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and infrastructures. The main industrial and commercial capital of Turkey Istanbul
with a population of close to 15 million is predicted to be affected by a worst-case
scenario earthquake of 7.5 in the coming decades.

In order to manage the potential earthquake disaster in Istanbul, it is necessary
to prepare a seismic disaster prevention/mitigation plan, emergency rescue plan and
restoration plan of the earthquake stricken area from middle to long-term points of
view.

On the other hand, there are a lot of uncertainties about a disaster, when it
happens, or how much it affects us, in addition to the fact that rescue demand is
uncertain as well. Once rescue demand is requested, rescue equipment and relief
personnel must be transported efficiently to minimize the damage in affected areas.
At the preparation strategy planning stage of earthquake emergency supplying, the
authorities must contemplate all doable circumstances prior to and create prudent
and diligent emergency supplying plans to distribute the equipment. Disasters re-
sult in massive demands that often outstrip resources. In order to manage the
potential earthquake disaster in Istanbul, it is necessary to prepare a seismic disas-
ter prevention/mitigation plan, emergency rescue plan and restoration plan of the
earthquake stricken area from middle to long-term points of view. Controlling the
flow of those resources, to provide relief to the affected people is called emergency
logistics [4, 7, 10]. Quick response to the urgent relief needs right after natural dis-
asters through efficient emergency logistics distribution is vital to the mitigation of
the disaster impact in the affected areas [10]. Logistics support is one of the major
activities in disaster response. Commodities such as food, shelter and medicine must
be sent from the supply centers to the affected area as quick as possible to support
rescue operation and help wounded people. Furthermore, important or hazardous
materials must be transferred from the affected areas to safety areas [12]. In recent
years, Emergency Logistics is a new field of logistics which plays a key role in relief
after disasters, has got much attention and become a new efficient methodology
in dealing and analysis of many different situations that can be modeled as Op-
erations Research (OR) problems. The problems arising in logistics are related to
transportation, inventory, supply chains, distribution, location, routing, etc. [2].

Most of the facilities and distribution options that perform the functions of sup-
ply of materials, transformation of these materials into intermediate and finished
products, and the distribution of these finished products to customers altogether
constitute a logistic network, which is the subject of Supply Chain Management
(SCM) [9]. Supply chain management (SCM) is the broad range of activities re-
quired to plan, control and execute a product’s flow, from acquiring raw materials
and production through distribution to the final customer, in the most streamlined
and cost-effective way possible. For uncertainty and disturbed environments and
the unrecognized characteristics of the events, it is hard to make urgent decision for
relief demands in the context of emergency management.

A flow is a way of sending objects from one vertex (place) to another in a network.
The objects that travel or flow through the network are called flow units or just
units. For example, flow units can be a commodity, finished goods,or information.
The nodes from which units enter through a network are called source nodes, and
nodes to which the flow units are routed to are called sink nodes. Source nodes



AN APPLICATION TO A FLOW SITUATION 837

offer a supply, which is represented by the number of units available at the node.
Sink nodes usually have demand, which is represented by the number of units that
must be routed to them [9].

A game-theoretical approach can be used to tackle the SCM situations and prob-
lems from a cooperative that we focus on it in this study.

The most important issue for a logistic network is how to distribute and transport
inventory on time under uncertainty. The cooperation in an SCM can reduce and
increase both the logistic network ’s total cost and gain, respectively [9].

Games, which are derived from a flow situation under uncertainty, are called grey
flow games. Cooperative Grey Game Theory conduces to completing the analysis
of OR problems when there is more than one player in the corresponding situation.
Therefore, after optimizing a particular system by means of OR techniques, in the
system there are two or more players, who have to collaborate to be able to achieve
an optimal result. That result then will tell how to distribute the extra benefits,
or how costs are saved by cooperation among those agents seems reasonable and
necessary. Thereupon, cooperative grey games can play a role in the complete
analysis of the situation [8].

In literature the classical theory of two-person cooperative games is extended to
two-person cooperative games with interval uncertainty in [1]. Further, the core,
balancedness, superadditivity and related topics are studied. Moreover, solutions
called ψα-values are introduced and characterizations are given. In [5], the stabil-
ity and stabilization of a grey system whose state matrix is triangular is studied.
The displacement operator and established transfer developed by the author are an
indispensable tool for the grey system. In the sequel, a new class of cooperative
games where the set of players is finite and the coalition values are grey numbers, is
developed in [8]. In [8], an interesting solution concept, the grey Shapley value, is
introduced and characterized with the properties of additivity, efficiency, symmetry
and dummy player.

In this paper, we prepare a cooperative game theoretical model for emergency
logistics to coordinate logistic supports for relief operations. The situation of the
model relies on the logistic network consisting of one provider that gives the help
materials when natural disasters, three countries as distributors and one retail mer-
chant of the country stricken by the disaster (presumably Istanbul). The model
essentially integrates two issues, namely, a provision network downside and trans-
portation downside. By modifying the cooperative scientific theory approach, we
have a tendency to provide some resolution ideas and compare the allocations.
Herewith, the planned model seems to be economically associated, demonstrating
the importance is economical for the importance of cooperation between countries,
once a disaster happened. Furthermore, we model the grey flow problem by us-
ing Cooperative Grey Game Theory as an approach to solve the logistic network
problem.

The rest of paper is organized as follows: We give some basic notions and solu-
tion concepts from cooperative grey games and flow situations in Section 2. The
definition of the grey solutions necessary for this study is offered in Section 3. In
Section 4, we present our cooperative grey flow game model, constructed after an
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earthquake as a natural disaster in reality it is a societal problem, and present sev-
eral solutions for maximizing the transported commodities. Moreover, we give an
example and compare our solutions. Finally, Section 5 completes this paper with a
conclusion and an outlook to future studies.

2. Preliminaries

In this section, we formally give some basic concepts and notions from cooperative
games and flow situations in order to provide the reader with all the necessary
background to follow this paper.

Grey system theory [5], originally developed by Professor Deng in 1982, has
become a very effective method of solving uncertainty problems under discrete data
and incomplete information. Grey system theory has now been applied to various
areas such as forecasting, system control, decision-making and computer graphics.
Here, we give some basic definitions regarding relevant mathematical background
of grey numbers in grey system theory:

A grey number takes an unknown distribution between fixed lower and upper
bounds, denoted as ⊗ ∈ [a, a], , where a and a, are respectively, the lower and
upper bounds for ⊗.

Let ⊗1 ∈ [a, a],⊗2 ∈ [b, b] and α is a positive real number, then

⊗1 ∈ [a, a] +⊗2 ∈ [b, b] ⇔ ⊗1 +⊗2 ∈ [a+ b, a+ b].

The scalar multiplication of α and ⊗ is defined as follows:

α⊗ ∈ [αa, αa].

We denote by G(R) the set of interval grey numbers in R. Let ⊗1,⊗2 ∈ G(R)
with ⊗1 ∈ [a, a],⊗2 ∈ [b, b], | ⊗1 | = a− a and α ∈ R+. In general, the difference of
⊗1 and ⊗2 is defined as follows:

⊗1 ⊖⊗2 = ⊗1 + (−⊗2) ∈ [a− b, a− b].

Different from the above subtraction we use a partial subtraction operator. We
define ⊗1 ⊖⊗2, only if |a− a| ≥ |b− b|, by ⊗1 −⊗2 = [a− b, a− b] [1].

A cooperative grey game is an ordered pair ⟨N,w′⟩ with the player set N =

{1, ..., n} in which w
′
= ⊗ : 2N → G(R) is the grey payoff characteristic function

such that w
′
(∅) = ⊗∅ ∈ [0, 0], grey payoff function w

′
(S) = ⊗S ∈ [AS , AS ] refers

to the valuing area of the grey expectation benefit which belongs to a coalition
S ∈ 2N , where AS and AS represent the maximum and minimum possible profits
of the coalition S. So, a cooperative grey game can be considered as a classical
cooperative game with grey profits ⊗.

Grey solutions are useful to solve reward/cost sharing problems with grey data
using cooperative grey games as a tool. Building blocks for grey solutions are grey
payoff vectors, i.e., vectors whose components belong to G(R). Finally, we denote
by G(R)N the set of all such grey payoff vectors. We denote by GGN the family of
all cooperative grey games [8].

A cooperative grey flow network can be described by a graph with node set W
and arc set E a cooperative grey flow network derives games are called cooperative
grey flow games. There are two distinguished nodes: the source (So) and the sink
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(Si). It is allowed that several arcs have the same end points. Consider a directed
network D = (W,E; t) and t : E → G(R) is the data transmission time. Then the
cooperative grey flow game Γf = (E,w′), associated with the network D, is defined
as follows:

• The player set is N = 1, 2, ..., n;
• The arc set is E = {(i, j) | i, j ∈ N, i ̸= j};
• For each coalition S ⊆ E, w′(S) is the value of the grey flow from (So) to
(Si) in the network of D consisting only of arcs belonging to S.

3. Grey solutions

Let us recall the definition of the grey solutions that is critical during this study
[8,11].

3.1. The Grey Shapley value. Now, we introduce some theoretical notions from
the theory of cooperative grey games. For w,w1, w2 ∈ IGN and w

′
, w

′
1, w

′
2 ∈ GGN

we say that w
′
1 ∈ w1 ≤ w

′
2 ∈ w2 if w

′
1(S) ≤ w2(S), where w

′
1(S) ∈ w1(S) and

w
′
2(S) ∈ w2(S), for each S ∈ 2N . For w

′
1, w

′
2 ∈ GGN and λ ∈ R+ we define

⟨N,w′
1+w

′
2⟩ and ⟨N,λw′⟩ by (w

′
1+w

′
2)(S) = w

′
1(S)+w

′
2(S) and (λw

′
)(S) = λw

′
(S)

for each S ∈ 2N . So, we conclude that GGN endowed with ”≤” has a cone structure
with respect to addition and multiplication with non-negative scalars above. For
w

′
1, w

′
2 ∈ GGN where w

′
1 ∈ w1, w

′
2 ∈ w2 with |w1(S)| ≥ |w2(S)| for each S ∈

2N , ⟨N,w′
1−w

′
2⟩ is defined by (w

′
1−w

′
2)(S) = w

′
1(S)−w

′
2(S) ∈ w1(S)−w2(S). We

call a game ⟨N,w′⟩ grey size monotonic if ⟨N, |w|⟩ is monotonic, i.e., |w|(S) ≤ |w|(T )
for all S, T ∈ 2N with S ⊂ T . For further use we denote by SMGGN the class
of grey size monotonic games with player set N . The grey marginal operators and
the grey Shapley value are defined on SMGGN . We denote by

∏
(N) the set of

permutations σ : N → N of N . The grey marginal operator mσ : SMGGN →
G(R)N corresponding to σ, associates with each w

′ ∈ SMGGN the grey marginal

vector mα(w
′
) of w

′
with respect to σ, defined by

mσ
i (w

′
) := w

′
(P σ(i) ∪ {i})− w

′
(P σ(i))

∈ [APσ(i)∪{i} −APσ(i), APσ(i)∪{i} −APσ(i)] for each i ∈ N,

where P σ(i) = {r ∈ N |σ−1(r) < σ−1(i)}, and σ−1(i) denotes the entrance number

of player i. For grey size monotonic games ⟨N,w′⟩, w′
(T )−w′

(S) ∈ w(T )−w(S) is
defined for all S, T ∈ 2N with S ⊂ T , since |w(T )| = |w|(T ) ≥ |w|(S) = |w(S)|. We

notice that for each w
′ ∈ SMGGN the grey marginal vectors mσ(w

′
) are defined for

each σ ∈
∏
(N), because the monotonicity of |w| implies AS∪{i}−AS∪{i} ⩾ AS−AS ,

which can be rewritten as AS∪{i} − AS ≥ AS∪{i} − AS . So, w
′
(S ∪ {i}) − w

′
(S) ∈

w(S ∪ {i}) − w(S) is defined for each S ⊂ N and i /∈ S. Next, we notice that all
the grey marginal vectors of a grey size monotonic game are efficient grey payoff
vectors.

The grey Shapley value Φ
′
: SMGGN → G(R)N is defined by
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Φ
′
(w

′
) :=

1

n!

∑
σ∈Π(N)

mσ(w
′
)

(3.1) ∈

 1

n!

∑
σ∈Π(N)

mσ(A),
1

n!

∑
σ∈Π(N)

mσ(A)

 ,
for each w

′ ∈ SMGGN . We can write the previous equation as follows:

Φ
′
i(w

′
) =

1

n!

∑
σ∈Π(N)

[
w

′
(P σ(i) ∪ {i})− w

′
(P σ(i))

]

(3.2) ∈

 1

n!

∑
σ∈Π(N)

APσ(i)∪{i} −APσ(i),
1

n!

∑
σ∈Π(N)

APσ(i)∪{i} −APσ(i)

 .
3.2. The Grey Banzhaf value. The Banzhaf value arises from the subjective
belief that every player is equally possible to join any coalition. On the opposite
hand, the Shapley value arises from the idea that for each player, the coalition he
joins is equally likely to be of any size which all coalitions of a given size are equally
likely [11].

The Grey Banzhaf value β : SMGGN → G(R)N , ∀w′ ∈ SMGGN is defined as

(3.3) β(w
′
) =

1

2|N |−1

∑
i∈S

[
w

′
(S)− w

′
(S \ {i})

]
.

3.3. The GCIS-value. The Centre-of-gravity of the Imputation-Set value, shortly
denoted by CIS-value [6], assigns to every player its individual worth, and distributes
the remainder of the worth of the grand coalition N equally among all players [3].

The grey CIS-value assings every player to its individual grey worth, and dis-
tributes the remainder of the grey worth of the grand coalition N equally among
all players [11]. The GCIS-value GCIS : SMGGN → G(R)N is defined by

(3.4) GCISi(w
′
) = w

′
({i}) + 1

|N |

w′
(N)−

∑
j∈N

w
′
({j})

 , for all i ∈ N.

3.4. The GENSC-value. The Grey Egalitarian Non-Separable Contribution value,
shortly denoted by GENSC-value [11], assigns to every game w

′
the GCIS-value

of its dual game, i.e.,

GENSCi(w
′
) = GCISi(w

′∗)

(3.5) =
1

|N |

w′
(N) +

∑
j∈N

w
′
(N \ {j})

− w
′
(N \ {i})), for all i ∈ N.
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The GENSC-value assigns to every player in a game its grey marginal contri-
bution to ”the grand coalition” and distributes the remainder equally among the
players [3, 11].

3.5. The GED-solution. The Grey Equal Division solution, shortly denoted by
GED-solution [3, 11], is given by

GED : GGN → G(R)N ,

(3.6) GEDi(w
′
) =

w
′
(N)

|N |
, for all i ∈ N.

4. Properties of grey solutions

In this section, we state several theoretical results of the grey solutions. First, we
give some properties of the grey Shapley value on the class of grey size monotonic
games. Let w′

1 = ⊗1 ∈
[
A1, A1

]
, w′

2 = ⊗2 ∈
[
A2, A2

]
.

Proposition 4.1 ([8]). The grey Shapley value Φ : SMGGN → G(R)N is additive.

Let w′ ∈ SMGGN and i, j ∈ N . Then, i and j are called symmetric players, if
w′(S ∪ {j}) − w′(S) = w′(S ∪ {i}) − w′(S), for each S with i, j /∈ S. The proof of
the following proposition is straightforward.

Proposition 4.2 ([8]). Let i, j ∈ N be symmetric players in w′ ∈ SMGGN . Then,
Φ′
i(w

′) = Φ′
j(w

′).

Let w′ ∈ SMGGN and i ∈ N . Then, i is called a dummy player if w′(S ∪ {i}) =
w′(S) + w′({i}), for each S ∈ 2N\{i}.

Proposition 4.3 ([8]). The grey Shapley value Φ′ : SMGGN → G(R)N has the
dummy player property, i.e., Φ′

i(w) = w′({i}) for all w′ ∈ SMGGN and for all
dummy players i in w′.

Proposition 4.4 ([8]). The grey Shapley value Φ′ : SMGGN → G(R)N is efficient,
i.e.,

∑
i∈N Φ′

i(w
′) = w′(N).

Let S ∈ 2N \ {∅}, ⊗ ∈ G(R) and let uS be the classical unanimity game based on
S. The cooperative grey game < N,⊗uS > is defined by (⊗uS)(T ) = ⊗uS(T ) for
each T ∈ 2N \ {∅}, and its Shapley value is given by

Φ′
i(⊗uS) =

{
⊗/ |S| , i ∈ S,
[0, 0] , i /∈ S.

We denote by KGGN the additive cone generated by the set

K =
{
⊗SuS |S ∈ 2N \ {∅} ,⊗S ∈ G(R)

}
.

So, each element of the cone is a finite sum of elements of K along nonnegative
factors. We notice that KGGN ⊂ SMGGN , and axiomatically characterize the
restriction of the grey Shapley value to the cone KGGN .

The following Theorem is introduced by [8].
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Theorem 4.1 ([8]). There is a unique solution Φ′ : KGGN → G(R)N satisfying
the properties of additivity, efficiency, dummy-player and symmetry. This solution
is the grey Shapley value.

Proof. From Propositions 4.1, 4.2, 4.3 and 4.4, and KGGN ⊂ SMGGN , we obtain
that Φ′ satisfies the four properties on KGGN .

Conversely, let Ψ′ be an grey value satisfiying the four properties on KGGN .
We have to show that Ψ′ = Φ′. Take w′ ∈ KGGN . Notice that w′ can be writ-
ten as w′ =

∑
S∈2N\{∅}⊗SuS . Then, for each S ∈ 2N \ {∅} and ⊗S ∈ G(R)

we have Ψ′(
∑

S∈2N\{∅}⊗SuS) =
∑

S∈2N\{∅}Ψ
′(⊗SuS) and Φ′(

∑
S∈2N\{∅}⊗SuS) =∑

S∈2N\{∅}Φ
′(⊗SuS) by additivity. Therefore, we need to show that for each

S ∈ 2N \ {∅} and ⊗S ∈ G(R), Ψ′(⊗SuS) = Φ′(⊗SuS). Take S ∈ 2N \ {∅} and
⊗S ∈ G(R). Note that for any i ∈ N \ S,

(⊗SuS)(T ∪ {i})− (⊗SuS)(T ) = (⊗SuS)({i}) ∈ [0, 0].

By the dummy player property, we have

(4.1) Ψ′
i(⊗SuS) = Φ′

i(⊗SuS) ∈ [0, 0], for all i ∈ N \ S.
Now, suppose that i, j ∈ S, i ̸= j. Then the symmetry property implies that

(4.2) Φ′
i(⊗SuS) = Φ′

j(⊗SuS) for all i, j ∈ S,

and, similarly,

Ψ′
i(⊗SuS) = Ψ′

j(⊗SuS) for all i, j ∈ S.

By efficieny, from Eqns. (4.1) and (4.2) we obtain for any S ∈ 2N \ {∅} and for any
⊗S ∈ G(R) we have:

(4.3) Ψ′
i(⊗SuS) = Φ′

i(⊗SuS) =
⊗S

|S|
.

Hence, Ψ′(w) = Φ′(w) for all w′ ∈ KGGN by Eqns. (4.1) and (4.3). □
Next, we give some results from equal surplus sharing solutions, which are in-

troduced in [11]. We discuss a class of grey solutions that consists of all convex
combinations of the GED-solution, the GCIS-value and the GENSC-value, i.e., for
α, β ∈ [0, 1] , we consider grey solutions Gϕα,β given by

Gϕα,β
(
w′) = αGENCISβ

(
w′)+ (1− α)GED

(
w′) ,

where GENCISβ (w′) is given by (1) .We denote the class of all grey solutions that
are obtained in this way by GΦ :=

{
Gϕα,β : α, β ∈ [0, 1]

}
. Clearly, the interesting

solutions in this class are the GCIS-value, which is obtained by taking α = β = 1
(i.e., GCIS (w′) = ϕ1,1 (w′)), the GENSC-value, which is obtained by taking α = 1,
β = 0 (i.e., GENSC (w′) = Gϕ1,0 (w′)) and the GED-solution, which is obtained by
taking α = 0 (i.e., GED (w′) = Gϕ0,β , β ∈ [0, 1]). We thus can write Gϕα,β as

Gϕα,β
(
w′) = αGϕ1,β

(
w′)+ (

1− w′)Gϕ0,1 (w′)
= αβGϕ1,1

(
w′)+ α (1− β)Gϕ1,0

(
w′)+ (1− α)Gϕ0,1

(
w′)

for α, β ∈ [0, 1] . The following Propositions are introduced by [11]. Proposition 4.5
gives an expression of the solutions Gϕα,β in the sense that they give each player
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i in a grey game w′ some value λα,βi (w′), and the remainder of w′ (N) is equally
divided among all players.

Proposition 4.5 ([11]). For every w′ ∈ SMGGN and α, β ∈ [0, 1] it holds that

Gϕα,βi

(
w′) = λα,βi

(
w′)+ 1

|N |(w
′ (N)−j∈N λα,βj

(
w′)),

where λα,βi (w′) = α (βw′ ({i})− (1− β)w′ (N\ {i})) for i ∈ N such that |w′| (i) =
|w′| (N\ {i}) = |w′| (j) for all i, j ∈ N with i ̸= j.

Proof. For w′ ∈ SMGGN and α, β ∈ [0, 1] we have

Gϕα,βi

(
w′) ∈ αGENCISβ

(
w′)+ (1− α)GED

(
w′)

= α
(
βw′ ({i})− (1− β)w′ (N\ {i})

)
+
α

|N |

w′ (N)−
∑
j∈N

(βw′ (j)− (1− β)w′ (N\ {j}))


+
1− α

|N |
w′ (N) = α

(
βw′ ({i})− (−β)w′ (N\ {i})

)
+

1

|N |

w′ (N)−
∑
j∈N

α(βw′ (j)− (1− β)w′ (N\ {j}))


= λα,βi

(
w′)+ 1

|N |(w
′ (N)−j∈N λα,βj

(
w′)).

□
Proposition 4.6 ([11]). For every α, β ∈ [0, 1] and w′ ∈ SMGGN it holds that

Gϕα,βi (w′∗) = Gϕα,1−β (w′) .

Proof. For w′ ∈ SMGGN and α, β ∈ [0, 1] we have

Gϕα,βi

(
w′∗) = λα,βi

(
w′∗)+ 1

|N |(w
′∗ (N)−j∈N λα,βj

(
w′∗))

= α
(
βw′∗ ({i})− (1− β)w′∗ (N\ {i})

)
+

1

|N |

w′∗ (N)−
∑
j∈N

α(βw′∗ (j)− (1− β)w′∗ (N\ {j}))


= α(βw′ (N))− βw′ (N\ {i})− (1− β)w′ (N) + (1− β)w′ ({i}))

+
1

|N |

w′ (N)−
∑
j∈N

α(βw′ (N)− βw′ (N\ {j})− (1− β)w′ (N) + (1− β)w′ (j)


= w′ (N) (αβ − α (1− β) +

1

|N |
− |N |αβ

|N |
+

|N |α (1− β)

|N |
)

+α

(1− β)w′ (i)− β
(
w′ (N\ {i})

)
+

1

|N |
∑
j∈N

(
βw′ (N\ {j})− (1− β)w′ (j)

)
=

1

|N |
w′ (N) + α

(
(1− β)w′ ({i})− βw′ (N\ {i})

)
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− 1

|N |

∑
j∈N

α
(
(1− β)w′ ({j})− βw′ (N\ {j})

)
= Gϕα,1−β

(
w′) .

□

5. An application

In this paper, we construct a model based on a possible logistic network after an
earthquake in Istanbul, Turkey. Suppose that there is an earthquake in Istanbul
and the needed commodities are to be sent to Istanbul. While the commodities are
being transported to Istanbul on ground and by airways, some countries get benefits
from the transportation because they own the routes. In our model, we choose these
intermediate countries as distributors and construct the cooperative grey flow game
in the application to the logistic network. In this way, the aim of the model is to
obtain the transported maximum commodities to the affected city (Istanbul), and
to provide the allocation of gains between the distributors fairly. For this model,
firstly we set the logistic network scenario by using some parameters, and construct
the cooperative grey flow game. To allocate the gains between distributor countries
fairly, some solution concepts from Cooperative Grey Game Theory are used. These
are the grey Shapley value and the grey solutions. Then, we compare the results
and determine the solution that the players want to use it.

Consider the logistic network consisting of one supplier that applies the aid ma-
terials after natural disasters (D: Deutschland; Germany), three countries as dis-
tributors (U: Ukraine, G: Greece, A: Azerbaijan), and one retailer of the country
affected by the earthquake (I: Istanbul). An illustration of our scenario is presented
in Figure 1. We have two different paths, namely, as on ground and by airway.
Each country has different types of vehicles; these are planes and trucks. Cargo
planes supply aid materials and rescue equipment as commodities. Trucks supply
commodities of medical, personal materials, food, etc.

Ukraine has one Airbus 310-300 cargo plane, [30, 36] tons of capacity; and two
trucks; each one has [23, 25] tons of capacity. Greece has two Antonov An-12 cargo
planes which each one has [15, 17] tons of capacity; it also has one truck, [37, 40] tons
of capacity. Azerbaijan has two cargo planes, Ilyushin model, each one has [43, 45]
tons of capacity; furthermore, it has two trucks, each has a capacity of [23, 25] tons.

Ground and airway distances between countries (supplier, distributors and re-
tailer) are given in Figure 1. The numbers shown on the arcs are the capacities of
the vehicles when they use these paths and the times of the transportation. Three
countries own the arcs (C1, C2, C3). In closer detail, C1 (the upper arcs) owns the
arcs (D,U) and (U, I) with the capacities shown. C2 (the middle arcs) owns the
arcs (D,G), (G, I), (A,G) and (G, I) with the capacities. C3 (the bottom arcs) owns
the arcs (D,A) and (A, I) with the capacities shown.

There are two nodes that are distinguished from the others and are called the
source s and the sink t, which have already been previously defined. There is also a
finite and non-empty set understood as the player set. The arcs are considered and
owned by the players. Moreover, a coalition owns the arcs of its members. The set
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Figure 1. The illustration of our model.

of coalitions is denoted by C. An n-person cooperation grey flow game is a function
w′ from the set of coalitions to the set of real numbers. For a coalition S ∈ C,
w′(S) is defined as the maximum grey flow value for coalition S and through the
network of its members if it operates on its own. This means that w′(S) stands for
the maximum grey flow that S can sustain by using its own portion of the network.
The function w′ just defined is called the characteristic function of the grey game.
The flowchart of our model is given in Figure 2.

Table 1. The constructed grey flow game.

S = ϕ {1} {2} {3} {1, 2} {2, 3} {1, 3} {1, 2, 3}
w

′
(S) ∈ [0, 0] [50, 61] [15, 17] [86, 90] [91, 103] [116, 124] [136, 151] [229, 250]

Table 2. Grey marginal vectors of the model.

σ mσ
1 (w

′
) mσ

2 (w
′
) mσ

3 (w
′
)

σ1 = (1, 2, 3) mσ1
1 (w

′
) ∈ [50, 61] mσ1

2 (w
′
) ∈ [41, 42] mσ1

3 (w
′
) ∈ [138, 147]

σ2 = (1, 3, 2) mσ2
1 (w

′
) ∈ [50, 61] mσ2

2 (w
′
) ∈ [93, 99] mσ2

3 (w
′
) ∈ [86, 90]

σ3 = (2, 1, 3) mσ3
1 (w

′
) ∈ [76, 86] mσ3

2 (w
′
) ∈ [15, 17] mσ3

3 (w
′
) ∈ [138, 147]

σ4 = (2, 3, 1) mσ4
1 (w

′
) ∈ [113, 126] mσ4

2 (w
′
) ∈ [15, 17] mσ4

3 (w
′
) ∈ [101, 107]

σ5 = (3, 1, 2) mσ5
1 (w

′
) ∈ [50, 61] mσ5

2 (w
′
) ∈ [93, 99] mσ5

3 (w
′
) ∈ [86, 90]

σ6 = (3, 2, 1) mσ6
1 (w

′
) ∈ [113, 126] mσ6

2 (w
′
) ∈ [30, 34] mσ6

3 (w
′
) ∈ [86, 90]
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Figure 2. The flowchart of the model.

The average of the six grey marginal vectors is the Grey Shapley value of this
game which can be shown as:

Φ
′
(w

′
) ∈ ([96, 107.67], [73, 80.67], [129, 136.67]) .

Now, Let us look at how the Grey Banzhaf value for this game. For player 1, we
have:

β1(w
′
) ∈ 1

22

∑
1∈S

[
w

′
(S)− w

′
(S\{1})

]
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β1(w
′
) ∈ 1

4

[
w

′
({1}) + w

′
({1, 2}) + w

′
({1, 2, 3}) + w

′
({1, 3})

−w′
({2})− w

′
({3})− w

′
({2, 3})

]
β1(w

′
) ∈ [85.25, 96] .

The Grey Banzhaf values of the other players can be examined similarly as follows:

β2(w
′
) ∈ [62.25, 69] , β3(w

′
) ∈ [118.25, 125] .

At that rate, the Grey Banzhaf value is

β(w
′
) ∈ ([85.25, 96] , [62.25, 69] , [118.25, 125]).

Now, we want to calculate GCIS-value, GENSC-value and GED-solution. We find
the GCIS-value of our game as follows:

GCIS1(w
′
) ∈ w

′
({1}) + 1

3

w′
({1, 2, 3})−

∑
j∈N

w
′
({j})

 ,
GCIS1(w

′
) ∈ w

′
({1}) + 1

3

[
w

′
({1, 2, 3})− (w

′
({1}) + w

′
({2}) + w

′
({3}))

]
= [96, 107.67] .

GCIS2(w
′
) ∈ w

′
({2}) + 1

3

[
w

′
({1, 2, 3})− (w

′
({1}) + w

′
({2}) + w

′
({3}))

]
= [73, 80.67] .

GCIS3(w
′
) ∈ w

′
({3}) + 1

3

[
w

′
({1, 2, 3})− (w

′
({1}) + w

′
({2}) + w

′
({3}))

]
= [129, 136.67] .

Then, the GCIS-value is obtained by

GCIS(w′
) ∈ ([96, 107.67] , [73, 80.67] , [129, 136.67]).

We calculate the GENSC-value of our game as follows:

GENSC1(w
′
) ∈ 1

3

w′
({1, 2, 3}) +

∑
j∈N

w
′
(N \ {j})

− w
′
(N \ {1}),

GENSC1(w
′
) ∈ 1

3

[
w

′
({1, 2, 3}) + (w

′
({1, 2}) + w

′
({1, 3})

+w
′
({2, 3}))

]
− w

′
({2, 3}) = [96, 107.67] .

GENSC2(w
′
) ∈ 1

3

[
w

′
({1, 2, 3}) + (w

′
({1, 2}) + w

′
({1, 3})

+w
′
({2, 3}))

]
− w

′
({1, 3}) = [73, 80.67] .

GENSC3(w
′
) ∈ 1

3

[
w

′
({1, 2, 3}) + (w

′
({1, 2}) + w

′
({1, 3})

+w
′
({2, 3}))

]
− w

′
({1, 2}) = [129, 136.67] .
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Then, the GENSC-value is obtained by

GENSC(w′
) ∈ ([96, 107.67] , [73, 80.67] , [129, 136.67]).

Finally, we calculate the GED-solution of our game as follows:

GED1(w
′
) = GED2(w

′
) = GED3(w

′
) ∈ w

′
({1, 2, 3})

3
= [99.33, 108.33] .

So, we have

GED(w
′
) ∈ ([99.33, 108.33] , [99.33, 108.33] , [99.33, 108.33]).

Table 3 Displays the grey solutions of our model.

Table 3. The Grey Solutions.

Grey Solutions Player 1 Player 2 Player 3
Grey Shapley value ∈ [96, 107.67] ∈ [73, 80.67] ∈ [129, 136.67]
Grey Banzhaf value ∈ [85.25, 96] ∈ [62.25, 69] ∈ [118.25, 125]

GCIS-value ∈ [96, 107.67] ∈ [73, 80.67] ∈ [129, 136.67]
GENSC-value ∈ [96, 107.67] ∈ [73, 80.67]] ∈ [129, 136.67]
GED-value ∈ [99.33, 108.33] ∈ [99.33, 108.33] ∈ [99.33, 108.33]

6. Conclusion and outlook

Following a natural disaster, the most immediate concern is to fulfill the basic and
urgent needs of survivors. This includes food, water, shelter and basic healthcare.
Large natural disasters can leave hundreds of thousands of people without adequate
nourishment, protection or medical care for those injured. In uncertainties in an
SCM occur because of several limitations. Moreover, data may not be available or
may not be easy to communicate in large-scale if emergencies are in mutual casualty.
Transportation can be limited because of transportation time, injury seriousness,
on-field treatment, and medical center service load, which calls for the design of new
cooperative games under uncertainty that can be modeled and used in this area.

In this research, we have considered the earthquake emergency logistic problem
for one affected city and one supplier country under uncertainty. We have modeled
the emergency problem for the situation given after an earthquake occurred in
Istanbul by using cooperative grey flow games. Several grey solutions concepts are
proposed for this model.

As a future work, our model can be extended to look at the sharing issues in OR
among multiple cities, countries, etc. What is more, based on the current paper,
the related issue of vehicle routing can became an extra research subject, too.
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