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TRANSFERABLE-UTILITY S-CORE OF DISCONTINUOUS
GAMES

METIN UYANIK

ABSTRACT. In this paper we study the nonemptiness of the transferable-utility
[B-core of strategic-form games with possibly discontinuous payoff functions. In-
spired by the pioneering work of Reny (1999), we handle the discontinuities
by introducing the notion of reaction security. We show that every concave,
bounded, compact, strongly separable and reaction-secure game has a nonempty
transferable-utility S-core. In the special two-player setting, we show that certain
assumptions are redundant and also provide a result on the nonemptiness of the
[-core without the transferable utility assumption. We present applications of

our results to oligopoly markets.

1. INTRODUCTION

The core is the standard cooperative solution concept for economic models in-
volving the cooperative behavior of the agents, and is dated back to Edgeworth’s
work in the 19*'-century. An allocation, or a profile of actions, is in the core if it
is not blocked by any coalition, that is, no group of players can make each of its
members better off by acting for themselves. The core is extensively used in both
exchange and production economies, and it is the main solution concept in the field
of cooperative game theory.

It is common to model the economic problems involving cooperative behavior
by a game in characteristic function from where each coalition’s set of attainable
payoffs is given or can be easily defined. However, when externalities are present,
i.e., an individuals or group’s action affects the well being of the others, then the
characteristic function form is not directly applicable. For such problems, it is suit-
able to model the problem as a strategic-form game in which the action set of each
individual is given and the payoffs are determined by the actions of the individuals,

and then define a core concept for this game. Even though the core concept of this
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game can be defined as usual: a profile of actions is in the core of this game if it is
not blocked by any coalition, the very definition of blocking has to take the actions
of the complementary coalition into account due to the presence of externalities.
Aumann [6, 7] introduces two core concepts for strategic form games: a-core and
[B-core. A pair of an action profile and a payoff profile is in the a-core of a game
if the grand coalition’s aggregate payoff from the action profile is equivalent to the
aggregate payoff profile, and no coalition has an alternative action which makes all
of its members better off, independently of the actions of the other players. The
a-core is a “pessimistic” solution concept in terms of the perception of the members
of the blocking coalition’s capability to react the outsiders’ actions. The S-core, on
the other hand, is a stronger solution concept such that the blocking coalition is per-
mitted to counteract to each action of the complementary coalition so as to achieve
a higher aggregate payoff. It is as if a blocking coalition announces its intention to
block, forces the complementary coalition to move first, and then responds, rather
than the reverse order of moves. Hence, the members of the blocking coalition
has an “optimistic” perspective in terms of their reaction capability to outsiders’
actions.

Scarf [34], by using the methods he developed in his 1967 paper on the core of a
characteristic function-form game, provides a result on the nonemptiness of the a-
core of a strategic-form game. Until the work of Zhao [45], the -core existence result
has been absent.! Zhao [45] provides, under the transferable utility assumption, a
result on the nonemptiness of the S5-core of a game with continuous payoff functions.
A transferable-utility S-core existence result has direct relevance to many economic
problems in which agents have incentive to cooperate and transfers are allowed. For
example, in oligopoly markets, acting cooperatively yields firms higher payoffs which
can then be redistributed among them. In these markets, cooperation with side
payments can be interpreted as overt collusion. However, this profitable merger will
not take place unless firms could split the monopoly profits without any objection.
An element of a S-core describes an allocation of the profits in a monopoly merger.
Therefore, the nonemptiness of 3-core provides a necessary condition for monopoly
merger. In other words, the monopoly merger can only take place if the original
market has a nonempty core.

Many economic problems are suitably modeled by games with discontinuous pay-

off functions. The seminal works of Dasgupta and Maskin [15], Simon-Zame [36]

n his paper, Scarf provides a counterexmaple to the nonemptiness of the f-core. There are
existence results for stronger solution concepts such as strong Nash equilibrium in the literature,
see Ichiishi [19, Chapter 2] for a detailed discussion and [32] for a recent work. Zhao’s work is
the first paper which provides a direct existence result when the utilities are transferable. See also
[44, 46] and [27] on a discussion of different cooperative solution concepts for strategic-form games.
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and Reny [28] initiate a rich and evolving literature on the existence of an equi-
librium in games with possibly discontinuous payoffs.? The purpose of this paper
is to generalize Zhao’s [1999b] result to games with possibly discontinuous payoff
functions. In line with the recent literature on discontinuous games, we define a
class of games with possibly discontinuous payoffs, which we call reaction-secure
games, and provide sufficcient conditions such that these games have a nonempty
transferable-utility S-core.?

The paper is organized as follows. Section 2 defines the basic concepts and
notations, Section 3 presents two theorems on the nonemptiness of the [-core of
discontinuous games of general n-player games with transferable utilities, and also
it connects these results to hybrid solutions, and Section 4 concerns a special case of
two-player games and it presents four propositions complementing the two theorems
by showing that this special setup allows us to weaken (even drop some of) the
convexity and separability assumptions, and a proposition on the nonemptiness of
the nontransferable utility S-core of discontinuous games. Section 5 illustrates the
applications of our results to Bertrand duopoly and Cournot oligopoly games, and

Section 6 concludes.

2. NOTATIONAL AND CONCEPTUAL PRELIMINARIES

A (strategic form) game is a list G = (X;,u;)ieny where N = {1,...,n} is the
finite collection of players, X; is a nonempty set of actions for player ¢ and u; : X —
R represents the payoff function of player i defined on the set of action profiles
X = [lien Xi- Let G = (Xi,ui)ien be a game such that X; is a nonempty subset
of a finite dimensional Euclidean space.? for each player i. Then G is said to be

(i) compact if X; is compact for each i € N,
(ii) concave if X; is convex and w; is concave for each i € N,

(iii) bounded if u; is bounded for each i € N.

Let G = (X;,ui)ien be a game. A coalition is an element S in N = 2V\(). Let
N denote the set of all coalitions excluding the grand coalition. The set of actions

available to a coalition S is denoted as Xg = [ [, ¢ Xj, and the vector of utility func-

€S
tions of coalition S as ug = (u;);cs.” For each coalition S, let —S = N\S denote the

2See [12] and [29] for two symposia, and [31] for a survey on the recent developments in the
discontinuous games literature.

3Recently, an existence result for the a-core of a game with possibly discontinuous payoff functions
has been provided by [38], with or without transferable utilities. Since the TU S-core is contained
in the TU a-core, this paper also provides an existence result for the TU «-core.

4The results presented in this paper can easily be generalized to arbitrary topological vector spaces.
SWe drop the subscript N for the grand coalition, and when it is clear from the context, we use 4
instead of {i}.
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complementary coalition. An imputation is a payoff vector v € R™. An imputation is
x-feasible if Y,y ui(x) = D, c v vi- A coalition S € N blocks an imputation v € R™
if there exists f : X_g — Xg such that ) . qu; (fs(2-5),2-5) > > ;cqvi and the
the grand coalition blocks v if there exists 2 € X such that D,y ui () > D ,cqvi

Definition 2.1. A pair of an action profile and imputation (z*,v*) € X x R" is in
the B-core® of a game G = (X, u;)ien if v* is x*-feasible and is not blocked by any

coalition.

Note that a pair of an action profile and an imputation (z*,v*) is in the [-core
of the game if £* maximizes the payoff of the grand coalition, v* is the maximum
payoff of the grand coalition and no coalition has a reaction function which yields
itself a strictly higher payoff depending on the complementary coalition’s action.
An action profile x is a Nash equilibrium of G if no player has a strategy which
gives her strictly higher payoff than x assuming that the others do not change their
actions. The (transferable utility) S-core differs from the Nash equilibrium in three
aspects. First, the coalitions are allowed to act together. Second, coalition members
can transfer their payoff among each other. Third, the complementary coalitions
are allowed to punish the deviants while the deviants are allowed to react to the
actions of the complementary coalitions. As we note in the introduction, another
closely related solution concept is the a-core; the main difference is that it does not
allow the blocking coalition to counteract the complementary coalition’s action. By
definition, for a game, its S-core is contained in its a-core, for both transferable and
nontransferable utilities; see [7], [34] and [45] for a detailed comparison of the two
core concepts.

Next, we introduce two weak continuity concepts, inspired by the pioneering
work of Reny [28], which imposes topological assumptions on the game itself. For

a bounded game G, let

n . .
(2.1) X = {(a:,v) e X xR \;Vv, = ;:Vul(:c), Zlél)f(ul(z) <w; Vie N}
denote the set of all pairs of action profiles x and z-feasible imputations v such that
the imputations are bounded below by players’ lowest possible payoffs. It is clear
that X' contains the B-core of G. Let X denote the (topological) closure of X'. Note
that if the game is compact and bounded, then X is compact.

6In this definition, and in the definitions of an imputation, feasibility and blocking concepts above,
we assume the utilities are ”transferable.” Since all of our results but one (Proposition 4.8) as-
sume transferable utilities, we abbreviated the notation and do not explicitly refer to transferable
utility in the definitions for the convenience of the reader. Moreover, when we refer to the core
of nontransferable utility games, we explicitly mention that the utilities are nontransferable; see
Definitions 4.6 and 4.7 and Proposition 4.8.
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Definition 2.2. A bounded, compact game G is reaction-secure (RS) if for each
(x,v) € X that is not in the B-core of G, there exist an open neighborhood U*" of
(z,v), yu' € X, wy' € R, and for each S € N there exist wg" € R and a function
6¢" + X_g — Xg such that
(1) Yienuilyy") = wy"
(i) for all S € N and for all z_g € X_g, Sies w08 (225), 2—5) > wg”,
(iii) for each (2',v’) € U™V there exists S € N such that >, g v < wg".

Remark 2.3. If a pair of action profile and imputation (x,v) is not in the -core of
G, then by definition at least one coalition blocks v. The reaction-security (RS) im-
poses the following structure on the blockings: (a) an open neighborhood of (z,v)
does not contain a point in the S-core of G, i.e. the payoff at each point in the
neighborhood is blocked by at least one coalition, (b) the identity of the blocking
coalition is allowed to vary, but each coalition’s reaction function must remain un-
changed. This type of security notion is inspired by the pioneering work of Reny
[28]. His notion of better-reply-security assumes that every action profile which is
not a Nash equilibrium of G (a) has a neighborhood which does not contain a Nash
equilibrium, i.e. at each point in the neighborhood at least one player deviates
at it, (b) the identity of the deviant is allowed to vary, but his deviation strategy
must remain same in response to the remaining players’ tremble on the neighbor-
hood. A weakening of Reny’s better-reply-security notion is provided by Barelli and
Meneghel [8] and Reny [30] that allows each player has multiple deviation strategies
which change upper semicontinuously in response to the remaining players’ trem-
ble on the neighborhood.” In particular, they define the following weak continuity

concept.

A bounded, compact game G is correspondence-secure (CS) if for
each z € X that is not a Nash equilibrium of GG, there exist an open
neighborhood U?® of z, and for each player i« € N, v € R and an
upper semicontinuous, u.s.c. hereafter,® correspondence iU —
X; with compact and nonempty values® such that

(i) wi(z,z—;) > v} for each i € N, z € U” and z € ¢7(2),

(ii) for each 2’ € U” there exists i € N such that u,;(2') < vf.

"See also [26], [39], [18], [13], [25], [2, 3], [21], [40] and [24] on the continuity postulate in economic
theory, and generalizations and applications of Reny’s better-reply-security notion.

8A correspondence with compact values whose range is a compact Hausdorff space is u.s.c. if and
only if its graph is closed in the product topology; see Aliprantis-Border [1, Lemma 17.11, p. 561].
9Reny [30] assumes ¥§ also has convex values, but for finite dimensional spaces we can drop this
assumption.
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There are some similarities between the concepts of reaction-security and
correspondence-security. Both assume that if a point is not an equilibrium, then a
neighborhood of it does contain an equilibrium. Moreover, both put some structure
on the deviation/blocking, the players/coalitions should deviate “nicely”. Beyond
these conceptual similarities, the two concepts are quite different. First, in the RS,
the reaction functions are structure free, i.e. they do not have any continuity or
convexity property. Second, the trembling of the others is replaced by all actions
of the complementary coalition. Although this seems a strong assumption, it is
consistent with the definition of blocking and Reny’s insight. The C'S assumes a
structure on deviations, and the RS on blockings, and the definition of blocking, in
contrast to deviation, already incorporates all actions of the complementary coali-
tion. These arguments imply that there is no inclusion relation between the RS

and CS concepts — Example 1 below illustrates this claim.

Note that if a pair of action profile and imputation (x*,v*) is in the [-core,

then the following three conditions are satisfied: (i) z* € argmax) ; y u;(x), (ii)
zeX

Yoien Vi = D ien ui(z*), and (iii) v* is not blocked by any coalition. In order to
guarantee a solution to the maximization problem defined in (i), we define the RS
on X, not on X.!Y Observe the maximization problem in part (i) is independent
of the no blocking condition in part (iii), hence it is possible to separately analyze
these two parts and obtain a different and simpler continuity concept as follows.

Let G be a compact and bounded game. If the aggregate payoff function u(x) =
> ien ui(z) is upper semicontinuous, then @ has a maximizer."! Fix a maximizer z
of @. Then, focusing only on the redistributions of the grand coalition’s maximum
aggregate payoff, which are called imputations, is enough to show the nonemptiness
of the -core. In particular, let

(2.2) V= {UGR"\Zvi:Zui(x), xlg'(uz(x) < WGN}
ieEN 1eEN

denote the set of bounded below and Z-feasible imputations. It is clear that the

[-core of G is nonempty if and only if V contains an imputation which is not blocked

by any coalition. Note that since G is bounded, V is compact.

Definition 2.4. A bounded, compact game G = (X, u;);en is RSy if the aggregate

payoff function @ is upper semicontinuous and for each v € V such that (z,v) is not

10 g property of RS is similar to the original better-reply-security notion of [28] which works on
the closure of the graph of the game.

1 0One can also impose weaker assumptions such transfer continuity of [37], or continuous neighbor-
hood selection of [39], or continuous inlcusion property of [18], to guarantee that @ has a maximizer.
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in the S-core of GG, there exist an open neighborhood UV of v, and for each S € N
there exist wg € R and a function 6% : X_g — Xg such that

(i) >iegui(64(z—s), 2—5) > w§ for each S € N and z_g € X_g,

(i) for each v’ € U there exists S € A such that Yicg Vi < w.

Remark 2.5. Note that while the RSy property focuses only on {z} x V Cc X
and does not take the points in the closure of X' into account, it explicitly imposes
assumptions on the grand coalition’s blocking behavior which is not imposed by the
RS. Tt is easy to see that if @ is upper semicontinuous, then every RS game is RSy.
However, the RSy property does not imply RS — Example 1 below illustrates this

claim.!2

Let G be a bounded RS game. For each S € A and (z,v) € X that is not in the
B-core of G define the set of all securing reaction functions as

Ag(z,v) = {6?’”1 : X_g— Xg | (2/,0") € X is not in the B-core of G
z' v z,v
and wg™ > wg },

where the functions 6?’1’/ and the values wg’v, wg/’”/ are as defined in Definition 2.2.
Now let G be a bounded RSy game. For each S € N and v € V such that (z,v) is
not in the S-core of G define the set of all securing reaction functions as

AY () ={0% : X_s = X5 | v/ € V,(z,v) is not in the S-core of G
and wY > wl}
where the functions 53’; and the values w¥, wgf are as defined in Definition 2.4.

Definition 2.6. A bounded, compact RS game G is strongly separable if for each
S € N there exists (x,v) € X such that for each dg € Ag(x,v) there exists Z_g €
X _g such that

D ui(ds(3os),os) = Y inf  ui(d5(3-g), 2-g)

‘ —z s€X_g

1€S €S
Definition 2.7. A bounded, compact RSy game G is strongly separable if for each
S € N there exists v € V such that for each &g € AY (v) there exists Z_g € X_g
such that

> ui(ds(iog),2-9) =Y inf  wi(6s(2-s), z—s).

. — 2—s5€X_5

i€S 1€S
127pe following simple one player game may also be helpful in illustrating this claim. X = [0, 1]
and u(0) = 1, u(1) =0, and u(z) = z for all x € (0, 1). This 1-player game is not RS since 1 is not
a maximizer of u and (z,v) = (1,1) € X. However, it is clear that the game is RSy.
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Remark 2.8. Note that the strong separability definition we provide here closely
related to the following definition provided in Zhao [45, Definition 3, p.157]: “A
game G is strongly separable if for each S € N and each i € S,

wi(2”(2-5), 2-5) = min Sui(:r*(é—s),z—s),

where for each z_g € X_g, 25(2_g) solves max,gsexy ) icgUi(Ts,2-s), and for
given z§(-), Z_g solves min, sex_ ¢ ;cqui(2*(2-5), 2—5).” While Zhao’s definition
requires the equality to hold for a specific reaction function, our definitions requires
the equality to hold for a set of reaction functions, hence his definition imposes
a weaker condition. On the other hand, while his definition requires the equality
to hold for all members of a given coalition, our definitions impose the equality
restriction on the aggregate utility of a given coalition, and also we do not require
Z_g = Z_g, hence our definition imposes weaker conditions. Having said this, if
utilities are continuous, we can revise the sets of the securing reaction functions
such that our definitions are weaker than Zhao’s definition as follows. Assume
the payoff functions are continuous. It is easy to see that we can set Ag(z,v) =
AY (') = {z%()} for all S € N and (z,v) € X and o/ € V since RS and RSy
require only the existence of a securing reaction function which can be selected as

the “best” reaction function without loss of generality.

3. RESULTS: GENERAL n-PLAYER GAMES

Our first result generalizes the main result of [45] by weakening the continuity

assumption on the payoff functions.

Theorem 3.1. Every concave, bounded, compact, strongly separable and RS game

has a nonempty [B-core.

Before presenting the proof, we present three remarks: the first is on the structure
of the discontinuity of a concave function, the second compares Theorem 3.1 to the

relevant results in the antecedent literature and the third is on the method-of-proof.

Remark 3.2. It is well known that every real-valued concave function on a Eu-
clidean space is continuous at each point of its domain’s relative interior. Hence,
discontinuities can occur only at the relative boundary of the domain. And, it is
easy to define a concave function that is discontinuous at every point of the relative
boundary of its domain. Ernst [16], in his generalizatino of [17], provides a nice
characterization of the continuity properties of a concave function on the relative
boundary of its domain. Before stating this result, we shall introduce some con-
cepts. A subset X of R™ is called a polytope provided that it is the convex hull
of a finite set of points And X is said to be boundedly polyhedral provided that its
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intersection with any polytope is a polytope. It is clear that any compact bound-
edly polyhedron is a polytope. Ernst [16, Theorem 2.4, p.3672] states that given a
conver and compact subset X of R™, every concave function on X is lower semi-
continuous if and only if X is a polytope. Since any convex and compact subset X
of R is a polytope, Ernst’s theorem implies that any concave function on X is lower
semicontinuous. However, for R™, m > 2, this result is not true. Given a convex
and compact subset X of R™ which is not polytope (such as unit ball), it is always
possible to find a concave function on X which is not lower semicontinuous. Hence,
our setup which eliminates maz and replaces min with inf is crucial for games with
possibly discontinuous payoff functions. And as Carter [14, p.334] states “This is
not a mere curiosity. Economic life often takes place at the boundaries of convex

sets, where the possibility of discontinuities must be taken into account.”

Remark 3.3. Scarf [34, Theorem| provides a result on the nonemptiness of the
a-core of continuous games with nontransferable utilities. Zhao [44, Theorem 1]
and Zhao [45, Theorem 1] prove the nonemptiness of the a-core and the f-core of
continuous games with transferable utilities, respectively. Uyanik [38, Theorems 1,
2, 3] generalizes Scarf’s and Zhao’s results on the nonemptiness of the a-core to
games with possibly discontinuous preferences, with or without transferable utili-
ties. The relationship between our results on the nonemptiness of the S-core with
transferable utilities, Theorem 3.1 above and Theorem 3.5 below, and Theorems 2
and 3 in Uyanik [38] on the nonemptiness of the a-core with transferable utilities
are similar to that of Theorem 1 in Zhao [44] and Theorem 1 in Zhao [45], with the
exception that we allow discontinuous preferences and the nature of the discontinu-
ities can be quite different in our results and in the results presented in the author’s

earlier work.

Remark 3.4. We now describe our method-of-proof and compare it to those used
in Zhao [45] and Uyanik [38]. Zhao assumes the payoff functions are continuous and
the action sets are compact, therefore he can work with “best-responses.” In our
setup, his approach does not work since the best-responses may not exist due to the
discontinuities in the payoffs. Instead, we use the approach introduced by Reny [28]
and assume the game has an empty S-core. Then, by using the reaction-security,
which requires the blockings to be “nice”, and the compactness of the action sets
we obtain a finite collection points. By using these points we carefully construct an
auxiliary TU game in characteristic function form. Then we use the separability of
the game and the concavity of the payoffs in order to show that the TU game is
balanced. Our line of arguments at this step uses the construction in Zhao’s proof.

Then, Bondareva-Shaply theorem imply that the TU game has a nonempty core.
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This furnishes us a contradiction with the reaction-security of the original game.
Our proof approach is similar to the proof approach of Uyanik [38] to extent that
both construct auxiliary games. However, the construction of the auxiliary games
and the line of the arguments in the proofs are quite distinct.

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let G be a concave, bounded, compact, strongly separable,
RSN game and has an empty (-core. Then, since G is RS, for each (z,v) €
X, there exist an open neighborhood U*" of (z,v), yx' € X, wy’ € R, and for
each S € N there exist wg” € R and a function d¢"” : X_g — Xg such that
Sienuilyy’) = wy', Yiegui(0" (2-5), 2—5) > wg" for each S € N and z_g €
X_g, and for each (2/,v') € U™ there exists S € N such that Y, qv] < wg".
The family {U*"| (z,v) € X'} is an open covering of X which, by compactness
of X, contains a finite subcovering {U%%| k = 1,...,m}. Moreover, for each
SeN , the pair (zg,vg) € X is identified'® by strong separability. Hence, there
are (JN| — 1)-many additional open sets, that is, for each S € N, we have U%ss,
Define U%m+i-Ym+i = [U%SYS when S is the jth member of the set N. Let K =
{1,....,m,m+1,....,m+|N| - 1}. Define for all k € K, U¥ = U%", and for all
SeN, wgzwgk’v’“ and 6gz5gk’v’“,and y]’“i,:yf\;“’v’“. Q

Now define a TU game W : N’ — R as follows. For all S € NV,

_ k
W(S5) = maxws,

where L and 2! € X are defined as follows. First, for each coalition S € N , pick

ks € argmax w?.
keK

Define for each coalition S € A/ ,
Js = 055,

Let L denote the number of minimal balanced collection of coalitions that does
not include N. Since number of all collection of coalitions is 2¥V! and A is a finite
set, L is finite. Let 7 = {B'};cr denote the set of all minimal balanced collection
of coalitions which does not include N. For each B! € T, let Xl = {A;}gep be

13We abuse the notation and use subscripts for both indices and coordinates when the context is
clear.
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the corresponding unique balancing weights.'* By construction, for each S € B,
W(S) = wS <D ies Ui(0s(2—s), z—g) for each z_g € X_g. Define zt € X as

> Nydsi(3og) forallie N,
SeBlies
where Z_g is determined by strong separability.!?

We shall show that for each minimally balanced collection of coalitions
B, > gepAsW(S) < W(N). For B = {N}, there is nothing to prove. Since the
only minimal balanced collection of coalition which includes N is B = {N}, we
shall prove the above inequality for all B € 7. Pick B € 7 with the (unique)
balancing weights A\ = {Ag}sep. (note that the balancing weights of a minimal
balanced collection of coalitions are always unique). We shall show that there exists

2’ € X such that
D AsW(S) < wi(') < W(N).
SeB ieEN
Recall that in defining W(N), we define an action profile for each balanced collec-
tion. Now, define z* as
> Asdsi(3g) forallie N.
SeB:ies
By construction of W, >,y ui(z*) < W(N). Therefore, showing
D ASW(S) <> uiz
SeB 1EN

will be sufficient. From the construction of W,

Z)\SW Z)\S 1nf Zul (0s(2-5),2-5),

SeB SeB S ies

and since W is strongly separable, Lemma 7.1 in the Appendix implies there exists
Z_s € X_g such that
A f (ds( A f (0 _s).
> SZSI'IEIXSZUZ s(z-9),2-8) < ) szzslgxs (0s(2-5), 2—s)
SeB SeB €S
Therefore,

Z AsW(S) < Z Z Ag z,gig)f(,s u;(0s(2-5),2—8),

SeB i€EN SeB:es

HMNote that the balancing weights of a minimal balanced collection of coalitions are unique; see
Kannai [20, p. 361] and Appendix below.
L5Note that, by construction, ds € Ag(zk,vx) for all k € K.
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hence showing the following inequality implies the desired result.

Z As inf  u;(0s(Z-s),2—5) < ui(x¥) for each i € N.
. z_g€X_g
SeB:ies
At this level of generality, it is sufficient to demonstrate that the above inequality
holds for player 1, since by a suitable renaming of players any particular player can
be made the first. We now define y° € X for each S € B containing player 1 as
follows. If 7 € S, then
e = 6s4(7-s).
If i ¢ S, then
s _ 2 Aedpi(3-k)
yl Z )\E ‘
where in both the numerator and the denominator the summation is taken over all
E € B which contain player ¢ but not player 1. From Scarf [34, p.179],
x* = Z )\Sys.
SeB:1es

Pick a coalition S € B containing player 1. Then by construction of y° and the
strong separability,

inf  wu(dg(2-5),2-5) < uy (yS)

z_g€X_g

Therefore, from the concavity of uq,

> As inf w(bs(3-g).z—s) < Y Asur(y®) < w(z¥).

_gEX_
SeBiles 55 0S SeB:les

Therefore, since B is arbitrarily chosen, for each B € T, Y g5 AsW(S) < W(N).
Bondareva-Shapley Theorem provided in the Appendix implies W has a nonempty
core, i.e. there exists v* € R™ such that ) ..y vi = W(N) and ), gvf > W(S)
for all S € N. By construction of W (), there exists z € X such that >,y vf =
Y ien wi(Z). In particular, T = y]’i,, or z! for some k € K, € L. Hence, (z,v*) € X.
Since G is RS and (Z,v*) € UF for some k € K, there exists S € A such that
> ies Uf < wk. By construction, wf < W(S). This furnishes us a contradiction. [

We next present our second main result which replaces the assumption that the
game is RS in Theorem 3.1 with the assumption that the game is RSy.

Theorem 3.5. Every concave, bounded, compact, strongly separable and RSy

game has a nonempty [-core.

Proof of Theorem 3.5. Let G be a concave, bounded, compact, strongly separable
and RSy game. Since the aggregate payoff function @ is u.s.c. and X is compact,
therefore there exists £ € X which maximizes the aggregate payoff function @ of
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the grand coalition. Moreover, the game is bounded, hence, V is a well-defined
compact set. Now, assume G has an empty -core. Then, since GG is RS}y, for each
v € V, there exist an open neighborhood UV of v, and for each S € N there exist
wg € R and a function 6% : X_g — Xg such that >, gu;i(0§(2-5),2-5) > wg
for each S € /\7, 2.5 € X_g, and for each v/ € UV there exists S € N such
that ), gv; < wg. The family {U"| v € V} is an open covering of V which, by
compactness of V, contains a finite subcovering {U"| k =1,...,m}.

Moreover, for each S € N, there exists zg € V identified by strong separability.
Hence, there are (JAV]| — 1)-many additional open sets, that is, for each S € N,
we have U*S. Define U*m+i = U®S when S is the jth member of the set N. Let
K={1,....m,m+1,....m+ |N| —1}. Define for all k € K, U*¥ = U%, and for
all S € N, wh :wg’“ and (55 —55’“.

Now define a TU game W : N' — R as follows. For all S € N\N,

W(S) = ma}%(wg, and W(N)=w = max Zuz

ke

Next, for each coalition S € N , pick

ks € argmax wg,
keK

and define for each coalition S € N/ ,
Js = OtS.

We shall show that for each minimally balanced collection of coalitions
B, > gen AsW(S) < W(N). Pick a minimal balanced collection of coalitions B with
the (unique) balancing weights A = {Ag}sep (recall that the balancing weights of a
minimal balanced collection of coalitions are always unique). For B = { N}, there is
nothing to prove. Otherwise, since B is a minimal balanced collection of coalition,
it does not contain N. We shall show that there exists 2’ € X such that

Z)\SW <Zul ) <w=W(N).

SeB €N

where the last inequality follows from the definition of w. By construction, for each
SeB, W(S) = wgs <Y iesui(ds(2—5),2-5) for each z_g € X_g. Define 2* € X

as
D Asbsi(Eo9),

SeB:ies
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where Z_g is determined by strong separability. By the construction above,
Yien wi(z*) < W(N) = w. Therefore, showing
D OASW(S) <) i)
SeB 1EN
will be sufficient. From the construction of W,
A < i ; _ _
D ASW(S) <D As Z_Slél)f(_szuz@s(z $),z-5),
SeB SeB €S
and since W is strongly separable, Lemma 7.1 in the Appendix implies there exists
Z_g € X_g such that
A f _s).
Z S 1n Zuz ds(z-5),2-5) Z)\Szz Slgf_s i(0s(Z-5),2-5)
seB SeB €S
Therefore,
AsW(S) < f ; Z_ _
D s Y As  inf ui(6s(2-5), 2-3),
SeB 1EN SeBeS
hence showing the following inequality implies the desired result.
Z As inf  u;(ds(Z2-5),2-5) < u;(x™) for each i € N.
. z_g€X_g
SeB:ies
At this level of generality, it is sufficient to demonstrate that the above inequality
holds for player 1, since by a suitable renaming of players any particular player can
be made the first. We now define y° € X for each S € B containing player 1 as
follows. If ¢ € .S, then
yi = 0s(2-5).
If i ¢ S, then
s _ 2 A80pi(2-p)
yl Z )\E' :

where in both the numerator and the denominator the summation is taken over all
E € B which contain player ¢ but not player 1. From Scarf [34, p.179],
Z )\Sys .
SeB:1eS
Pick a coalition S € B containing player 1. Then by construction of y° and the
strong separability,

i 7 < .
Z_Slg)f(_s u1(ds(2-s5),2—5) < w(y”)

Therefore, from the concavity of wuq,

Z As inf  u1(ds(2-g), 2 Z Asu1(y®) < ug(z®).

_sEX_
SeBiles  TSE4S . sepies
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Therefore, since B is arbitrarily chosen, for each B € T, > gc5 AsW(S) < W(N).
Bondareva-Shapley Theorem provided in the Appendix implies W has a nonempty
core, i.e. there exists v* € V such that ), v = W(N) and ) ;g v > W(S) for
all S € V. Since G is RSy and v* € UF for some k € K, there exists S € A such that
> ics Vi < wk. By construction, w¥ < W(S). This furnishes us a contradiction. [

Remark 3.6. We end this section by presenting a result on hybrid solution due
to [43, 45]. For some game theoretic situations only some subsets of the players
can behave cooperatively, due to factors such as transaction costs, social and legal
restrictions. A solution concept for such models is called hybrid solution which
assumes that the players are partitioned into coalitions and that they will cooperate
within each coalition but compete (in the Nash sense) among coalitions. Now, let
G = (Xi,u;)ien be a game. A given coalition structure (a partition of N) A =
{S1,...,8n} induces a game Ga = {Xg,) ,cqUi}sea among partition members

and m parametric games
Gs(z_s) = {Xi,ui(-,2_5) }ies-

Definition 3.7. Let G = (X;, u;);en be a game and A = {S1,...,S,} a coalition
structure. A hybrid solution for G is a pair of an action profile and imputation
(z*,v*) € X x R™ such that for each S € A,

(i) «* is a Nash equilibrium of Ga,

(ii) (z§,vg) is in the (transferable utility) S-core of Gg(x* o).

The following result follows from Theorems 3.1, 3.5, and Barelli and Meneghel
[8, Theorem 2.2, p.816].

Corollary 3.8. A bounded, concave game G has a hybrid solution if Ga is
correspondence-secure (CS) and for each S € A and z_g € X_g, Gg(x_g) is
compact, strongly separable and either RS, or RSy.

Note that [45] allows each coalition in A to use other distribution rules such as
a-core. It is of interest to investigate further hybrid solutions in discontinuous

games.

Proof of Corollary 3.8. Since Gg(x_g) is a concave game for each S € A and x_g €
X_g, u; is concave for each player i € S, hence >, g u;(-,2_g) is concave. Then,
since G is CS, Barelli and Meneghel [8, Theorem 2.2, p.816] implies there exists
r* € X such that 2% € argmax, cx Y ;ecq ti(zs, 7 g) for each S € A. And since
all conditions of Theorem 3.1 are satisfied (if the game is RS, and Theorem 3.5 if
the game is RSy), for each S € A there exists v € RISl such that (z%,v%) is in the
B-core of Gg(x* g). O
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4. RESULTS: TWO-PLAYER GAMES

This section studies the nonemptiness of the p-core of two-player games. As
we noted above, the two-player setup allows us to weaken (even drop some of)
the convexity and separability assumptions: Propositions 4.1 and 4.2 show that
in the two-player setup, the convexity structure can simply be dropped (since the
clever argument originally introduced by Scarf is not needed in this special setup),
and Propositions 4.4 and 4.5 show that the strong separability in the first two
propositions can be replaced by a stronger continuity assumption and quasiconcavity
of the payoff functions.

Our first result in this section drops the entire convexity structure, both convexity

of the actions sets and the concavity of the payoff functions.

Proposition 4.1. A bounded, compact, strongly separable and RS 2-player game

has a nonempty (-core.

Proof of Proposition 4.1. Assume G has an empty [-core. Then, since G is RS, for
each (x,v) € X, there exist an open neighborhood U of (z,v), yn' € X, wy' €R,
and for each i € N there exist w;"" € R and a function §;"" : X; — X; for i # j such
that >,y ui(yy’) = wy', w0 (25), z) > wi" for each i # j and z; € X, and
for each (2/,v") € U™V there exists S € N such that Y, qv; < wg"”. The family
{U®?] (x,v) € X} is an open covering of X which, by compactness of X, contains
a finite subcovering {U% | k = 1,...,m}. And for each i € N, (z;,v;) € X is
identified by strong separability. Let U¥ = U%r%, and for all S € N, wg = wz’“’v’“,
y}“\, = yf\}“’v’“, and for ¢ = 1, 2, 521-“ = 5?’“’”’6 forall ke K={1,...,m,...,m+ 2}.
Now define a TU game W : N — R as follows. For all i € N,

) — k
W({l}) - Ilgleal“}({wz ’

W(N) = max {%g}%izui(y]’i/% Zui(x*)} ;

i€EN iEN
where z* € X is defined as follows. First, define for each coalition S € N,

kg € argmax wg, and d0g = 5@5.
keK

By construction, for each i # j, W({i}) = wfi < u;i(0i(z), 2j) for each z; € Xj.
Define z* € X as
ﬂfj = (51(2]) for 7 7& j,

where Z; is determined by strong separation.
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We shall show that for each minimally balanced collection of coalitions
B, > gepAsW(S) < W(N). Note that there are only two minimal balanced collec-
tion of coalitions: B = {N}, or {{1},{2}}. For B = {N}, there is nothing to prove.
Let B = {{1},{2}}. The definition of infimum and strong separation imply for each
i 7 J,

zjig)f(j ui(0i(25), zj) < ui(6i(%), %) = Zjig)f(j ui(6i(%), 7j)-
Hence,
wit < wi(Bi(%),05%) = uila").
Therefore, >,y ui(2*) < W(N) implies W (1) + W (2) < W(N).

Bondareva-Shapley Theorem provided in the Appendix implies W has a nonempty
core, i.e. there exists v* € R? such that Y_,c y vf = W(N) = 3,cy and v} > W ({i})
for all i € N. By construction of W(N), there exists z € X such that ) . yvi =
> ien wi(Z). In particular, z = yf for some k € K, or # = 2*. Hence, (z,v*) € X.
Since G is RS and (Z,v*) € U* for some k € K, there exists S € N such that
> ies UF < wk. By construction, wf < W(S). This furnishes us a contradiction. [

We next show that RS property in Proposition 4.1 can be replaced by RSy prop-
erty.

Proposition 4.2. A bounded, compact, strongly separable and RSy 2-player game

has a nonempty B-core.

Proof of Proposition 4.2. Since the aggregate payoff function % is u.s.c. and X
is compact, therefore there exists £ € X which maximizes the aggregate payoff
function @ of the grand coalition. Hence, V is a well-defined compact set. Now,
assume G has an empty (-core. Then, since G is RSy, for each v € V, there
exist an open neighborhood U" of v, and for each ¢ € N there exist w{ € R
and a function ¢ : X; — X; such that u;(07(z;),2;) > w} for each i # j, and
z; € Xj, and for each v/ € UV there exists i € N such that v, < w}. The family
{U"]| v € V} is an open covering of V which, by compactness of V, contains a finite
subcovering {U%| k =1,...,m}. And for each i € N, v; € V is identified by strong
separability. Let UY = U%, and for all i € N, wf = w:’“ and (511C = 5: k for all
ke K={1,...,m,...,m+2}.

Now define a TU game W : N'— R as follows. For all i € N,

W({i}) = r’?ez}){(wf, and W(N) =@ = glg:g{Zui(x).

We shall show that for each minimally balanced collection of coalitions
B, > genAsW(S) < W(N). Note that there are only two minimal balanced collec-
tion of coalitions: B = {N}, or {{1},{2}}. For B = {N}, there is nothing to prove.
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Let B = {{1},{2}}. By construction, W({1}) = wi" < u;(8;(22), z2) for all z, € X,
and W ({2}) = wh? < ug(z1,02(21)) for all z; € X;. And strong separability implies
for each i € N, there exists Z_; € X_; such that
wl' < wi(8;(5-4),5-) = in)f( ui(04(2-;),2—;) fori=1,2.
Z_,€EX 4

Hence,
wh < uy(61(%2),02(21)) and wh? < ug(61(Z2), 62(Z1)).

Therefore, D,y ui(91(22),02(21))) < w implies W (1) + W (2) < W(N).
Bondareva-Shapley Theorem provided in the Appendix implies W has a nonempty
core, i.e. there exists v* € V such that ),y vy = W(N) and vf > W ({i}) for all
i € N. Since G is RSy and v* € U* for some k € K, there exists i € N such that
vf < wk. By construction, w¥ < W ({i}). This furnishes us a contradiction. O

We next introduce some new concepts for our next two propositions.

Definition 4.3. A bounded, compact game G is strongly reaction-secure (strongly
RS) if for each (x,v) € X that is not in the f-core of G, there exist an open
neighborhood U*? of (z,v), yy' € X, wy’ € R, and for each S € N there exist

v

wg € R and an upper semicontinuous correspondence (5@’” : X_g —» Xg with

nonempty and compact values such that
(1) Yien uilyn’) = wy’
(ii) for all S € /\O/', all z_g € X_g and all zg € 65" (2—g), Y icgui(zs,2-5)
> wg”,

(iii) for all (2/,v") € U™ there exists S € N such that >, g v) < wg".

Note that strong-RS property replaces the functions 0" in the RS-property with
nonempty- and compact-valued u.s.c. correspondences. If the payoff functions
are continuous, then the “best response correspondences” satisfy this assumption.
Hence, the strong RS is substantially weaker than the continuity assumption. In-
deed, it is direct analogue of the C'S property defined above. Define strongly RSN
analogously.

We now present a result showing that, in the two-player setup, strengthening
the continuity assumption allows us to drop the separability assumption when the

payoff functions are quasiconcave.

Proposition 4.4. A bounded, compact and strongly RS 2-player game has a
nonempty [-core if for each player 7, X; is convex and wu; is quasiconcave on X;.

Proof of Proposition 4.4. Assume G has an empty S-core. Then, since G is strongly
RS, for each (x,v) € X, there exist an open neighborhood U*" of (x,v), yy € X,
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chv,v € R, and for each ¢ € N there exist wf ¥ € R and a nonempty- and compact-
valued u.s.c. correspondence 6;"" : X; — X; for i # j such that >,y ui(yy") >
wy', and w;(z;,2;) > w;" for each i # j and z; € Xj, and z; € §;""(z;), and
for each (2/,v") € U™ there exists S € N such that >, qv; < wg". The family
{U*"| (z,v) € X} is an open covering of X which, by compactness of X, contains
a finite subcovering {U%%| k = 1,...,m}. Let U¥ = U% %, and for all S € N,
wg = wgk’v’“, yfv = yf\f’vk, and for 1 = 1,2, 65 = 5,/“ “kforallk € K = {1,...,m}.
Now define a TU game W : N’ — R as follows. For all i € N,

W({i}) = max wk,

N) = i 7 )
W(N) max{rknea% wi(yh), Zu }

where * € X is defined as follows. First, define for each player i € N,

k; € argmaxw’, and §; = co(éf"),
keK
where co(éf ") is the convex hull of 55 ‘. Since (55C ‘ is u.s.c., has nonempty and compact
values, and X is subset of a finite dimensional Euclidean space for each ¢ € N, §; is
u.s.c. and has nonempty and compact values. Moreover, since u; is quasiconcave for
each i € N, u;(2,25) > wfi for each z; € X; and z; € J;(2;) for i # j. Now, define
a correspondence 6 : X — X as §(z) = (01(22),62(#1)). Since ¢ is u.s.c. and has
nonempty and convex values, Kakutani’s fixed point theorem implies there exists
z* € X such that
r; € 0i(x3), 1 # J.

Hence, w' < u;(z;, 2;) for all z; € X; and z; € 8a(z;) for i # j implies w! < u;(2*)
fori=1,2.

We shall show that for each minimally balanced collection of coalitions
B, Y genAsW(S) < W(N). Note that there are only two minimal balanced col-
lection of coalitions: B = {N}, or {{1},{2}}. For B = {N}, there is nothing to
prove. Let B = {{1},{2}}. Recall that, wlfl < wup(x*) and wlgz < ug(x*). Therefore,
Yien wi(z*) < W(N) implies W (1) + W (2) < W(N).

Bondareva-Shapley Theorem provided in the Appendix implies W has a nonempty
core, i.e. there exists v* € R? such that Y, v vf = W(N) and v} > W({i}) for
all i € N. By construction of W(N), there exists € X such that >, yv] =
> ien Ui(Z). In particular, 7 = yf\, for some k € K, or & = x*. Hence, (z,v*) € X.
Since G is strongly RS and (z,v*) € U for some k € K, there exists S € N such
that Y,cq v < wk. By construction, w¥ < W(S). This furnishes us a contradic-
tion. O
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The next result replaces the strong RS property in Proposition 4.4 by strong
RSy property.

Proposition 4.5. A bounded, compact and strongly RSy 2-player game has a
nonempty [-core if for each player ¢, X; is convex and u; is quasiconcave on X;.

Proof of Proposition 4.5. Since the aggregate payoff function u is u.s.c. and X
is compact, therefore there exists & € X which maximizes the aggregate payoff
function @ of the grand coalition. Hence, V is a well-defined compact set. Now,
assume G has an empty [-core. Then, since G is strongly RSy, for each v € V,
there exist an open neighborhood U" of v, and for each ¢ € N there exist w; € R
and u.s.c. correspondence 67 : X; — X; with nonempty and compact values such
that w;(zi,2;) > w? for each i # j, z; € X; and z; € §7(z;), and for each v' € U”
there exists ¢ € N such that v; < w. The family {U"| v € V} is an open covering of
V which, by compactness of V, contains a finite subcovering {U%| k = 1,...,m}.
Let U¥ = U%, and for all i € N, w¥ :fwf’“ and 6F = (5;)’“ forallk € K ={1,...,m}.

Now define a TU game W : N' — R as follows. For all i € N,

W({i}) = %éa[%(wf, and W(N) =w = I;E&}))((Zuz(:c)

We shall show that for each minimally balanced collection of coalitions
B, > gepAsW(S) < W(N). Note that there are only two minimal balanced collec-
tion of coalitions: B = {N}, or {{1},{2}}. For B = {N}, there is nothing to prove.
Let B = {{1},{2}}. Define for each player i € N,

k; € argmaxw’, and §; = co(éfi),
keK
where co(5fi) is the convex hull of 55‘“ Since 5;“ is u.s.c., has nonempty and compact
values, and X; is subset of a finite dimensional Euclidean space for each ¢ € N, §;
is u.s.c. and has nonempty and compact values. And since u; is quasiconcave for
each i € N, ui(z,z;) > wr for each z; € X; and z; € §;(z;) for i # j. Now, define
a correspondence § : X — X as 6(z) = (01(22),02(21)). Since 0 is usc, and has
nonempty and convex values, Kakutani’s fixed point theorem implies there exists
x* € X such that
r; € 0i(x3), i # J.

Hence, wf" < wi(z,z;) for all z; € X; and z; € d2(2;) for i # j implies wfi < ui(z*)
for i = 1,2. Therefore, ), u;(z*) < w implies W (1) + W (2) < W(N).

Bondareva-Shapley Theorem provided in the Appendix implies W has a nonempty
core, i.e. there exists v* € V such that ),y vy = W(N) and vj > W ({i}) for all
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i € N. Since G is strongly RSy and v* € U* for some k € K, there exists i € A such
that v} < w’. By construction, w¥ < W ({i}). This furnishes us a contradiction. [J

We end this section by presenting a result on the nonemptiness of the §-core of a
two-player game with possibly discontinuous payoff functions and nontransferable
utilities (NTU).16

Definition 4.6. Let G be a game. A coalition S BNTU_blocks an action profile
rz e X if Va_g € X_g, Ir)y € Xg such that!” us (2, z—g) > ug(z). An action
profile z* € X is in the SNV _core of G if z* is not SNTV-blocked by any coalition.

Definition 4.7. A two-player game G is strongly RS™NTU if for each x € X that

is not in the gNTU

-core of G, there exist an open neighborhood U® of z, y%; € X,
vy € R?, and for each i € N there exist vy € R and a nonempty- and compact-
valued, u.s.c. correspondence d; : X; — X; for i # j such that

(1) wi(zi,2z5) > v for each i # j, z; € X; and z; € 67(2;), and un(y%) > vy,

(ii) for each 2’ € U” there exists S € N such that ug(z') < v§.

Proposition 4.8. A compact and strongly RS™VTV 2-player game has a nonempty

BNTU_core if for each player i, X; is convex and u; is quasiconcave on Xj.

Proof of Proposition 4.8. Assume G has an empty YTU-core. Then, since G is
strongly RSNTY | for each x € X, there exist an open neighborhood U? of z, yx € X,
vy € R?, and for each i € N there exist v¥ € R and a nonempty valued, u.s.c.
correspondence 07 : X; — X; for i # j such that w;(2;,2;) > v} for each i # j,
zj € X; and z; € 67(z;), and un(yx) > vk, and for each 2’ € U” there exists
S € N such that 2/ < v§. The family {U”| x € X} is an open covering of X
which, by compactness of X, contains a finite subcovering {U*x| k =1,...,m}. Let
Uk = U%, and for all S € \V, vg = v;k, yf\, = yf\}“ and for each i € N, 5f = 6?’“, for
all ke K ={1,...,m}.
Now define an NTU game V : N' — R? as follows. For all i € N,

V{{i}) = [ J{v e R v <of},

keK

vivy= | (fveRv<okufv e R v <uah,af)}),
kk'eK

16An analogous result for continuous payoff functions is provided in Ichiishi [19, Remark 2.3.2,
p-37].

17We use the following convention for comparing two vectors: for a,b € R™, a > b denotes a; > b;
for all 4, @ > b denotes a; > b; for all 4 and a # b, and a > b denotes a; > b; for all 7.
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where (x’f ,:17’2“/) € X is defined as follows. First, define for each player i € N and

ke K,

0} = co(dy),
where co(6¥) is the convex hull of §¥. Since 6F is u.s.c. and X; is subset of a finite
dimensional Euclidean space for each ¢ € N, and k € K, (57{“ is usc. And since u; is
quasiconcave on X; for each i € N, u;(z;, 2;) > vF for each z; € X; and z; € §(2;)
for i # j, k € K. Now, for each k, k¥’ € K, define a correspondence §FK X s X as
S (2) = (0%(22), 05 (21)). Since 6%F' is usc, and has nonempty and convex values,

Kakutani’s fixed point theorem implies there exists * € X such that

ab € 6 (2%) and b € 65 (a%).

Hence, v¥ < uy (2% 25) and v§ < ug(ah, 2.

By construction, the NTU game V is balanced. To see this, note that there
are three balanced collection of coalitions for this game of which two contain N.
For these collections, there is nothing to prove. The only balanced collection of
coalitions which does not include N is B = {{1},{2}}. Pick v € V(S) for all S € B.
Then, there exists ki, ko € K such that v; < v]fl and vy < 052. We showed above
that (v¥, vA2) < u(z¥ 252), and hence v € V(). Therefore V is balanced.

It is clear that conditions (i)-(ii) of Scarf’s Theorem provided in the Appendix
are satisfied. And since for each coalition S, the set V(S) is constructed by using
finitely many points, condition (iii) of Scarf’s Theorem is satisfied. Hence, V' has a
nonempty core, i.e. there exists v* € V(N) such that v* ¢ intV(S) for all S € N.
Since v* € V(N), by construction there exists 2* € X such that v* < u(z*). Also,
since G is strongly RSNV and z* € U* for some k € K, there exists S € A such
that ug(z*) < vk. Since {vk} x RI=5 ¢ V(S), v* € intV(S). This furnishes us a
contradiction. O

5. APPLICATIONS

Our first example illustrates a duopoly game with nonempty [S-core which is
strongly RSy but neither RS, nor C'S.*8

Example 1. (Bertrand Duopoly Game) Assume there are two firms which have a
common action set [0,7] where T is a large positive number. Assume firm 1 has
zero marginal cost, ¢; = 0, whereas firm 2 has a strictly positive marginal cost
ca = c € (0,7/2). The demand function D : [0,7] — Ry is defined as

D(p) = max{a — p,0}

18ywe intentionally choose a simple framework in the first example to: (1) illustrate different con-
tinuity concepts we define above, and (2) show that the these continuity concepts are non-nested.
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where a € (2¢,T'). Since the good is identical, the firm with the lowest cost captures
the market. When the firms set the same price, then they share the demand equally.
Therefore, the profit function of firm ¢ # j is defined as

D(pi)(pi —ci)  if pi <pj,
D(pi)(pi — ci) if pi = pj,
if p; > Dj-

mi(p1,p2) =

S Nl

It is easy to check that this game does not have a Nash equilibrium.

We next prove that this game has a nonempty B-core by verifying that it satisfies
the assumptions of Proposition 4.5. It is clear that this game is bounded and com-
pact and each firm’s profit function is quasiconcave in its own action. It remains to
show that it is strongly RSy. The aggregate payoff function is 7(p1, p2) = D(p;)(pi—
¢;) if p; < p;j and 0.5D(p;)(2p; — ¢) if p; = p;. Therefore {(a/2,p2) | p2 > a/2} is
the set of maximizers of # and the maximum aggregate profit is o?/4. Hence, in
equilibrium (if exists), the low cost firm produces the entire output and then the

firms share the profit. Then, the set of imputations is defined as
V=A{v|v+uve= 042/4,1)1 > 0,v9 > —ac}.

Note that firm 1 cannot block any imputation in V since firm 2 can always set
its price to 0 which yields firm 1’s a maximum profit of zero. Firm 2 blocks all
imputations which gives it a negative payoff by setting its price equal to c. Since
grand coalition cannot block any imputation by construction, we only need to check
the imputations which gives firm 2 negative profit. For each v € V such that vy < 0,
define ¥ = —vy/3, UY = {v/ € V| ||V —v|| < "}, 8Y(z2) = {0},05(z1) = {0} for
every z € X and w] = w§ = 0. It is clear that ¢; is an u.s.c. correspondence
with nonempty and compact values, and conditions (i) and (ii) of the strong-RSy
property are satisfied. Therefore, this game is strongly RSy . Hence, by Proposition
4.5, this game has a non-empty [S-core. In fact, a careful algebra implies that the

following pair of an action profile and imputation

= (3).(59)

is in the B-core of this game.
We next show that this game is neither C'S, nor RS. Since this game satisfies
all the assumptions of [8, Theorem 2.2] except C'S and it does not have a Nash

equilibrium, therefore it is not C'S. In order to see that it is not RS, note that

More precisely, this game has no Nash equilibrium in pure-strategies. It is known that this game
has a Nash equilibrium in mixed-strategies, see [9].
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(5,0) = ((a/2,/2),(a?/4,0)) € X is not in the S-core of G since Y2, m(p) <
o?/4. But, no coalition blocks ?.

The strong separability assumption is a strong assumption and it may not be
easy to verify for some games. The next example illustrates that oligopoly games
with monotonically decreasing demand functions satisfy this property.

Example 2. (Cournot Oligopoly Game) Let N = {1,...,n} be the set of firms,
X; = [0, 9;] be the production set of firm i where ; > 0 denotes firm i ’ s capacity
constraint, and m; : X — R be the profit function of firm ¢ which is defined as

mi(@) = fi(zi, T-i) = p(@; + T-i)zi — ci(zi),
where Z_; = Z]EN\{Z} zj, p : Ry — Ry is the inverse demand function and ¢; :
Ry — Ry is firm ¢’s cost function. We prove that if this game is bounded and RS
(or RSy), p is a monotonically decreasing function, and f; is concave in the two
argument for each firm ¢, then the game has a nonempty (-core.
We first show that the game is strongly separable. Assume the game is RS. Pick
S e N, s € {§5"|(x,v) € X is not in the S-core of G}, and 2_g € X_g. Note

that g5 > 25 implies p(3 ;g 0si(9-5) + Dic_g¥-5i) < PQlics 9s5i(0-s) +
Y ic_g #-s)- It follows from

7i(05(J-5), —5) =

p Y 0s(0-5)+ D w5 | 65:i(9-5) — ci(3si(§-s)) for all z_g5 € X_5
jes je—s
that
mi(0s(9-5),J-s) < mi(ds(9-5), 2—g).

Since z_g € X_g is arbitrarily chosen,

> mi(ds(j-s),9-5) =Y, inf  mi(ds(j-s), 2 g)-

€S ics “-s€X-s
Hence G is strongly separable. An analogous implies that RS can be replaced by
RSN.

Next, we show that m; is concave on X if and only if f; is concave in the two
argument for each i € N. Pick i € N,z,y € X and § € (0,1). Then, m;(0x + (1 —
6)y) = omi(x) + (1 — 0)mi(y) if and only if p(dz; + (1 = 0)yi + 03 ey 2 + (1 —
) D jen\iay ¥) 0z + (1 = 6)yi) — ci(0xi + (1 — 8)yi) = 6(p(xi + X jen iy T5)Ti —
(i) + (1= 8)(plyi + X jenn iy 95)9i — (y))} if and only if fi(3z + (1 — 8)y) >
6 fi(x) + (1 —6)fi(y).
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Therefore, all assumptions of Theorems 3.1 and 3.5 above are satisfied, hence this

oligopoly game has a nonempty S-core.

6. CONCLUDING REMARKS

This paper provides sufficient conditions for the nonemptiness of the S-core of
games with transferable utilities and possibly discontinuous payoff functions. In our
results, we assume concave payoff functions, which can have discontinuities only at
their relative boundaries. We noted in Section 2 that equilibria often exist at the
boundaries of the domain, therefore the possibility of discontinuities of a concave
function must be taken into account. Yet, there are interesting economic problems
that are modeled by payoff functions which are not concave. Our results on the
special two-player setting drop, or weaken, the concavity assumption, and also prove
that transferability of the utilities is not necessary for a nonemptiness result in this
special setting. A possible direction of research is to extend our results by weakening
the concavity assumption in general n-player setting.Moreover, generalizing our
nonemptiness result for two-player games with nontransferable utilities to general
n-player setting is an open problem, even under continuous payoff functions. Finally,
there is a rich and evolving literature on games with continuum of players, studying
the existence of both cooperative and non-cooperative solutions; see for example the
work of [23] and [22] on noncooperative solutions, and the work of [4, 5], [41] and
[42] on cooperative solutions of strategic-form games. Generalization of our results

to games with continuum of agents is of interest.

7. APPENDIX

We first present a lemma that is useful in proving the results above.

Lemma 7.1. If a bounded RS (RSy) game G is strongly separable, then for each
S € N there exists (z,v) € X (v € V) such that for each §g € Ag(z,v) (55 € AY (v))
there exists Z_g € X_g such that

inf ZUZ (0s(2—-5),2-5 <Z inf  u;(0s(2-5),2-9).

z_s€X_g lesz sEX_ 5

Proof of Lemma 7.1. Let G be a bounded, RS and strongly separable game. Then
for each S € N, there there exists (z,v) € X such that for each dg € Ag(z, v) there
exists Z_g € X_g such that

D ui(ds(3-s),7s) =Y inf  ui(d5(3-s), 2-s),

_geX_
icS ies 9SS
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and, from the definition of infimum,

inf Zuz(5525 zs<Zu15525 _s).

Z_g€EX_ S

1€S
Therefore,
inf (ds( ) < f i (0 _s).
, dnf S;uz 5(z-5),2-5) ZZ SIQX . (05(2-5),2-5)
The proof is analogous for RSy games. O

We next present two classical results on the core of characteristic function form
games with the transferable and nontransferable utilities.

A transferable-utility (TU ) game is a function W : N' — R, where N = {1,...,n}
is the set of players and N = 2V\? the set of coalitions. The core of a TU game W
is defined as

Core(W) = {v € R"| Zvi < W(N) and Zvi >W(S)VS e N} :
iEN icS

A collection of coalitions B C 2V is balanced if for each coalition S, there exists a
nonnegative scalar Ag with Ag = 0if S ¢ B such that for eachi € N, > ¢.,co As = 1.
A balanced collection of coalitions B C 2V is minimal if it does not have a balanced
proper subcollection. Note that the balancing weights of every minimally balanced
collection of coalitions are unique; see Kannai [20, p. 361] for references and further
details. Next, we state the influential theorem of Bondareva [10] and Shapley [35]
which is used to prove our results.

Theorem (Bondareva-Shapley). A TU game W has a nonempty core if and
only if Y gep AsW(S) < W(N) for every minimally balanced collection of coalition
B.

A nontransferable-utility (NTU ) game is a nonempty-valued correspondence V :
N — R™. The core of an NTU game V is defined as

Core(V) = V(N)\ ( U intV(S)).

SeN
where intV(S) is the (topological) interior of the set V(S). An NTU game V is
balanced if for all balanced collection of coalitions B, Mgz V(S) C V(). We end

this paper by stating the beautiful theorem of [33] which is used to prove our results.

Theorem (Scarf). A balanced NTU game V has a nonempty core if for each
coalition S,

(i) V(S) is closed,
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(ii) v € R, v € V(S) and vy < vg imply v' € V(5),
(iil) there exists Mg € RIS such that v € V(S) implies vg < Msg.
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