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{r ∈ RS
+|

∑S
s=1 rs = 1}, Π ̸= ∅. The set Π is interpreted as the set of a consumer’s

beliefs about the unknown state in S. When Π contains more than one element,
the boundary of a consumer’s better-than-set for any point is kinked; see Figure 1
in Rigotti and Shannon [14].

Clearly, other models of incomplete preferences can generate kinks and so inertia
(almost) everywhere.3 I ask a converse: suppose that every consumption is sup-
ported as a demand with more than one normalized price, that is, the boundary of
a consumer’s better-than-set at any point is kinked; does it follow that the relation
describing the consumer’s preferences is incomplete? The answer is no. What does
follow is that it is incomplete or intransitive.

2. Inertia and non-ordered preferences

For X = Rℓ
+, let ≿⊂ X×X be a reflexive binary relation (x ≿ x for every x ∈ X)

with asymmetric part ≻ and symmetric part ∼. The interpretation is that X is
a consumption set for a consumer–the set of consumption points that a consumer
could choose, ignoring the budget constraint. Let ∆ = {p ∈ Rℓ

++ |
∑

i pi = 1}, the
set of normalized positive prices. For p ∈ ∆ and w ≥ 0 the consumer’s budget set is
B(p, w) = {x ∈ X | p ·x ≤ w}. The consumer’s demand correspondence is d(p, w) =
{y ∈ B(p, w) | z ≻ y ⇒ z /∈ B(p, w)} and the inverse demand correspondence is
g(x) = {p ∈ ∆ |x ∈ d(p, p ·x)}. A relation ≿⊂ X×X is complete if, for every x and
y in X, either x ≿ y or y ≿ x; it is transitive if, for every x, y, and z in X with x ≿ y
and y ≿ z, it follows that x ≿ z; it is locally nonsatiated if, for every x ∈ X, and
open neighborhood N of x, there is a y ∈ X ∩ N with y ≻ x. Local nonsatiation
ensures that every demand point exhausts the consumer’s budget: x ∈ d(p, w)
implies p · x = w.

Definition. A reflexive binary relation ≿⊂ X × X displays inertia at x ∈ X if
g(x) contains at least two elements. It displays inertia if it displays inertia at every
x ∈ X.

Theorem. Suppose that ≿⊂ X ×X is reflexive and locally nonsatiated, and ≻ is
open. The relation ≿ displays inertia only if it is not complete or not transitive.4

The Theorem is a consequence of this Proposition.

Proposition. If ≿ is represented by a locally nonsatiated continuous function, then
≿ cannot display inertia.5

Proof. Suppose that (i) ≿ is representable by a locally nonsatiated continuous func-
tion U and (ii) for every x ∈ Rℓ

+, g(x) is not empty. I will show that there is some
x̂ ∈ X with g(x̂) a singleton, so ≿ does not display inertia.

3For example, the extension in [13] of the multi-expected-utility model in [5] for preferences over
distributions of consequences to preferences over Savage acts.

4I do not in addition assume that ≿ is closed, since I want to allow the possibility that ≿ is
both incomplete and transitive. Schmeidler [15] proves a remarkable theorem: if X is a connected
topological space, ≿⊂ X ×X is closed, ≻ is open, ≿ is transitive, and x ≻ y for some x and y in
X, then ≿ is complete.

5A real-valued function U on X represents ≿ if x ≿ y if and only if U(x) ≥ U(y). A represen-
tation U of ≿ is locally nonsatiated if ≿ is locally nonsatiated.
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To begin, it follows from (i) and (ii) that the function U in (i) is strictly increasing
(x > y implies U(x) > U(y)) and quasiconcave (for any x and y in X and λ ∈ [0, 1],
U(λx+(1−λ)y) ≥ min{U(x), U(y)}). If U is not strictly increasing, then there are
points x and y in Rℓ

+ with x > y and U(x) ≤ U(y). By (ii) there is a price p ∈ ∆ with
x ∈ d(p, p·x). But since U(y) ≥ U(x) and p·y ≤ p·x, y ∈ d(p, p·x); since p·y < p·x,
local nonsatiation fails. If U is not quasiconcave, then there are points x and y in Rn

+

and a real number λ ∈ (0, 1) such that U(λx+(1−λ)y) < min{U(x), U(y)}. For any
p ∈ ∆, min{p ·x, p ·y} ≤ p ·(λx+(1−λ)y). So λx+(1−λ)y /∈ d(p, p ·(λx+(1−λ)y))
for any p ∈ ∆, and ≿ does not satisfy (ii). It follows that U is quasiconcave and
strictly increasing if (i) and (ii) hold.

Let x−ℓ = (x1, ..., xℓ−1). For each u in the range of U , define a real-valued

function hu ⊂ Rℓ−1
+ × R+ by (x−ℓ, xℓ) ∈ hu if and only if U(x−ℓ, xℓ) = u, and let

Du be the domain of hu. Since U is strictly increasing, hu is indeed a function; it
characterizes the indifference surface passing through any point x with U(x) = u.
Fix x∗ ∈ Rℓ

++ and set u∗ = U(x∗). Since x∗ >> 0, and since U is continuous

and strictly increasing, x∗ℓ−1 ∈ int(Du∗), the interior of Du∗ .6 Let B be an open
ball centered on x∗−ℓ and contained in Du∗ . Since U is quasiconcave and strictly
increasing, hu∗ is a convex function on the convex set B, and so is differentiable
(Lebesgue) almost-everywhere on B. Let x̂−ℓ ∈ B be a point of differentiability of
hu∗ . Let x̂ℓ = hu∗(x̂−ℓ), x̂ = (x̂−ℓ, x̂ℓ), and p̂ ∈ g(x̂).

For any x−ℓ ∈ Du∗ , x̂−ℓ minimizes p̂−ℓ · x−ℓ + p̂ℓhu∗(x−ℓ) on Du∗ .7 Since hu∗

is differentiable at x̂−ℓ, and x̂−ℓ ∈ int(Du∗), the first order necessary condition for

minimization must hold for i = 1, ..., ℓ − 1: p̂i + p̂ℓ
∂hu∗
∂xi

(x̂−ℓ) = 0. But these ℓ − 1

equalities can be satisfied by at most p̂ ∈ ∆, so g(x̂) = {p̂}, and ≿ does not display
inertia. □

Proof of the Theorem. Suppose that ≿ is complete, transitive, and locally nonsa-
tiated, ≻ is open, and g(x) is not empty for every x ∈ X. By a standard result,
since X = Rℓ

+ and ≿⊂ X × X is complete, transitive, and continuous, there is a
continuous function U which represents it (e.g. [4, Chapter 4]). Since ≿ is locally
nonsatiated, so is U . By the Proposition, g(x) is a singleton for some x ∈ X, so ≿
does not display inertia. □

An alternative proof of the Proposition could potentially be constructed from a
result in [2] that every quasiconcave function is Lebesgue-almost-everywhere differ-
entiable. A difficulty is that a point of differentiability can be a critical point; and

6Suppose that x∗
−ℓ is not in the interior of Du∗ . I will show that if U is continuous, then

it cannot be strictly increasing. Since x∗
ℓ−1 is in Du∗ , it must be in the boundary of Du∗ . So

there is a sequence zn in Rℓ−1
++ not in Du∗ that converges to x∗

−ℓ. For each n we cannot have
U(zn, 0) ≤ u∗ ≤ U(zn, x∗

ℓ + 1); otherwise, since U is continuous, there would be a point xℓ

between 0 and x∗
ℓ + 1 with U(zn, xℓ) = u∗ and so zn ∈ Du∗ . It follows that there is a converging

subsequence zn(k) with either U(zn(k), 0) > u∗ for every k, or U(zn(k), x∗
ℓ + 1) < u∗ for every k.

Since U is continuous, in the first case U(zn(k), 0) → U(x∗
−ℓ, 0) ≥ u∗ = U(x∗), and in the second

case U(zn(k), x∗
ℓ + 1) → U(x∗

−ℓ, x
∗
ℓ + 1) ≤ u∗ = U(x∗); since x∗

ℓ > 0, in either case U cannot be

strictly increasing.
7Specifically, x̂ ∈ d(p̂, p̂ · x̂) only if x̂ minimizes p̂ · x on {x ∈ X|x ∼ x̂}, a standard result that

follows if X = Rℓ and ≿ is complete, transitive, and locally nonsatiated.
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it is clear that a critical points can sometimes be supported by more than one price
in ∆.

The Theorem does not assert that ≿ is incomplete. To illustrate why incom-
pleteness does not follow, suppose that ≿ exhibits inertia, is not complete, and the
other assumptions of the Theorem hold. Define ≿∗ by x ≿∗ y if ¬(y ≻ x). Then
≿ and ≿∗ generate the same demand, but ≿∗ is complete (and so by the Theorem
is intransitive).8 In this sense, from the viewpoint of demands, completeness or
its lack cannot be inferred from the demand correspondence unless transitivity is
maintained.9

It is clear from the proof of the Proposition that there is more to say about the ex-
tent of inertia when preferences are complete and transitive. To formulate one such
result, let U be a continuous, strictly increasing, and quasiconcave representation
of ≿⊂ X ×X (so that g(x) is nonempty for every x ∈ X). As in the proof, let hu
be a function describing the indifference surface given implicitly by U(x−ℓ, xℓ) = u,
let Du be its domain, and µ be (ℓ − 1)-dimensional Lebesgue measure. Then for
any open convex subset S of Du, hu is convex on S, and so differentiable µ-almost
everywhere; applying the argument in the proof to each point of differentiability, the
set of points that exhibit inertia in S is of µ-measure zero. The conclusion extends
to countable unions of such convex sets, illustrating a sense in which inertia is rare
in the standard consumer choice model with complete and transitive preferences.10
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