces we can drop this
assumption.
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There are some similarities between the concepts of reaction-security and

correspondence-security. Both assume that if a point is not an equilibrium, then a

neighborhood of it does contain an equilibrium. Moreover, both put some structure

on the deviation/blocking, the players/coalitions should deviate “nicely”. Beyond

these conceptual similarities, the two concepts are quite different. First, in the RS,

the reaction functions are structure free, i.e. they do not have any continuity or

convexity property. Second, the trembling of the others is replaced by all actions

of the complementary coalition. Although this seems a strong assumption, it is

consistent with the definition of blocking and Reny’s insight. The CS assumes a

structure on deviations, and the RS on blockings, and the definition of blocking, in

contrast to deviation, already incorporates all actions of the complementary coali-

tion. These arguments imply that there is no inclusion relation between the RS

and CS concepts – Example 1 below illustrates this claim.

Note that if a pair of action profile and imputation (x∗, v∗) is in the β-core,

then the following three conditions are satisfied: (i) x∗ ∈ argmax
x∈X

∑
i∈N ui(x), (ii)∑

i∈N v∗i =
∑

i∈N ui(x
∗), and (iii) v∗ is not blocked by any coalition. In order to

guarantee a solution to the maximization problem defined in (i), we define the RS

on X̄ , not on X .10 Observe the maximization problem in part (i) is independent

of the no blocking condition in part (iii), hence it is possible to separately analyze

these two parts and obtain a different and simpler continuity concept as follows.

Let G be a compact and bounded game. If the aggregate payoff function ū(x) =∑
i∈N ui(x) is upper semicontinuous, then ū has a maximizer.11 Fix a maximizer x̄

of ū. Then, focusing only on the redistributions of the grand coalition’s maximum

aggregate payoff, which are called imputations, is enough to show the nonemptiness

of the β-core. In particular, let

(2.2) V =

{
v ∈ Rn|

∑
i∈N

vi =
∑
i∈N

ui(x̄), inf
x∈X

ui(x) ≤ vi ∀i ∈ N

}
denote the set of bounded below and x̄-feasible imputations. It is clear that the

β-core of G is nonempty if and only if V contains an imputation which is not blocked

by any coalition. Note that since G is bounded, V is compact.

Definition 2.4. A bounded, compact game G = (Xi, ui)i∈N is RSN if the aggregate

payoff function ū is upper semicontinuous and for each v ∈ V such that (x̄, v) is not

10This property of RS is similar to the original better-reply-security notion of [28] which works on
the closure of the graph of the game.
11One can also impose weaker assumptions such transfer continuity of [37], or continuous neighbor-
hood selection of [39], or continuous inlcusion property of [18], to guarantee that ū has a maximizer.
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in the β-core of G, there exist an open neighborhood Uv of v, and for each S ∈ N̊
there exist wv

S ∈ R and a function δvS : X−S → XS such that

(i)
∑

i∈S ui(δ
v
S(z−S), z−S) ≥ wv

S for each S ∈ N̊ and z−S ∈ X−S ,

(ii) for each v′ ∈ Uv there exists S ∈ N̊ such that
∑

i∈S v
′
i < wv

S .

Remark 2.5. Note that while the RSN property focuses only on {x̄} × V ⊂ X̄
and does not take the points in the closure of X into account, it explicitly imposes

assumptions on the grand coalition’s blocking behavior which is not imposed by the

RS. It is easy to see that if ū is upper semicontinuous, then every RS game is RSN .

However, the RSN property does not imply RS – Example 1 below illustrates this

claim.12

Let G be a bounded RS game. For each S ∈ N̊ and (x, v) ∈ X̄ that is not in the

β-core of G define the set of all securing reaction functions as

∆S(x, v) = {δx
′,v′

S : X−S → XS | (x′, v′) ∈ X̄ is not in the β-core of G

and wx′,v′

S ≥ wx,v
S },

where the functions δx
′,v′

S and the values wx,v
S , wx′,v′

S are as defined in Definition 2.2.

Now let G be a bounded RSN game. For each S ∈ N̊ and v ∈ V such that (x̄, v) is

not in the β-core of G define the set of all securing reaction functions as

∆N
S (v) = {δv′S : X−S → XS | v′ ∈ V , (x̄, v′) is not in the β-core of G

and wv′
S ≥ wv

S}

where the functions δv
′

S and the values wv
S , w

v′
S are as defined in Definition 2.4.

Definition 2.6. A bounded, compact RS game G is strongly separable if for each

S ∈ N̊ there exists (x, v) ∈ X̄ such that for each δS ∈ ∆S(x, v) there exists z̃−S ∈
X−S such that ∑

i∈S
ui(δS(z̃−S), z̃−S) =

∑
i∈S

inf
z−S∈X−S

ui(δS(z̃−S), z−S)

Definition 2.7. A bounded, compact RSN game G is strongly separable if for each

S ∈ N̊ there exists v ∈ V such that for each δS ∈ ∆N
S (v) there exists z̃−S ∈ X−S

such that ∑
i∈S

ui(δS(z̃−S), z̃−S) =
∑
i∈S

inf
z−S∈X−S

ui(δS(z̃−S), z−S).

12The following simple one player game may also be helpful in illustrating this claim. X = [0, 1]
and u(0) = 1, u(1) = 0, and u(x) = x for all x ∈ (0, 1). This 1-player game is not RS since 1 is not
a maximizer of u and (x, v) = (1, 1) ∈ X̄ . However, it is clear that the game is RSN .
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Remark 2.8. Note that the strong separability definition we provide here closely

related to the following definition provided in Zhao [45, Definition 3, p.157]: “A

game G is strongly separable if for each S ∈ N̊ and each i ∈ S,

ui(x
∗(ẑ−S), ẑ−S) = min

z−S∈X−S

ui(x
∗(ẑ−S), z−S),

where for each z−S ∈ X−S , x
∗
S(z−S) solves maxxS∈XS

∑
i∈S ui(xS , z−S), and for

given x∗S(·), ẑ−S solves minz−S∈X−S

∑
i∈S ui(x

∗(z−S), z−S).” While Zhao’s definition

requires the equality to hold for a specific reaction function, our definitions requires

the equality to hold for a set of reaction functions, hence his definition imposes

a weaker condition. On the other hand, while his definition requires the equality

to hold for all members of a given coalition, our definitions impose the equality

restriction on the aggregate utility of a given coalition, and also we do not require

z̃−S = ẑ−S , hence our definition imposes weaker conditions. Having said this, if

utilities are continuous, we can revise the sets of the securing reaction functions

such that our definitions are weaker than Zhao’s definition as follows. Assume

the payoff functions are continuous. It is easy to see that we can set ∆S(x, v) =

∆N
S (v′) = {x∗S(·)} for all S ∈ N̊ and (x, v) ∈ X̄ and v′ ∈ V since RS and RSN

require only the existence of a securing reaction function which can be selected as

the “best” reaction function without loss of generality.

3. Results: general n-player games

Our first result generalizes the main result of [45] by weakening the continuity

assumption on the payoff functions.

Theorem 3.1. Every concave, bounded, compact, strongly separable and RS game

has a nonempty β-core.

Before presenting the proof, we present three remarks: the first is on the structure

of the discontinuity of a concave function, the second compares Theorem 3.1 to the

relevant results in the antecedent literature and the third is on the method-of-proof.

Remark 3.2. It is well known that every real-valued concave function on a Eu-

clidean space is continuous at each point of its domain’s relative interior. Hence,

discontinuities can occur only at the relative boundary of the domain. And, it is

easy to define a concave function that is discontinuous at every point of the relative

boundary of its domain. Ernst [16], in his generalizatino of [17], provides a nice

characterization of the continuity properties of a concave function on the relative

boundary of its domain. Before stating this result, we shall introduce some con-

cepts. A subset X of Rm is called a polytope provided that it is the convex hull

of a finite set of points And X is said to be boundedly polyhedral provided that its
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intersection with any polytope is a polytope. It is clear that any compact bound-

edly polyhedron is a polytope. Ernst [16, Theorem 2.4, p.3672] states that given a

convex and compact subset X of Rm, every concave function on X is lower semi-

continuous if and only if X is a polytope. Since any convex and compact subset X

of R is a polytope, Ernst’s theorem implies that any concave function on X is lower

semicontinuous. However, for Rm, m ≥ 2, this result is not true. Given a convex

and compact subset X of Rm which is not polytope (such as unit ball), it is always

possible to find a concave function on X which is not lower semicontinuous. Hence,

our setup which eliminates max and replaces min with inf is crucial for games with

possibly discontinuous payoff functions. And as Carter [14, p.334] states “This is

not a mere curiosity. Economic life often takes place at the boundaries of convex

sets, where the possibility of discontinuities must be taken into account.”

Remark 3.3. Scarf [34, Theorem] provides a result on the nonemptiness of the

α-core of continuous games with nontransferable utilities. Zhao [44, Theorem 1]

and Zhao [45, Theorem 1] prove the nonemptiness of the α-core and the β-core of

continuous games with transferable utilities, respectively. Uyanik [38, Theorems 1,

2, 3] generalizes Scarf’s and Zhao’s results on the nonemptiness of the α-core to

games with possibly discontinuous preferences, with or without transferable utili-

ties. The relationship between our results on the nonemptiness of the β-core with

transferable utilities, Theorem 3.1 above and Theorem 3.5 below, and Theorems 2

and 3 in Uyanik [38] on the nonemptiness of the α-core with transferable utilities

are similar to that of Theorem 1 in Zhao [44] and Theorem 1 in Zhao [45], with the

exception that we allow discontinuous preferences and the nature of the discontinu-

ities can be quite different in our results and in the results presented in the author’s

earlier work.

Remark 3.4. We now describe our method-of-proof and compare it to those used

in Zhao [45] and Uyanik [38]. Zhao assumes the payoff functions are continuous and

the action sets are compact, therefore he can work with “best-responses.” In our

setup, his approach does not work since the best-responses may not exist due to the

discontinuities in the payoffs. Instead, we use the approach introduced by Reny [28]

and assume the game has an empty β-core. Then, by using the reaction-security,

which requires the blockings to be “nice”, and the compactness of the action sets

we obtain a finite collection points. By using these points we carefully construct an

auxiliary TU game in characteristic function form. Then we use the separability of

the game and the concavity of the payoffs in order to show that the TU game is

balanced. Our line of arguments at this step uses the construction in Zhao’s proof.

Then, Bondareva-Shaply theorem imply that the TU game has a nonempty core.
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This furnishes us a contradiction with the reaction-security of the original game.

Our proof approach is similar to the proof approach of Uyanik [38] to extent that

both construct auxiliary games. However, the construction of the auxiliary games

and the line of the arguments in the proofs are quite distinct.

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let G be a concave, bounded, compact, strongly separable,

RSN game and has an empty β-core. Then, since G is RS, for each (x, v) ∈
X̄ , there exist an open neighborhood Ux,v of (x, v), yx,vN ∈ X, wx,v

N ∈ R, and for

each S ∈ N̊ there exist wx,v
S ∈ R and a function δx,vS : X−S → XS such that∑

i∈N ui(y
x,v
N ) ≥ wx,v

N ,
∑

i∈S ui(δ
x,v
S (z−S), z−S) ≥ wx,v

S for each S ∈ N̊ and z−S ∈
X−S , and for each (x′, v′) ∈ Ux,v there exists S ∈ N such that

∑
i∈S v

′
i < wx,v

S .

The family {Ux,v| (x, v) ∈ X̄} is an open covering of X̄ which, by compactness

of X̄ , contains a finite subcovering {Ux
k
,v

k | k = 1, . . . ,m}. Moreover, for each

S ∈ N̊ , the pair (xS , vS) ∈ X̄ is identified13 by strong separability. Hence, there

are (|N | − 1)-many additional open sets, that is, for each S ∈ N̊ , we have UxS ,vS .

Define Uxm+j ,vm+j = UxS ,vS when S is the jth member of the set N̊ . Let K =

{1, . . . ,m,m + 1, . . . ,m + |N | − 1}. Define for all k ∈ K, Uk = Ux
k
,v

k , and for all

S ∈ N̊ , wk
S = w

x
k
,v

k
S and δkS = δ

x
k
,v

k
S , and ykN = y

x
k
,v

k
N .

Now define a TU game W : N → R as follows. For all S ∈ N̊ ,

W (S) = max
k∈K

wk
S ,

W (N) = max

{
max
k∈K

∑
i∈N

ui(y
k
N ), max

l∈L

∑
i∈N

ui(x
l)

}
,

where L and xl ∈ X are defined as follows. First, for each coalition S ∈ N̊ , pick

kS ∈ argmax
k∈K

wk
S .

Define for each coalition S ∈ N̊ ,

δS = δkSS .

Let L denote the number of minimal balanced collection of coalitions that does

not include N. Since number of all collection of coalitions is 2|N | and N is a finite

set, L is finite. Let T = {Bl}l∈L denote the set of all minimal balanced collection

of coalitions which does not include N. For each Bl ∈ T , let λl = {λlS}S∈Bl be

13We abuse the notation and use subscripts for both indices and coordinates when the context is
clear.
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the corresponding unique balancing weights.14 By construction, for each S ∈ Bl,

W (S) = wkS
S ≤

∑
i∈S ui(δS(z−S), z−S) for each z−S ∈ X−S . Define xl ∈ X as

xli =
∑

S∈Bl:i∈S

λlSδS,i(z̃−S) for all i ∈ N,

where z̃−S is determined by strong separability.15

We shall show that for each minimally balanced collection of coalitions

B,
∑

S∈B λSW (S) ≤ W (N). For B = {N}, there is nothing to prove. Since the

only minimal balanced collection of coalition which includes N is B = {N}, we
shall prove the above inequality for all B ∈ T . Pick B ∈ T with the (unique)

balancing weights λ = {λS}S∈B. (note that the balancing weights of a minimal

balanced collection of coalitions are always unique). We shall show that there exists

x′ ∈ X such that ∑
S∈B

λSW (S) ≤
∑
i∈N

ui(x
′) ≤W (N).

Recall that in defining W (N), we define an action profile for each balanced collec-

tion. Now, define x∗ as

x∗i =
∑

S∈B:i∈S
λSδS,i(z̃−S) for all i ∈ N.

By construction of W,
∑

i∈N ui(x
∗) ≤W (N). Therefore, showing∑

S∈B
λSW (S) ≤

∑
i∈N

ui(x
∗)

will be sufficient. From the construction of W,∑
S∈B

λSW (S) ≤
∑
S∈B

λS inf
z−S∈X−S

∑
i∈S

ui(δS(z−S), z−S),

and since W is strongly separable, Lemma 7.1 in the Appendix implies there exists

z̃−S ∈ X−S such that∑
S∈B

λS inf
z−S∈X−S

∑
i∈S

ui(δS(z−S), z−S) ≤
∑
S∈B

λS
∑
i∈S

inf
z−S∈X−S

ui(δS(z̃−S), z−S).

Therefore, ∑
S∈B

λSW (S) ≤
∑
i∈N

∑
S∈B:i∈S

λS inf
z−S∈X−S

ui(δS(z̃−S), z−S),

14Note that the balancing weights of a minimal balanced collection of coalitions are unique; see
Kannai [20, p. 361] and Appendix below.
15Note that, by construction, δS ∈ ∆S(xk, vk) for all k ∈ K.
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hence showing the following inequality implies the desired result.∑
S∈B:i∈S

λS inf
z−S∈X−S

ui(δS(z̃−S), z−S) ≤ ui(x
∗) for each i ∈ N.

At this level of generality, it is sufficient to demonstrate that the above inequality

holds for player 1, since by a suitable renaming of players any particular player can

be made the first. We now define yS ∈ X for each S ∈ B containing player 1 as

follows. If i ∈ S, then

ySi = δS,i(z̃−S).

If i /∈ S, then

ySi =

∑
λEδE,i(z̃−E)∑

λE
.

where in both the numerator and the denominator the summation is taken over all

E ∈ B which contain player i but not player 1. From Scarf [34, p.179],

x∗ =
∑

S∈B:1∈S
λSy

S .

Pick a coalition S ∈ B containing player 1. Then by construction of yS and the

strong separability,

inf
z−S∈X−S

u1(δS(z̃−S), z−S) ≤ u1(y
S).

Therefore, from the concavity of u1,∑
S∈B:1∈S

λS inf
z−S∈X−S

u1(δS(z̃−S), z−S) ≤
∑

S∈B:1∈S
λSu1(y

S) ≤ u1(x
∗).

Therefore, since B is arbitrarily chosen, for each B ∈ T ,
∑

S∈B λSW (S) ≤W (N).

Bondareva-Shapley Theorem provided in the Appendix impliesW has a nonempty

core, i.e. there exists v∗ ∈ Rn such that
∑

i∈N v∗i = W (N) and
∑

i∈S v
∗
i ≥ W (S)

for all S ∈ N . By construction of W (N), there exists x̄ ∈ X such that
∑

i∈N v∗i =∑
i∈N ui(x̄). In particular, x̄ = ykN , or x

l for some k ∈ K, l ∈ L. Hence, (x̄, v∗) ∈ X̄ .
Since G is RS and (x̄, v∗) ∈ Uk for some k ∈ K, there exists S ∈ N such that∑

i∈S v
∗
i < wk

S . By construction, wk
S ≤W (S). This furnishes us a contradiction. □

We next present our second main result which replaces the assumption that the

game is RS in Theorem 3.1 with the assumption that the game is RSN .

Theorem 3.5. Every concave, bounded, compact, strongly separable and RSN

game has a nonempty β-core.

Proof of Theorem 3.5. Let G be a concave, bounded, compact, strongly separable

and RSN game. Since the aggregate payoff function ū is u.s.c. and X is compact,

therefore there exists x̄ ∈ X which maximizes the aggregate payoff function ū of
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the grand coalition. Moreover, the game is bounded, hence, V is a well-defined

compact set. Now, assume G has an empty β-core. Then, since G is RSN , for each

v ∈ V , there exist an open neighborhood Uv of v, and for each S ∈ N̊ there exist

wv
S ∈ R and a function δvS : X−S → XS such that

∑
i∈S ui(δ

v
S(z−S), z−S) ≥ wv

S

for each S ∈ N̊ , z−S ∈ X−S , and for each v′ ∈ Uv there exists S ∈ N̊ such

that
∑

i∈S v
′
i < wv

S . The family {Uv| v ∈ V} is an open covering of V which, by

compactness of V, contains a finite subcovering {Uv
k | k = 1, . . . ,m}.

Moreover, for each S ∈ N̊ , there exists xS ∈ V identified by strong separability.

Hence, there are (|N | − 1)-many additional open sets, that is, for each S ∈ N̊ ,

we have UxS . Define Uxm+j = UxS when S is the jth member of the set N̊ . Let

K = {1, . . . ,m,m + 1, . . . ,m + |N | − 1}. Define for all k ∈ K, Uk = Uv
k , and for

all S ∈ N , wk
S = w

v
k

S and δkS = δ
v
k

S .

Now define a TU game W : N → R as follows. For all S ∈ N\N,

W (S) = max
k∈K

wk
S , and W (N) = w̄ = max

x∈X

∑
i∈N

ui(x).

Next, for each coalition S ∈ N̊ , pick

kS ∈ argmax
k∈K

wk
S ,

and define for each coalition S ∈ N̊ ,

δS = δkSS .

We shall show that for each minimally balanced collection of coalitions

B,
∑

S∈B λSW (S) ≤W (N). Pick a minimal balanced collection of coalitions B with

the (unique) balancing weights λ = {λS}S∈B (recall that the balancing weights of a

minimal balanced collection of coalitions are always unique). For B = {N}, there is
nothing to prove. Otherwise, since B is a minimal balanced collection of coalition,

it does not contain N. We shall show that there exists x′ ∈ X such that∑
S∈B

λSW (S) ≤
∑
i∈N

ui(x
′) ≤ w̄ =W (N).

where the last inequality follows from the definition of w̄. By construction, for each

S ∈ B, W (S) = wkS
S ≤

∑
i∈S ui(δS(z−S), z−S) for each z−S ∈ X−S . Define x∗ ∈ X

as

x∗i =
∑

S∈B:i∈S
λSδS,i(z̃−S),
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where z̃−S is determined by strong separability. By the construction above,∑
i∈N ui(x

∗) ≤W (N) = w̄. Therefore, showing∑
S∈B

λSW (S) ≤
∑
i∈N

ui(x
∗)

will be sufficient. From the construction of W,∑
S∈B

λSW (S) ≤
∑
S∈B

λS inf
z−S∈X−S

∑
i∈S

ui(δS(z−S), z−S),

and since W is strongly separable, Lemma 7.1 in the Appendix implies there exists

z̃−S ∈ X−S such that∑
S∈B

λS inf
z−S∈X−S

∑
i∈S

ui(δS(z−S), z−S) ≤
∑
S∈B

λS
∑
i∈S

inf
z−S∈X−S

ui(δS(z̃−S), z−S).

Therefore, ∑
S∈B

λSW (S) ≤
∑
i∈N

∑
S∈B:i∈S

λS inf
z−S∈X−S

ui(δS(z̃−S), z−S),

hence showing the following inequality implies the desired result.∑
S∈B:i∈S

λS inf
z−S∈X−S

ui(δS(z̃−S), z−S) ≤ ui(x
∗) for each i ∈ N.

At this level of generality, it is sufficient to demonstrate that the above inequality

holds for player 1, since by a suitable renaming of players any particular player can

be made the first. We now define yS ∈ X for each S ∈ B containing player 1 as

follows. If i ∈ S, then

ySi = δS,i(z̃−S).

If i /∈ S, then

ySi =

∑
λEδE,i(z̃−E)∑

λE
.

where in both the numerator and the denominator the summation is taken over all

E ∈ B which contain player i but not player 1. From Scarf [34, p.179],

x∗ =
∑

S∈B:1∈S
λSy

S .

Pick a coalition S ∈ B containing player 1. Then by construction of yS and the

strong separability,

inf
z−S∈X−S

u1(δS(z̃−S), z−S) ≤ u1(y
S).

Therefore, from the concavity of u1,∑
S∈B:1∈S

λS inf
z−S∈X−S

u1(δS(z̃−S), z−S) ≤
∑

S∈B:1∈S
λSu1(y

S) ≤ u1(x
∗).



TU β-CORE OF DISCONTINUOUS GAMES 1027

Therefore, since B is arbitrarily chosen, for each B ∈ T ,
∑

S∈B λSW (S) ≤W (N).

Bondareva-Shapley Theorem provided in the Appendix impliesW has a nonempty

core, i.e. there exists v∗ ∈ V such that
∑

i∈N v∗i = W (N) and
∑

i∈S v
∗
i ≥ W (S) for

all S ∈ N . Since G is RSN and v∗ ∈ Uk for some k ∈ K, there exists S ∈ N such that∑
i∈S v

∗
i < wk

S . By construction, wk
S ≤W (S). This furnishes us a contradiction. □

Remark 3.6. We end this section by presenting a result on hybrid solution due

to [43, 45]. For some game theoretic situations only some subsets of the players

can behave cooperatively, due to factors such as transaction costs, social and legal

restrictions. A solution concept for such models is called hybrid solution which

assumes that the players are partitioned into coalitions and that they will cooperate

within each coalition but compete (in the Nash sense) among coalitions. Now, let

G = (Xi, ui)i∈N be a game. A given coalition structure (a partition of N) ∆ =

{S1, . . . , Sm} induces a game G∆ = {XS ,
∑

i∈S ui}S∈∆ among partition members

and m parametric games

GS(x−S) = {Xi, ui(·, x−S)}i∈S .

Definition 3.7. Let G = (Xi, ui)i∈N be a game and ∆ = {S1, . . . , Sm} a coalition

structure. A hybrid solution for G is a pair of an action profile and imputation

(x∗, v∗) ∈ X × Rn such that for each S ∈ ∆,

(i) x∗ is a Nash equilibrium of G∆,

(ii) (x∗S , v
∗
S) is in the (transferable utility) β-core of GS(x

∗
−S).

The following result follows from Theorems 3.1, 3.5, and Barelli and Meneghel

[8, Theorem 2.2, p.816].

Corollary 3.8. A bounded, concave game G has a hybrid solution if G∆ is

correspondence-secure (CS) and for each S ∈ ∆ and x−S ∈ X−S , GS(x−S) is

compact, strongly separable and either RS, or RSN .

Note that [45] allows each coalition in ∆ to use other distribution rules such as

α-core. It is of interest to investigate further hybrid solutions in discontinuous

games.

Proof of Corollary 3.8. Since GS(x−S) is a concave game for each S ∈ ∆ and x−S ∈
X−S , ui is concave for each player i ∈ S, hence

∑
i∈S ui(·, x−S) is concave. Then,

since G∆ is CS, Barelli and Meneghel [8, Theorem 2.2, p.816] implies there exists

x∗ ∈ X such that x∗S ∈ argmaxxS∈XS

∑
i∈S ui(xS , x

∗
−S) for each S ∈ ∆. And since

all conditions of Theorem 3.1 are satisfied (if the game is RS, and Theorem 3.5 if

the game is RSN ), for each S ∈ ∆ there exists v∗S ∈ R|S| such that (x∗S , v
∗
S) is in the

β-core of GS(x
∗
−S). □
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4. Results: two-player games

This section studies the nonemptiness of the β-core of two-player games. As

we noted above, the two-player setup allows us to weaken (even drop some of)

the convexity and separability assumptions: Propositions 4.1 and 4.2 show that

in the two-player setup, the convexity structure can simply be dropped (since the

clever argument originally introduced by Scarf is not needed in this special setup),

and Propositions 4.4 and 4.5 show that the strong separability in the first two

propositions can be replaced by a stronger continuity assumption and quasiconcavity

of the payoff functions.

Our first result in this section drops the entire convexity structure, both convexity

of the actions sets and the concavity of the payoff functions.

Proposition 4.1. A bounded, compact, strongly separable and RS 2-player game

has a nonempty β-core.

Proof of Proposition 4.1. Assume G has an empty β-core. Then, since G is RS, for

each (x, v) ∈ X̄ , there exist an open neighborhood Ux,v of (x, v), yx,vN ∈ X, wx,v
N ∈ R,

and for each i ∈ N there exist wx,v
i ∈ R and a function δx,vi : Xj → Xi for i ̸= j such

that
∑

i∈N ui(y
x,v
N ) ≥ wx,v

N , ui(δ
x,v
i (zj), zj) ≥ wx,v

i for each i ̸= j and zj ∈ Xj , and

for each (x′, v′) ∈ Ux,v there exists S ∈ N such that
∑

i∈S v
′
i < wx,v

S . The family

{Ux,v| (x, v) ∈ X̄} is an open covering of X̄ which, by compactness of X̄ , contains
a finite subcovering {Ux

k
,v

k | k = 1, . . . ,m}. And for each i ∈ N, (xi, vi) ∈ X̄ is

identified by strong separability. Let Uk = Ux
k
,v

k , and for all S ∈ N , wk
S = w

x
k
,v

k
S ,

ykN = y
x
k
,v

k
N , and for i = 1, 2, δki = δ

x
k
,v

k
i for all k ∈ K = {1, . . . ,m, . . . ,m+ 2}.

Now define a TU game W : N → R as follows. For all i ∈ N,

W ({i}) = max
k∈K

wk
i ,

W (N) = max

{
max
k∈K

∑
i∈N

ui(y
k
N ),

∑
i∈N

ui(x
∗)

}
,

where x∗ ∈ X is defined as follows. First, define for each coalition S ∈ N ,

kS ∈ argmax
k∈K

wk
S , and δS = δkSS .

By construction, for each i ̸= j, W ({i}) = wki
i ≤ ui(δi(zj), zj) for each zj ∈ Xj .

Define x∗ ∈ X as

x∗i = δi(z̃j) for i ̸= j,

where z̃j is determined by strong separation.
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We shall show that for each minimally balanced collection of coalitions

B,
∑

S∈B λSW (S) ≤W (N). Note that there are only two minimal balanced collec-

tion of coalitions: B = {N}, or {{1}, {2}}. For B = {N}, there is nothing to prove.

Let B = {{1}, {2}}. The definition of infimum and strong separation imply for each

i ̸= j,

inf
zj∈Xj

ui(δi(zj), zj) ≤ ui(δi(z̃j), z̃j) = inf
zj∈Xj

ui(δi(z̃j), zj).

Hence,

wki
i ≤ ui(δi(z̃j), δj z̃i) = ui(x

∗).

Therefore,
∑

i∈N ui(x
∗) ≤W (N) implies W (1) +W (2) ≤W (N).

Bondareva-Shapley Theorem provided in the Appendix impliesW has a nonempty

core, i.e. there exists v∗ ∈ R2 such that
∑

i∈N v∗i =W (N) =
∑

i∈N and v∗i ≥W ({i})
for all i ∈ N. By construction of W (N), there exists x̄ ∈ X such that

∑
i∈N v∗i =∑

i∈N ui(x̄). In particular, x̄ = ykN for some k ∈ K, or x̄ = x∗. Hence, (x̄, v∗) ∈ X̄ .
Since G is RS and (x̄, v∗) ∈ Uk for some k ∈ K, there exists S ∈ N such that∑

i∈S v
∗
i < wk

S . By construction, wk
S ≤W (S). This furnishes us a contradiction. □

We next show that RS property in Proposition 4.1 can be replaced by RSN prop-

erty.

Proposition 4.2. A bounded, compact, strongly separable and RSN 2-player game

has a nonempty β-core.

Proof of Proposition 4.2. Since the aggregate payoff function ū is u.s.c. and X

is compact, therefore there exists x̄ ∈ X which maximizes the aggregate payoff

function ū of the grand coalition. Hence, V is a well-defined compact set. Now,

assume G has an empty β-core. Then, since G is RSN , for each v ∈ V , there
exist an open neighborhood Uv of v, and for each i ∈ N there exist wv

i ∈ R
and a function δvi : Xj → Xi such that ui(δ

v
i (zj), zj) ≥ wv

i for each i ̸= j, and

zj ∈ Xj , and for each v′ ∈ Uv there exists i ∈ N such that v′i < wv
i . The family

{Uv| v ∈ V} is an open covering of V which, by compactness of V, contains a finite

subcovering {Uv
k | k = 1, . . . ,m}. And for each i ∈ N, vi ∈ V is identified by strong

separability. Let Uv = Uv
k , and for all i ∈ N, wk

i = w
v
k

i and δki = δ
v
k

i for all

k ∈ K = {1, . . . ,m, . . . ,m+ 2}.
Now define a TU game W : N → R as follows. For all i ∈ N,

W ({i}) = max
k∈K

wk
i , and W (N) = w̄ = max

x∈X

∑
i∈N

ui(x).

We shall show that for each minimally balanced collection of coalitions

B,
∑

S∈B λSW (S) ≤W (N). Note that there are only two minimal balanced collec-

tion of coalitions: B = {N}, or {{1}, {2}}. For B = {N}, there is nothing to prove.
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Let B = {{1}, {2}}. By construction, W ({1}) = wk1
1 ≤ u1(δ1(z2), z2) for all z2 ∈ X2

and W ({2}) = wk2
2 ≤ u2(z1, δ2(z1)) for all z1 ∈ X1. And strong separability implies

for each i ∈ N, there exists z̃−i ∈ X−i such that

wki
i ≤ ui(δi(z̃−i), z̃−i) = inf

z−i∈X−i

ui(δi(z̃−i), z−i) for i = 1, 2.

Hence,

wk1
1 ≤ u1(δ1(z̃2), δ2(z̃1)) and wk2

2 ≤ u2(δ1(z̃2), δ2(z̃1)).

Therefore,
∑

i∈N ui(δ1(z̃2), δ2(z̃1))) ≤ w̄ implies W (1) +W (2) ≤W (N).

Bondareva-Shapley Theorem provided in the Appendix impliesW has a nonempty

core, i.e. there exists v∗ ∈ V such that
∑

i∈N v∗i = W (N) and v∗i ≥ W ({i}) for all

i ∈ N. Since G is RSN and v∗ ∈ Uk for some k ∈ K, there exists i ∈ N such that

v∗i < wk
i . By construction, wk

i ≤W ({i}). This furnishes us a contradiction. □

We next introduce some new concepts for our next two propositions.

Definition 4.3. A bounded, compact game G is strongly reaction-secure (strongly

RS) if for each (x, v) ∈ X̄ that is not in the β-core of G, there exist an open

neighborhood Ux,v of (x, v), yx,vN ∈ X, wx,v
N ∈ R, and for each S ∈ N̊ there exist

wx,v
S ∈ R and an upper semicontinuous correspondence δx,vS : X−S ↠ XS with

nonempty and compact values such that

(i)
∑

i∈N ui(y
x,v
N ) ≥ wx,v

N

(ii) for all S ∈ N̊ , all z−S ∈ X−S and all zS ∈ δx,vS (z−S),
∑

i∈S ui(zS , z−S)
≥ wx,v

S ,

(iii) for all (x′, v′) ∈ Ux,v there exists S ∈ N such that
∑

i∈S v
′
i < wx,v

S .

Note that strong-RS property replaces the functions δx,vS in the RS-property with

nonempty- and compact-valued u.s.c. correspondences. If the payoff functions

are continuous, then the “best response correspondences” satisfy this assumption.

Hence, the strong RS is substantially weaker than the continuity assumption. In-

deed, it is direct analogue of the CS property defined above. Define strongly RSN

analogously.

We now present a result showing that, in the two-player setup, strengthening

the continuity assumption allows us to drop the separability assumption when the

payoff functions are quasiconcave.

Proposition 4.4. A bounded, compact and strongly RS 2-player game has a

nonempty β-core if for each player i, Xi is convex and ui is quasiconcave on Xi.

Proof of Proposition 4.4. Assume G has an empty β-core. Then, since G is strongly

RS, for each (x, v) ∈ X̄ , there exist an open neighborhood Ux,v of (x, v), yx,vN ∈ X,



TU β-CORE OF DISCONTINUOUS GAMES 1031

wx,v
N ∈ R, and for each i ∈ N there exist wx,v

i ∈ R and a nonempty- and compact-

valued u.s.c. correspondence δx,vi : Xj ↠ Xi for i ̸= j such that
∑

i∈N ui(y
x,v
N ) ≥

wx,v
N , and ui(zi, zj) ≥ wx,v

i for each i ̸= j and zj ∈ Xj , and zi ∈ δx,vi (zj), and

for each (x′, v′) ∈ Ux,v there exists S ∈ N such that
∑

i∈S v
′
i < wx,v

S . The family

{Ux,v| (x, v) ∈ X̄} is an open covering of X̄ which, by compactness of X̄ , contains
a finite subcovering {Ux

k
,v

k | k = 1, . . . ,m}. Let Uk = Ux
k
,v

k , and for all S ∈ N ,

wk
S = w

x
k
,v

k
S , ykN = y

x
k
,v

k
N , and for i = 1, 2, δki = δ

x
k
,v

k
i for all k ∈ K = {1, . . . ,m}.

Now define a TU game W : N → R as follows. For all i ∈ N,

W ({i}) = max
k∈K

wk
i ,

W (N) = max

{
max
k∈K

∑
i∈N

ui(y
k
N ),

∑
i∈N

ui(x
∗)

}
,

where x∗ ∈ X is defined as follows. First, define for each player i ∈ N,

ki ∈ argmax
k∈K

wk
i , and δi = co(δkii ),

where co(δkii ) is the convex hull of δkii . Since δ
ki
i is u.s.c., has nonempty and compact

values, and Xi is subset of a finite dimensional Euclidean space for each i ∈ N, δi is

u.s.c. and has nonempty and compact values. Moreover, since ui is quasiconcave for

each i ∈ N, ui(zi, zj) ≥ wki
i for each zj ∈ Xj and zi ∈ δi(zj) for i ̸= j. Now, define

a correspondence δ : X ↠ X as δ(z) = (δ1(z2), δ2(z1)). Since δ is u.s.c. and has

nonempty and convex values, Kakutani’s fixed point theorem implies there exists

x∗ ∈ X such that

x∗i ∈ δi(x
∗
j ), i ̸= j.

Hence, wki
i ≤ ui(zi, zj) for all zj ∈ Xj and zi ∈ δ2(zj) for i ̸= j implies wki

i ≤ ui(x
∗)

for i = 1, 2.

We shall show that for each minimally balanced collection of coalitions

B,
∑

S∈B λSW (S) ≤ W (N). Note that there are only two minimal balanced col-

lection of coalitions: B = {N}, or {{1}, {2}}. For B = {N}, there is nothing to

prove. Let B = {{1}, {2}}. Recall that, wk1
1 ≤ u1(x

∗) and wk2
2 ≤ u2(x

∗). Therefore,∑
i∈N ui(x

∗) ≤W (N) implies W (1) +W (2) ≤W (N).

Bondareva-Shapley Theorem provided in the Appendix impliesW has a nonempty

core, i.e. there exists v∗ ∈ R2 such that
∑

i∈N v∗i = W (N) and v∗i ≥ W ({i}) for

all i ∈ N. By construction of W (N), there exists x̄ ∈ X such that
∑

i∈N v∗i =∑
i∈N ui(x̄). In particular, x̄ = ykN for some k ∈ K, or x̄ = x∗. Hence, (x̄, v∗) ∈ X̄ .

Since G is strongly RS and (x̄, v∗) ∈ Uk for some k ∈ K, there exists S ∈ N such

that
∑

i∈S v
∗
i < wk

S . By construction, wk
S ≤ W (S). This furnishes us a contradic-

tion. □
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The next result replaces the strong RS property in Proposition 4.4 by strong

RSN property.

Proposition 4.5. A bounded, compact and strongly RSN 2-player game has a

nonempty β-core if for each player i, Xi is convex and ui is quasiconcave on Xi.

Proof of Proposition 4.5. Since the aggregate payoff function ū is u.s.c. and X

is compact, therefore there exists x̄ ∈ X which maximizes the aggregate payoff

function ū of the grand coalition. Hence, V is a well-defined compact set. Now,

assume G has an empty β-core. Then, since G is strongly RSN , for each v ∈ V ,
there exist an open neighborhood Uv of v, and for each i ∈ N there exist wv

i ∈ R
and u.s.c. correspondence δvi : Xj ↠ Xi with nonempty and compact values such

that ui(zi, zj) ≥ wv
i for each i ̸= j, zj ∈ Xj and zi ∈ δvi (zj), and for each v′ ∈ Uv

there exists i ∈ N such that v′i < wv
i . The family {Uv| v ∈ V} is an open covering of

V which, by compactness of V, contains a finite subcovering {Uv
k | k = 1, . . . ,m}.

Let Uk = Uv
k , and for all i ∈ N, wk

i = w
v
k

i and δki = δ
v
k

i for all k ∈ K = {1, . . . ,m}.
Now define a TU game W : N → R as follows. For all i ∈ N,

W ({i}) = max
k∈K

wk
i , and W (N) = w̄ = max

x∈X

∑
i∈N

ui(x).

We shall show that for each minimally balanced collection of coalitions

B,
∑

S∈B λSW (S) ≤W (N). Note that there are only two minimal balanced collec-

tion of coalitions: B = {N}, or {{1}, {2}}. For B = {N}, there is nothing to prove.

Let B = {{1}, {2}}. Define for each player i ∈ N,

ki ∈ argmax
k∈K

wk
i , and δi = co(δkii ),

where co(δkii ) is the convex hull of δkii . Since δ
ki
i is u.s.c., has nonempty and compact

values, and Xi is subset of a finite dimensional Euclidean space for each i ∈ N, δi

is u.s.c. and has nonempty and compact values. And since ui is quasiconcave for

each i ∈ N, ui(zi, zj) ≥ wki
i for each zj ∈ Xj and zi ∈ δi(zj) for i ̸= j. Now, define

a correspondence δ : X ↠ X as δ(z) = (δ1(z2), δ2(z1)). Since δ is usc, and has

nonempty and convex values, Kakutani’s fixed point theorem implies there exists

x∗ ∈ X such that

x∗i ∈ δi(x
∗
j ), i ̸= j.

Hence, wki
i ≤ ui(zi, zj) for all zj ∈ Xj and zi ∈ δ2(zj) for i ̸= j implies wki

i ≤ ui(x
∗)

for i = 1, 2. Therefore,
∑

i∈N ui(x
∗) ≤ w̄ implies W (1) +W (2) ≤W (N).

Bondareva-Shapley Theorem provided in the Appendix impliesW has a nonempty

core, i.e. there exists v∗ ∈ V such that
∑

i∈N v∗i = W (N) and v∗i ≥ W ({i}) for all



TU β-CORE OF DISCONTINUOUS GAMES 1033

i ∈ N. Since G is strongly RSN and v∗ ∈ Uk for some k ∈ K, there exists i ∈ N such

that v∗i < wk
i . By construction, wk

i ≤W ({i}). This furnishes us a contradiction. □

We end this section by presenting a result on the nonemptiness of the β-core of a

two-player game with possibly discontinuous payoff functions and nontransferable

utilities (NTU).16

Definition 4.6. Let G be a game. A coalition S βNTU -blocks an action profile

x ∈ X if ∀z−S ∈ X−S , ∃x′S ∈ XS such that17 uS(x
′
S , z−S) ≫ uS(x). An action

profile x∗ ∈ X is in the βNTU -core of G if x∗ is not βNTU -blocked by any coalition.

Definition 4.7. A two-player game G is strongly RSNTU if for each x ∈ X that

is not in the βNTU -core of G, there exist an open neighborhood Ux of x, yxN ∈ X,

vxN ∈ R2, and for each i ∈ N there exist vxi ∈ R and a nonempty- and compact-

valued, u.s.c. correspondence δxi : Xj ↠ Xi for i ̸= j such that

(i) ui(zi, zj) ≥ vxi for each i ̸= j, zj ∈ Xj and zi ∈ δxi (zj), and uN (yxN ) ≥ vxN ,

(ii) for each x′ ∈ Ux there exists S ∈ N such that uS(x
′) ≪ vxS .

Proposition 4.8. A compact and strongly RSNTU 2-player game has a nonempty

βNTU -core if for each player i, Xi is convex and ui is quasiconcave on Xi.

Proof of Proposition 4.8. Assume G has an empty βNTU -core. Then, since G is

strongly RSNTU , for each x ∈ X, there exist an open neighborhood Ux of x, yxN ∈ X,

vxN ∈ R2, and for each i ∈ N there exist vxi ∈ R and a nonempty valued, u.s.c.

correspondence δxi : Xj ↠ Xi for i ̸= j such that ui(zi, zj) ≥ vxi for each i ̸= j,

zj ∈ Xj and zi ∈ δxi (zj), and uN (yxN ) ≥ vxN , and for each x′ ∈ Ux there exists

S ∈ N such that x′ ≪ vxS . The family {Ux| x ∈ X} is an open covering of X

which, by compactness of X, contains a finite subcovering {Ux
k | k = 1, . . . ,m}. Let

Uk = Ux
k , and for all S ∈ N , vkS = v

x
k

S , ykN = y
x
k

N and for each i ∈ N, δki = δ
x
k

i , for

all k ∈ K = {1, . . . ,m}.
Now define an NTU game V : N ↠ R2 as follows. For all i ∈ N,

V ({i}) =
∪
k∈K

{v ∈ R2| vi ≤ vki },

V (N) =
∪

k,k′∈K

(
{v ∈ R2| v ≤ vkN} ∪ {v ∈ R2| v ≤ u(xk1, x

k′
2 )}

)
,

16An analogous result for continuous payoff functions is provided in Ichiishi [19, Remark 2.3.2,
p.37].
17We use the following convention for comparing two vectors: for a, b ∈ Rn, a≫ b denotes ai > bi
for all i, a > b denotes ai ≥ bi for all i and a ̸= b, and a ≥ b denotes ai ≥ bi for all i.
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where (xk1, x
k′
2 ) ∈ X is defined as follows. First, define for each player i ∈ N and

k ∈ K,

δki = co(δki ),

where co(δki ) is the convex hull of δki . Since δ
k
i is u.s.c. and Xi is subset of a finite

dimensional Euclidean space for each i ∈ N, and k ∈ K, δki is usc. And since ui is

quasiconcave on Xi for each i ∈ N, ui(zi, zj) ≥ vki for each zj ∈ Xj and zi ∈ δki (zj)

for i ̸= j, k ∈ K. Now, for each k, k′ ∈ K, define a correspondence δk,k
′
: X ↠ X as

δk,k
′
(z) = (δk1 (z2), δ

k′
2 (z1)). Since δ

k,k′ is usc, and has nonempty and convex values,

Kakutani’s fixed point theorem implies there exists x∗ ∈ X such that

xk1 ∈ δk1 (x
∗
2) and xk

′
2 ∈ δk

′
2 (x∗1).

Hence, vk1 ≤ u1(x
k
1, x

k′
2 ) and v

k′
2 ≤ u2(x

k
1, x

k′
2 ).

By construction, the NTU game V is balanced. To see this, note that there

are three balanced collection of coalitions for this game of which two contain N.

For these collections, there is nothing to prove. The only balanced collection of

coalitions which does not include N is B = {{1}, {2}}. Pick v ∈ V (S) for all S ∈ B.
Then, there exists k1, k2 ∈ K such that v1 ≤ vk11 and v2 ≤ vk22 . We showed above

that (vk11 , v
k2
2 ) ≤ u(xk11 , x

k2
2 ), and hence v ∈ V (N). Therefore V is balanced.

It is clear that conditions (i)-(ii) of Scarf’s Theorem provided in the Appendix

are satisfied. And since for each coalition S, the set V (S) is constructed by using

finitely many points, condition (iii) of Scarf’s Theorem is satisfied. Hence, V has a

nonempty core, i.e. there exists v∗ ∈ V (N) such that v∗ /∈ intV (S) for all S ∈ N .

Since v∗ ∈ V (N), by construction there exists x∗ ∈ X such that v∗ ≤ u(x∗). Also,

since G is strongly RSNTU and x∗ ∈ Uk for some k ∈ K, there exists S ∈ N such

that uS(x
∗) ≪ vkS . Since {vkS} × R|−S| ⊂ V (S), v∗ ∈ intV (S). This furnishes us a

contradiction. □

5. Applications

Our first example illustrates a duopoly game with nonempty β-core which is

strongly RSN but neither RS, nor CS.18

Example 1. (Bertrand Duopoly Game) Assume there are two firms which have a

common action set [0, T ] where T is a large positive number. Assume firm 1 has

zero marginal cost, c1 = 0, whereas firm 2 has a strictly positive marginal cost

c2 = c ∈ (0, T/2). The demand function D : [0, T ] → R+ is defined as

D(p) = max{α− p, 0}

18We intentionally choose a simple framework in the first example to: (1) illustrate different con-
tinuity concepts we define above, and (2) show that the these continuity concepts are non-nested.



TU β-CORE OF DISCONTINUOUS GAMES 1035

where α ∈ (2c, T ). Since the good is identical, the firm with the lowest cost captures

the market. When the firms set the same price, then they share the demand equally.

Therefore, the profit function of firm i ̸= j is defined as

πi(p1, p2) =


D(pi)(pi − ci) if pi < pj ,

1
2D(pi)(pi − ci) if pi = pj ,

0 if pi > pj .

It is easy to check that this game does not have a Nash equilibrium.19

We next prove that this game has a nonempty β-core by verifying that it satisfies

the assumptions of Proposition 4.5. It is clear that this game is bounded and com-

pact and each firm’s profit function is quasiconcave in its own action. It remains to

show that it is strongly RSN . The aggregate payoff function is π̄(p1, p2) = D(pi)(pi−
ci) if pi < pj and 0.5D(pi)(2pi − c) if pi = pj . Therefore {(α/2, p2) | p2 > α/2} is

the set of maximizers of π̄ and the maximum aggregate profit is α2/4. Hence, in

equilibrium (if exists), the low cost firm produces the entire output and then the

firms share the profit. Then, the set of imputations is defined as

V = {v | v1 + v2 = α2/4, v1 ≥ 0, v2 ≥ −αc}.

Note that firm 1 cannot block any imputation in V since firm 2 can always set

its price to 0 which yields firm 1’s a maximum profit of zero. Firm 2 blocks all

imputations which gives it a negative payoff by setting its price equal to c. Since

grand coalition cannot block any imputation by construction, we only need to check

the imputations which gives firm 2 negative profit. For each v ∈ V such that v2 < 0,

define εv = −v2/3, Uv = {v′ ∈ V | ∥v′ − v∥ < εv}, δv1(z2) = {0}, δv2(z1) = {0} for

every z ∈ X and wv
1 = wv

2 = 0. It is clear that δvi is an u.s.c. correspondence

with nonempty and compact values, and conditions (i) and (ii) of the strong-RSN

property are satisfied. Therefore, this game is strongly RSN . Hence, by Proposition

4.5, this game has a non-empty β-core. In fact, a careful algebra implies that the

following pair of an action profile and imputation

(p∗, v∗) =

((α
2
, α
)
,

(
α2

4
, 0

))
is in the β-core of this game.

We next show that this game is neither CS, nor RS. Since this game satisfies

all the assumptions of [8, Theorem 2.2] except CS and it does not have a Nash

equilibrium, therefore it is not CS. In order to see that it is not RS, note that

19More precisely, this game has no Nash equilibrium in pure-strategies. It is known that this game
has a Nash equilibrium in mixed-strategies, see [9].
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(p̂, v̂) = ((α/2, α/2), (α2/4, 0)) ∈ X̄ is not in the β-core of G since
∑2

i=1 πi(p̂) <

α2/4. But, no coalition blocks v̂.

The strong separability assumption is a strong assumption and it may not be

easy to verify for some games. The next example illustrates that oligopoly games

with monotonically decreasing demand functions satisfy this property.

Example 2. (Cournot Oligopoly Game) Let N = {1, . . . , n} be the set of firms,

Xi = [0, ŷi] be the production set of firm i where ŷi > 0 denotes firm i ’s capacity
constraint, and πi : X → R be the profit function of firm i which is defined as

πi(x) = fi(xi, x̃−i) = p(xi + x̃−i)xi − ci(xi),

where x̃−i =
∑

j∈N\{i} xj , p : R+ → R+ is the inverse demand function and ci :

R+ → R+ is firm i’s cost function. We prove that if this game is bounded and RS

(or RSN ), p is a monotonically decreasing function, and fi is concave in the two

argument for each firm i, then the game has a nonempty β-core.

We first show that the game is strongly separable. Assume the game is RS. Pick

S ∈ N̊ , δS ∈ {δx,vS |(x, v) ∈ X̄ is not in the β-core of G}, and z−S ∈ X−S . Note

that ŷ−S ≥ z−S implies p(
∑

i∈S δS,i(ŷ−S) +
∑

i∈−S ŷ−S,i) ≤ p(
∑

i∈S δS,i(ŷ−S) +∑
i∈−S z−S,i). It follows from

πi(δS(ŷ−S), x−S) =

p

∑
j∈S

δS,j(ŷ−S) +
∑
j∈−S

x−S,j

 δS,i(ŷ−S)− ci(δS,i(ŷ−S)) for all x−S ∈ X−S

that

πi(δS(ŷ−S), ŷ−S) ≤ πi(δS(ŷ−S), z−S).

Since z−S ∈ X−S is arbitrarily chosen,

∑
i∈S

πi(δS(ŷ−S), ŷ−S) =
∑
i∈S

inf
z′−S∈X−S

πi(δS(ŷ−S), z
′
−S).

Hence G is strongly separable. An analogous implies that RS can be replaced by

RSN .

Next, we show that πi is concave on X if and only if fi is concave in the two

argument for each i ∈ N. Pick i ∈ N, x, y ∈ X and δ ∈ (0, 1). Then, πi(δx + (1 −
δ)y) ≥ δπi(x) + (1− δ)πi(y) if and only if p(δxi + (1− δ)yi + δ

∑
j∈N\{i} xj + (1−

δ)
∑

j∈N\{i} yj)(δxi + (1 − δ)yi) − ci(δxi + (1 − δ)yi) ≥ δ(p(xi +
∑

j∈N\{i} xj)xi −
ci(xi)) + (1 − δ)(p(yi +

∑
j∈N\{i} yj)yi − ci(yi))} if and only if fi(δx + (1 − δ)y) ≥

δfi(x) + (1− δ)fi(y).
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Therefore, all assumptions of Theorems 3.1 and 3.5 above are satisfied, hence this

oligopoly game has a nonempty β-core.

6. Concluding remarks

This paper provides sufficient conditions for the nonemptiness of the β-core of

games with transferable utilities and possibly discontinuous payoff functions. In our

results, we assume concave payoff functions, which can have discontinuities only at

their relative boundaries. We noted in Section 2 that equilibria often exist at the

boundaries of the domain, therefore the possibility of discontinuities of a concave

function must be taken into account. Yet, there are interesting economic problems

that are modeled by payoff functions which are not concave. Our results on the

special two-player setting drop, or weaken, the concavity assumption, and also prove

that transferability of the utilities is not necessary for a nonemptiness result in this

special setting. A possible direction of research is to extend our results by weakening

the concavity assumption in general n-player setting.Moreover, generalizing our

nonemptiness result for two-player games with nontransferable utilities to general

n-player setting is an open problem, even under continuous payoff functions. Finally,

there is a rich and evolving literature on games with continuum of players, studying

the existence of both cooperative and non-cooperative solutions; see for example the

work of [23] and [22] on noncooperative solutions, and the work of [4, 5], [41] and

[42] on cooperative solutions of strategic-form games. Generalization of our results

to games with continuum of agents is of interest.

7. Appendix

We first present a lemma that is useful in proving the results above.

Lemma 7.1. If a bounded RS (RSN ) game G is strongly separable, then for each

S ∈ N̊ there exists (x, v) ∈ X̄ (v ∈ V) such that for each δS ∈ ∆S(x, v) (δS ∈ ∆N
S (v))

there exists z̃−S ∈ X−S such that

inf
z−S∈X−S

∑
i∈S

ui(δS(z−S), z−S) ≤
∑
i∈S

inf
z−S∈X−S

ui(δS(z̃−S), z−S).

Proof of Lemma 7.1. Let G be a bounded, RS and strongly separable game. Then

for each S ∈ N̊ , there there exists (x, v) ∈ X̄ such that for each δS ∈ ∆S(x, v) there

exists z̃−S ∈ X−S such that∑
i∈S

ui(δS(z̃−S), z̃−S) =
∑
i∈S

inf
z−S∈X−S

ui(δS(z̃−S), z−S),
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and, from the definition of infimum,

inf
z−S∈X−S

∑
i∈S

ui(δS(z−S), z−S) ≤
∑
i∈S

ui(δS(z̃−S), z̃−S).

Therefore,

inf
z−S∈X−S

∑
i∈S

ui(δS(z−S), z−S) ≤
∑
i∈S

inf
z−S∈X−S

ui(δS(z̃−S), z−S).

The proof is analogous for RSN games. □

We next present two classical results on the core of characteristic function form

games with the transferable and nontransferable utilities.

A transferable-utility (TU) game is a functionW : N → R, where N = {1, . . . , n}
is the set of players and N = 2N\∅ the set of coalitions. The core of a TU game W

is defined as

Core(W ) =

{
v ∈ Rn|

∑
i∈N

vi ≤W (N) and
∑
i∈S

vi ≥W (S) ∀S ∈ N

}
.

A collection of coalitions B ⊂ 2N is balanced if for each coalition S, there exists a

nonnegative scalar λS with λS = 0 if S /∈ B such that for each i ∈ N,
∑

S:i∈S λS = 1.

A balanced collection of coalitions B ⊂ 2N is minimal if it does not have a balanced

proper subcollection. Note that the balancing weights of every minimally balanced

collection of coalitions are unique; see Kannai [20, p. 361] for references and further

details. Next, we state the influential theorem of Bondareva [10] and Shapley [35]

which is used to prove our results.

Theorem (Bondareva-Shapley). A TU game W has a nonempty core if and

only if
∑

S∈B λSW (S) ≤W (N) for every minimally balanced collection of coalition

B.

A nontransferable-utility (NTU) game is a nonempty-valued correspondence V :

N ↠ Rn. The core of an NTU game V is defined as

Core(V ) = V (N)\

( ∪
S∈N

intV (S)

)
.

where intV (S) is the (topological) interior of the set V (S). An NTU game V is

balanced if for all balanced collection of coalitions B,
∩

S∈B V (S) ⊂ V (N). We end

this paper by stating the beautiful theorem of [33] which is used to prove our results.

Theorem (Scarf). A balanced NTU game V has a nonempty core if for each
coalition S,

(i) V (S) is closed,
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(ii) v′ ∈ Rn, v ∈ V (S) and v′S ≤ vS imply v′ ∈ V (S),

(iii) there exists MS ∈ R|S| such that v ∈ V (S) implies vS ≤MS .
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