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Contemporaneous with this research program in game theory, a number of au-
thors have studied various related equilibrium problems derived from the seminal
work of Ky Fan. The Ky Fan equilibrium problem is a fundamental result of non-
linear analysis with myriad applications in optimization theory, fixed point theory,
mathematical economics, and game theory to name just a few. The problem has
the following statement:

Ky Fan Equilibrium Problem: Given a set X and a function f : X×X → R,
find x ∈ X such that f(x, y) ≤ 0 for each y ∈ X.

The seminal result concerning the existence of a solution to the Ky Fan equilib-
rium problem is the following.

Theorem 1.1 (Fan, [13]). Suppose that X is a compact, convex, non-empty subset
of a Hausdorff topological vector space and that f : X ×X → R satisfies

1. x 7→ f(x, y) is lower semi-continuous for each y ∈ X.
2. y 7→ f(x, y) is quasi-concave for each x ∈ X.
3. f(x, x) ≤ 0 for each x ∈ X.

Then there exists x ∈ X such that f(x, y) ≤ 0 for each y ∈ X.

As an application, Theorem 1.1 provides a classic existence proof for Nash equi-
librium using the well known Nikaido-Isoda mapping. Given a game with play-
ers N = {1, . . . , n}, strategy sets Xi, and payoff functions ui : X → R where
X = X1 × · · · ×Xn, define f : X ×X → R as

f(x, y) =
n∑

i=1

ui(x−i, yi)−
n∑

i=1

ui(x).

A strategy profile x = (x1, . . . , xn) ∈ X is a Nash equilibrium if and only if x solves
the Ky Fan equilibrium problem for f and X. For example, if each Xi is non-empty,
convex, and compact, each x−i 7→ ui(x−i, yi) is lower semi-continuous for each yi,
x 7→

∑n
i=1 ui(x) is upper semi-continuous and y 7→

∑n
i=1 ui(x−i, yi) is quasi-concave

for each x−i, then the game has an equilibrium as an application of Theorem 1.1.
Fan’s theorem has been generalized in many directions (for a comprehensive sur-

vey, see Tarafdar and Chowdhury [33]) and the focus of much recent work has been
on the ways in which the lower semi-continuity and quasi-concavity assumptions
of Theorem 1.1 can be relaxed. Such generalizations have proved fruitful in estab-
lishing the existence of Nash equilibrium in strategic form games and qualitative
games via the Nikaido-Isoda mapping. For recent contributions, see Theorems 7.1
and 7.2 in Nessah and Tian [23], Theorem 2 in Prokopovych and Yannelis [26] and
Proposition 1 in Scalzo [30].

Extensions of the Ky Fan equilibrium problem to the case of general relations
may be found in Luc [20], Lin and Wang [19], Balaj and Luc [2], Balaj and Lin
[3], Luc, Sarabi, and Soubeyran [21], Balaj and Lin [2], Hung and Kieu [16], and
Yang [39]. It is the goal of this paper to provide further generalizations in terms
of relations by applying recent weakened notions of continuity that have proved
to be very useful in establishing the existence of Nash equilibrium in games with
discontinuous payoffs.
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2. Preliminary notation and definitions

Let X and Y be topological spaces and let φ : X → Y be a correspondence. Let
domφ denote the set {x ∈ X|φ(x) 6= ∅}. If Y is a vector space, let conφ denote the
correspondence with values conφ(x) where conφ(x) denotes the convex hull of φ(x).
If Y is a topological vector space, we will follow Reny [28] and call a correspondence
φ : X → Y co-closed if the corresondence x ∈ X 7→ conφ(x) has closed graph.

We say that φ : X → Y
1. is compact (non-empty) valued if φ(x) is a compact (non-empty) subset of Y

for each x ∈ X.
2. is upper hemi-continuous at x ∈ X if for every open set V ⊆ Y with φ(x) ⊆ V,

there exists an open set U ⊆ X with x ∈ U such that φ(x′) ⊆ V for all x′ ∈ U.
3. is lower hemi-continuous at x ∈ X if for for every open set V ⊆ Y with

φ(x)∩ V 6= ∅, there exists an open set U ⊆ X with x ∈ U such that φ(x′)∩ V 6= ∅
for all x′ ∈ U.

4. is upper hemi-continuous (lower hemi-continuous) if φ is upper hemi-continuous
(lower hemi-continuous) at each x ∈ X.

5. has open lower sections if the set φ−1(y) := {x ∈ X|y ∈ φ(x)} is open in X
for each y ∈ Y.

6. has the local intersection property if for each x ∈ X with φ(x) 6= ∅, there
exists an open set U(x) containing x such that ∩x′∈U(x)φ(x

′) 6= ∅.2
7. has the continuous inclusion property if for each x ∈ X, there exists an open

set U(x) containing x and a co-closed correspondence d : U(x) → X such that
d(x′) ⊆ φ(x′).3

Remark. If φ : X → Y has open lower sections, then φ has the local intersec-
tion property. If φ has the local intersection property, then φ has the continuous
inclusion property.

We also record two fixed point theorems that are crucial for our results.

Proposition 2.1 (Balaj and Muresan [1]). Suppose that X is a non-empty, convex
subset of a Hausdorff topological vector space. Suppose that T : X → X is a
correspondence with nonempty convex values having the local intersection property.
Suppose that there exists a non-empty, convex compact subsetM ⊆ X and a compact
subset C ⊆ X such that, for each x ∈ X\C, there exists an open set U(x) containing
x such that  ∩

x′∈U(x)

T (x′)

 ∩M 6= ∅.

Then T has a fixed point.

Proposition 2.2 (He and Yannelis [15]). Suppose that X is a non-empty, convex,
compact subset of a Hausdorff locally convex topological vector space. Suppose that

2Here we follow the terminology in Wu and Shen [38] and Prokopovych [25]. The same concept
appears as Definition 6 in Tian and Zhou [36] under the name transfer open lower sections.

3A similar idea is found in Uyanik [37] under the name continuous neighborhood selection
property.
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T : X → X is a non-empty valued, convex valued corresondence with the continuous
inclusion property. Then T has a fixed point.

3. Quasi-variational relation problems without continuity

The quasi-variational equilibrium problem is more general than the Ky Fan equi-
librium problem and has been the subject of much research in the last two decades.

Quasi-Variational Equilibrium Problem (QVEP): Given a set X, a func-
tion f : X × X → R and a correspondence K : X → X, find x ∈ X such that
x ∈ K(x) and f(x, y) ≤ 0 for each y ∈ K(x).

For a basic existence theorem, we have the following.

Theorem 3.1. Suppose that X is a non-empty, compact, convex subset of a Haus-
dorff topological vector space. Suppose that K : X → X is a correspondence and
f : X ×X → R is a function. Suppose that

(i) x 7→ f(x, y) is lower semi-continuous for each y ∈ X.
(ii) y 7→ f(x, y) is quasi-concave for each x ∈ X.
(iii) f(x, x) ≤ 0 for each x ∈ X.
(iv) The correspondence K is non-empty valued and convex valued with open

lower sections.
(v) The set F of fixed points of K is closed in X.

Then there exists x ∈ X such that x ∈ K(x) and

f(x, y) ≤ 0 for all y ∈ K(x).

Remark. While Browder’s Theorem and assumption (iv) ensure that the set F
is non-empty, assumption (v) in Theorem 3.1 cannot be dropped. For example,
suppose that X = [0, 1],

K(x) = [0,
1

2
] if x 6= 1

2

= [0,
1

2
[ if x =

1

2
and

f(x, y) = 0 if y ≤ x

= 1 if y > x

Then for each x ∈ X with x ∈ K(x), there exists a y ∈ K(x) such that f(x, y) > 0.
In this example, conditions (i), (ii), (iii), and (iv) of Theorem 3.1 are satisfied but
the set of fixed points of K is not closed.

The equilibrium problem for generalized games introduced in Debreu [12] is a spe-
cial case of the QVEP. Again consider a game with players N = {1, .., n}, strategy
sets Xi, and payoff functions ui : X1 × · · · ×Xn → R. To each player. we associate
a feasible action corrrespondence Ki : X → Xi where Ki(x) ⊆ Xi is the set of
actions available to i given the strategy profile x. A profile x = (x1, .., xn) ∈ X is
an equilibrium of the generalized game if for each player i,

xi ∈ arg max
yi∈Ki(x)

ui(x−i, yi).
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Defining f(x, y) =
∑n

i=1 ui(x−i, yi)−
∑n

i=1 ui(x) and K(x) = ×i∈NKi(x), it is clear
that x ∈ X is an equilibrium in the generalized game if and only if x solves the
QVEP problem for f and K.

In this paper, we are concerned with a generalization of the QVEP in which the
function f is replaced with a relation. This extension is stated as follows:

Quasi-Variational Relation Problem (QVRP) : Given a setX and a relation
R ⊆ X ×X and a correspondence K : X → X, find x ∈ X such that x ∈ K(x)
and

(x, y) ∈ R for all y ∈ K(x).

In addition to the QVEP and the Nikaido-Isoda approach to generalized games,
the QVRP includes as special cases many important problems in optimization theory
and non-linear analysis including:

• The quasi-variational inclusion probem where R = {(x, y) ∈ X × X|0 ∈
ψ(x, y)} where ψ : X ×X → Z is a correspondence and Z is a vector space.

• The quasi-variational inequality problem where X = Rn and for a given
function g : Rn → Rn, one defines R = {(x, y) ∈ Rn×Rn|g(x) · (y−x) ≥ 0}.

• The nonlinear implicit complementarity problem of stochastic impulse con-
trol where X = Rn and for given functions g : Rn → Rn and m : Rn → Rn,
one defines R = {(x, y) ∈ Rn × Rn|g(x) · (y − x) ≥ 0} and K(x) = {y ∈
Rn|y ≥ m(x)}.

• The Walrasian equilibrium problem where X = {x ∈ Rn
+|

∑
i xi = 1} and

for a given function g : X → Rn satisfying x · g(x) ≤ 0 for all x ∈ X, one
defines R = {(x, y) ∈ Rn × Rn|g(x) · (y − x) ≤ 0} and K(x) = X for all
x ∈ X.

Our main goal is to investigate the extent to which the existence of a solution
to the quasi-variational relation problem can be established when both the corre-
spondence K and the relation R may exhibit discontinuities. In particular, we are
interested in relaxing continuity of R by employing recent ideas from the theory of
discontinuous games.

Definition 3.2. Suppose that X and Y are topological spaces and R ⊆ X × Y is
a relation.

(i) R has closed lower sections if {x ∈ X : (x, y) ∈ R} is closed in X for each
y ∈ Y.

(ii) R is transfer semi-continuous if x ∈ X and (x, y) /∈ R imply that there
exists an open set U(x) containing x and y∗ ∈ Y such that (x′, y∗) /∈ R for
all x′ ∈ U(x).

Remark. If R is a closed set in X × Y, then R has closed lower sections. If R
has closed lower sections, then the relation R is transfer semi-continuous. The
nomenclature of Definition 3.2 is motivated by properties of lower semi-continuous
functions. If f : X → R is lower semi-continuous and if R = {(x, y) ∈ X × R|y ≥
f(x)}, then R is closed and therefore satisfies (i) and (ii) of the definition.
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Transfer semi-continuity of a relation R generalizes several well known concepts
in the literature. For example, a function f : X × Y → R is λ-transfer lower semi-
continuous (Tian [34]) if and only if the relation R = {(x, y) ∈ X × Y |f(x, y) ≤ λ}
is transfer semi-continuous.

Definition 3.3. Suppose that X is a topological space, Q : X → X is a correspon-
dence and R ⊆ X ×X a relation. Then R is transfer semi-continuous with respect
to Q if x ∈ X, y ∈ Q(x) and (x, y) /∈ R imply that there exists an open set U(x)
containing x and y∗ ∈ Q(x) such that (x′, y∗) /∈ R for all x′ ∈ U(x).4

Theorem 3.4. Suppose that X is a non-empty, convex subset of a Hausdorff topo-
logical vector space. Suppose that K : X → X and Q : X → X are correspondences
and R ⊆ X ×X is a relation and define P (x) = {y ∈ X : (x, y) /∈ R}. Suppose that

(i) R transfer semi-continuous with respect to Q.
(ii) Q is non-empty valued, Q has open lower sections, and conQ(x) ⊆ K(x) for

each x ∈ X.
(iii) The set F of fixed points of K is closed.
(iv) For each x ∈ X, x /∈ con(P (x) ∩Q(x)).
(v) There exists a non-empty, convex compact subset M ⊆ X and a compact

subset C ⊆ X such that, for each x ∈ X\C, there exists an open set U(x)
containing x such that ∩

x′∈U(x)

[
Q(x′) ∩ P (x′)

] ∩M 6= ∅.

Then there exists x ∈ X such that x ∈ K(x) and

(x, y) ∈ R for all y ∈ Q(x).

Proof. We argue by contradiction. Suppose that the conclusion does not hold.
Then for every x ∈ X with x ∈ K(x), we have Q(x) ∩ P (x) 6= ∅. Next define the
non-empty valued correspondence T : X → X where

T (x) = Q(x) ∩ P (x) if x ∈ F

= Q(x) if x /∈ F.

We will show that T has the local intersection property. Suppose that y ∈ T (x).
We must show that there exists an open set U(x) in X containing x such that
∩x′∈U(x)T (x

′) 6= ∅. Suppose that x /∈ F. Since y ∈ Q(x) and Q has open lower
sections, there exists an open set U1(x) containing x such that y ∈ Q(x′) for all
x′ ∈ U1(x). Choosing an open set U2(x) ⊆ X\F containing x, it follows that y ∈
Q(x′) = T (x′) for all x′ ∈ U1(x) ∩ U2(x). Now suppose that x ∈ F. Since y ∈
Q(x) ∩ P (x) and R ⊆ X ×X is transfer semi-continuous with respect to Q, there
exists an open set U1(x) containing x and y∗ ∈ Q(x) such that y∗ ∈ P (x′) for
all x′ ∈ U1(x). Since y

∗ ∈ Q(x) and Q has open lower sections, there exists an
open set U2(x) containing x such that y∗ ∈ Q(x′) for all x′ ∈ U2(x). Therefore,
U1(x) ∩ U2(x) is an open set containing x and y∗ ∈ Q(x′) ∩ P (x′) ⊆ T (x′) for
all x′ ∈ U1(x) ∩ U2(x). Defining η(x) = conT (x) for each x ∈ X, it follows that

4For related notions of transfer continuity for functions, see Tian and Zhou [35], [36].
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the non-empty valued, convex valued correspondence η : X → X has the local
intersection property. Note that Q(x)∩P (x) ⊆ T (x) ⊆ η(x) for each x so condition
(v) implies that for each x ∈ X\C, there exists an open set U(x) containing x such
that we have

∩
x′∈U(x)

η(x′) ∩M 6= ∅. Applying Proposition 2.1, it follows that there

exists x ∈ X such that x ∈ η(x). Note that x ∈ F for otherwise, x /∈ K(x) and
x ∈ η(x) ⊆ conQ(x) ⊆ K(x). But x ∈ F implies that x ∈ η(x) ⊆ con(Q(x) ∩ P (x))
violating condition (iv).

As a special case of Theorem 3.4, we obtain the single relation case of Theorem
3.1 of Lin and Ansari [18]. □

Corollary 3.5. Suppose that X is a non-empty, convex subset of a Hausdorff topo-
logical vector space. Suppose that K : X → X and Q : X → X are correspondences
and R ⊆ X ×X is a relation and define P (x) = {y ∈ X : (x, y) /∈ R}. Suppose that

(i) For each y ∈ X, the set {x ∈ X : (x, y) ∈ R} is closed in X.
(ii) Q is non-empty valued, Q has open lower sections and conQ(x) ⊆ K(x) for

each x ∈ X.
(iii) The set F of fixed points of K is closed.
(iv) For any finite set {x1, .., xn} ⊆ X and for each x∗ in the convex hull of

{x1, .., xn}, there exists an i such that (x∗, xi) ∈ R.
(v) There exists a non-empty, convex compact subset M ⊆ X and a compact

subset C ⊆ X such that, for each x ∈ X\C,

Q(x) ∩ P (x) ∩M 6= ∅.

Then there exists x ∈ X such that x ∈ K(x) and

(x, y) ∈ R for all y ∈ Q(x).

As pointed out in Remark 3.1 of Lin and Ansari [18], one can replace condition
(iv) with the assumptions that P (x) is convex for each x and (x, x) ∈ R for each x
thus obtaining Theorems 1.1 and 3.1 as further corollaries.

4. A generalization with local convexity

In Theorem 3.4, we assume that the correspondence Q has open lower sections.
Note, however, that the Hausdorff topological vector space in Theorem 3.4 need not
be locally convex. If we strengthen this assumption and assume in addition local
convexity, then we can weaken both the assumptions that the relation R is transfer
continuous and that Q has open lower sections. This alternative result is possible
as an application of Proposition 2.2.

We begin with a generalization of transfer continuity inspired by another recent
result from the theory of discontinuous games due to Reny[29].

Definition 4.1. Suppose that X is a topological space, Q : X → X is a correspon-
dence and R ⊆ X ×X is a relation. Let P (x) = {y ∈ X|(x, y) /∈ R}. The relation
R is correspondence secure with respect to Q if whenever x ∈ X, y ∈ Q(x) and
(x, y) /∈ R, there exists an open set U(x) containing x and a co-closed correspon-
dence d : U(x) → X such that d(x′) ⊆ Q(x′) ∩ P (x′) for all x′ ∈ U(x).
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Remark. Mimicking the argument in the proof of Theorem 3.4, it follows that, if
Q : X → X has open lower sections and if R ⊆ X ×X is transfer semi-continuous
with respect to Q, then R is correspondence secure with respect to Q. To see
this, suppose that y ∈ Q(x) and (x, y) /∈ R. Then there exists an open set U1(x)
containing x and y∗ ∈ Q(x) such that (x′, y∗) /∈ R for all x′ ∈ U1(x). Since y

∗ ∈ Q(x)
and Q has open lower sections, there exists an open set U2(x) containing x such
that y∗ ∈ Q(x′) for all x′ ∈ U2(x). Therefore, U1(x) ∩ U2(x) = U(x) is an open set
containing x and y∗ ∈ Q(x′)∩P (x′) for all x′ ∈ U(x). Now define d(x′) = {y∗} for
all x′ ∈ U(x).

However, neither open lower sections nor transfer semi-continuity alone implies
correspondence security of R with respect to Q as shown by the the next two
examples.

Example. Let X = [0, 1]. Let

Q(x) = {1} if 0 ≤ x <
1

2

= [0, 1] if x =
1

2

= {0} if
1

2
< x ≤ 1.

Suppose that f is defined as follows:

f(x, y) = 1 if 0 ≤ x < 1 and y = 0

= 0 otherwise.

Defining R = {(x, y|f(x, y) ≤ 0}, it follows that R is transfer semi-continuous
with respect to Q but Q does not have open lower sections. In addition, R is not
correspondence secure with respect to Q. Since Q is not lower hemicontinuous, Q
does not have open lower sections. To see that R is transfer semi-continuous with
respect to Q, note that x ∈ Q(x) implies that x = 1

2 . Suppose that y ∈ Q(12) but

f(12 , y) > 0. Then y = 0. Let U(12) be an open set in X satisfying U(12) ⊆ [0, 1[

and 1
2 ∈ U(12). Then y ∈ Q(12) and (x′, y) /∈ R for all x′ ∈ U(12). In addition, R

is not correspondence secure with respect to Q since 0 ∈ Q(12) and (12 , 0) /∈ R

but Q(x) ∩ {y ∈ X|(x, y) /∈ R} = ∅ if x < 1
2 so there does not exist an open

set U(12) containing 1
2 and a co-closed correspondence d : U(12) → X such that

d(x′) ⊆ Q(x′) ∩ P (x′) for all x′ ∈ U(12).

Example. Let X = [0, 1]. Let

Q(x) = [0, 1] if 0 ≤ x ≤ 1.

Suppose that f is defined as follows:

f(x, y) = 1 if 0 ≤ x <
1

2
and y = 1

= 1 if
1

2
≤ x ≤ 1 and y = 0

= 0 otherwise.
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Defining R = {(x, y|f(x, y) ≤ 0}, it follows that Q has open lower sections but R is
not transfer semi-continuous with respect to Q. In addition, R is not correspondence
secure with respect to Q. To see that R is not transfer semi-continuous with respect
toQ, note that 0 ∈ Q(12) and (12 , 0) /∈ R. Let U(12) be an open set inX with 1

2 ∈ U(12)

suppose that y ∈ [0, 1]. If 0 < y < 1, then (12 , y) ∈ R. If y = 1, then (x′, 1) ∈ R for

all x′ ∈ U(12) with x
′ > 1

2 . If y = 0, then (x′, 0) ∈ R for all x′ ∈ U(12) with x
′ < 1

2 .

In addition, R is not correspondence secure with respect to Q since 0 ∈ Q(12) and

(12 , 0) /∈ R but

Q(x) ∩ {y ∈ X|(x, y) /∈ R} = {1} if 0 ≤ x <
1

2

= {0} if
1

2
≤ x ≤ 1

so there does not exist an open set U(12) containing
1
2 and a co-closed correspondence

d : U(12) → X such that d(x′) ⊆ Q(x′) ∩ P (x′) for all x′ ∈ U(12).

Theorem 4.2. Suppose that X is a non-empty, compact, convex subset of a Haus-
dorff locally convex topological vector space. Suppose that K : X → X and Q : X →
X are correspondences and R ⊆ X ×X is a relation and define P (x) = {y ∈ X :
(x, y) /∈ R}. Suppose that

(i) R is correspondence secure with respect to Q.
(ii) Q is non-empty valued with the continuous inclusion property and conQ(x) ⊆

K(x) for each x ∈ X.
(iii) The set F of fixed points of K is closed.
(iv) For each x ∈ X, x /∈ con(P (x) ∩Q(x)).

Then there exists x ∈ X such that x ∈ K(x) and

(x, y) ∈ R for all y ∈ Q(x).

Proof. We argue by contradiction. Suppose that the conclusion does not hold. Then
Q(x)∩P (x) 6= ∅ for every x ∈ X with x ∈ K(x). Next define the non-empty valued
correspondence T : X → X where

T (x) = Q(x) ∩ P (x) if x ∈ F

= Q(x) if x /∈ F.

We will show that T has the continuous inclusion property. Suppose that y ∈ T (x).
If x /∈ F, then F closed and the continuous inclusion property for Q imply that
there exists an open set U(x) ⊆ X\F containing x and a co-closed correspondence
dx : U(x) → X such that dx(x

′) ⊆ Q(x′) = T (x′) for each x′ ∈ U(x). If x ∈ F,
then correspondence security of R with respect to Q ensures the existence of an
open set U(x) containing x and a co-closed correspondence dx : U(x) → X such
that dx(x

′) ⊆ Q(x′) ∩ P (x′) ⊆ T (x′) for each x′ ∈ U(x). Let η(x) = conT (x).
Then η : X → X is non-empty valued and has the continuous inclusion property.
Applying Proposition 2.2, it follows that there exists x ∈ X such that x ∈ η(x).
Note that x ∈ F for otherwise, x /∈ K(x) and x ∈ η(x) ⊆ conQ(x) ⊆ K(x). But
x ∈ F implies that

x ∈ η(x) ⊆ con(Q(x) ∩ P (x))
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violating condition (iv).
The next example satisfies the assumptions of Theorem 4.2, but R is neither

transfer semi-continuous with respect to Q nor does Q have open lower sections so
the assumptions of Theorem 3.4 are not satisfied. □

Example. Let X = [0, 1]. Let Q = K where

K(x) = [0, 1] if x = 0

= [x,
1

2
] if 0 < x ≤ 1

2

= [
1

2
, x] if

1

2
≤ x < 1

= [0, 1] if x = 1

Suppose that f is defined as follows:

f(x, y) = 1 if y =
1

4
+
x

2
and x ∈ [0,

1

2
[∪]1

2
, 1]

= 0 otherwise.

Defining R = {(x, y|f(x, y) ≤ 0}, it follows that K has does not have open
lower sections since K is not lower hemi-continuous. However, K does have the
continuous inclusion property since K is compact valued, convex valued and upper
hemi-continuous. Furthermore, R is not transfer semi-continuous with respect to
K. To see this, note that 3

8 ∈ K(14) and (14 ,
3
8) /∈ R and that K(14) = [14 ,

1
2 ]. Let

U(14) be an open set in X with 1
4 ∈ U(14) suppose that y ∈ [14 ,

1
2 ]. Then (x′, 38) ∈ R

for each x′ ∈ U(14) with x′ 6= 1
4 . If y >

3
8 , then (x′, y) ∈ R for all x′ ∈ U(14) with

x′ < 1
4 . If y <

3
8 , then (x′, y) ∈ R for all x′ ∈ U(14) with x′ > 1

4 . However, R is
correspondence secure with respect to K. Suppose that y ∈ K(x) and (x, y) /∈ R.
Then x ∈ [0, 12 [∪]

1
2 , 1]. If x ∈ [0, 12 [, then K(x) ∩ {y ∈ X|(x, y) /∈ R} = {1

4 +
x
2}. Let

U(x) be an open set in X satisfying U(x)⊆ [0, 12 [ and x ∈ U(x). For each x′ ∈ U(x),

define d(x′) = {1
4 + x′

2 }. Then d : U(x) → R is co-closed and d(x′) ⊆ K(x′) ∩ {y ∈
X|(x′, y) /∈ R} for each x′ ∈ U(x). A similar argument applies if x ∈]12 , 1]. Note that
x = 1

2 is the unique solution to the quasi-variatonal relation problem.

5. Applications in game theory

5.1. Generalized Games. Consider a generalized game with playersN = {1, .., n},
strategy sets Xi and payoff functions ui : X1 × · · · × Xn → R. Suppose that each
Xi is a compact, convex, non-empty subset of a Hausdorff TVS. To each player, we
associate a feasible action corrrespondence Ki : X → Xi where Ki(x) ⊆ Xi is the
set of actions available to i. Defining

R = {(x, y) ∈ X ×X|
n∑

i=1

ui(x−i, yi)−
n∑

i=1

ui(x) ≤ 0

and K(x) = ×i∈NKi(x), it is clear that x ∈ X is an equilibrium in the generalized
game if and only if x solves the QVRP problem for R and K.

Suppose that
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(a) For every real λ, each ui is λ-transfer lower semi-continuous in x−i with
respect to Ki: if yi ∈ Ki(x) and ui(x−i, yi) > λ then there exists an open set Ui(x)
containing x and y∗i ∈ Ki(x) such that ui(x

′
−i, yi) > λ for all x′ ∈ Ui(x).

(b) The aggregate payoff x 7→
∑n

i=1 ui(x) is upper semi-continuous.
(c) Each Ki is non-empty valued and convex valued with open lower sections and

the set of fixed points of x 7→ K(x) = K1(x)× · · · ×Kn(x) is closed.
(d) For each x, {y ∈ X : (x, y) /∈ R} is convex.
Then there exists a profile x = (x1, .., xn) ∈ X1 × · · · ×Xn such that

xi ∈ arg max
yi∈Ki(x)

ui(x−i, yi) for each i.

To apply Theorem 3.4, we need to use assumptions (a) and (b) to establish that
R is transfer semi-continuous with respect to K. The argument adapts the proof
of Lemma 1 in Prokopovych and Yannelis [26]. Suppose that (x, y) ∈ X ×X and
that

∑n
i=1 ui(x−i, yi)−

∑n
i=1 ui(x) > 0. Then

n∑
i=1

ui(x−i, yi) > λ >
n∑

i=1

ui(x)

for some λ. So there exist numbers λi such that
∑

i λi = λ and ui(x−i, yi) > λi
for each i. Applying Assumption (a), there exists for each i an open set Ui(x)
containing x and y∗i ∈ Ki(x) such that ui(x

′
−i, y

∗
i ) > λi for all x

′ ∈ Ui(x). Applying
assumption (b), there exists an open set V (x) containing x such that λ >

∑n
i=1 ui(x

′)
for all x′ ∈ V (x). Therefore,

∑n
i=1 ui(x

′
−i, y

∗
i ) >

∑
i λi = λ >

∑n
i=1 ui(x

′) for all
x′ ∈ [∩iUi(x)] ∩ V (x) implying that R is transfer semi-continuous with respect to
K.

5.2. Generalized Skew Symmetric Games. To introduce this idea, let S be a
nonempty set. A function φ : S × S → R is skew-symmetric if φ(x, y) = −φ(y, x)
for all (x, y) ∈ S × S. Obviously, skew symmetry implies that φ(x, x) = 0 for all
x ∈ S. A relation ≿ in S × S has a skew-symmetric representation if there exists a
skew-symmetric function φ : S × S → R satisfying

y ≿ x⇔ φ(x, y) ≤ 0.

From the definition, it follows that every relation ≿ admitting a skew-symmetric
representation is reflexive and complete, and if ≿ admits a utility representation
u : S → R, then ≿ admits the skew-symmetric representation φ(x, y) = u(x)−u(y).

A qualitative game is a collection G = (Xi,≿i)
n
i=1, where n is a finite number of

players, Xi is a nonempty set of actions for player i, and ≿i is a preference relation
for player i defined on the set X := ×n

i=1Xi of action profiles, i.e., ≿i is a binary
relation in X ×X.

We say that a qualitative game G = (Xi,≿i)
n
i=1 is a skew symmetric game

(SSYM) if for each i there exists a skew symmetric map φi : X × X → R sat-
isfying

y ≿i x⇔ φi(x, y) ≤ 0, (x, y) ∈ X ×X.
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ANash equilibrium of an SSYM game (Xi, φi)
n
i=1 is a strategy profile (x1, ..., xn) ∈

×n
i=1Xi such that for each i,

φi((yi, x−i), x) ≤ 0, for all yi ∈ Xi.

For example, suppose that each Xi is a compact, nonempty, convex subset of Rmi

for some mi ≥ 1. In addition, suppose that each φi is continuous on X × X and
yi 7→ φi((yi, x−i), x) is quasiconcave for each x ∈ X. Now define

µi(z) := arg max
xi∈Xi

φi((xi, z−i), z), for each z ∈ X.

Then, combining Berge’s Maximum Theorem and the Kakutani Fixed Point Theo-
rem, it follows that there exists x ∈ X such that

x ∈ µ1(x)× · · · × µn(x),

i.e.,

φi((xi, x−i), x) ≤ φi(x, x) = 0.

Discontinuous SSYM games are studied in Carbonell-Nicolau and McLean [6].
There is also an obvious approach to existence using some version of the Ky-Fan

inequality. Let

f(x, y) =

n∑
i=1

φi((yi, x−i), x).

Then x ∈ X is an equilibrium if and only if

f(x, y) ≤ 0, for each y ∈ X.

Suppose that the SSYM game G = (Xi, φi)
N
i=1 where each Xi is a non-empty,

compact, convex subset of a Hausdorff locally convex TVS. To each player, we
associate a feasible action corrrespondence Ki : X → Xi. Define a relation R ⊆
X ×X as

R = {(x, y) ∈ X ×X|
n∑

i=1

φi((yi, x−i), x) ≤ 0}

and a correspondence K : X → X with K(x) = K1(x) × · · · × Kn(x) for each
x ∈ X. Suppose that

(i) R is correspondence secure with respect to K.
(ii) K is non-empty valued and convex valued with the continuous inclusion

property.
(iii) For each x, {y ∈ X : (x, y) /∈ R} is convex.

Then there exists a profile x = (x1, .., xn) ∈ X1 × · · · ×Xn such that

xi ∈ arg max
yi∈Ki(x)

ui(x−i, yi) for each i.
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6. Generalized quasi-variational relation problems

Two other significant problems in non-linear analysis are the generalized equilib-
rium problem and the generalized quasi-variational equilibrium problem.

Generalized Equilibrium Problem (GEP): Given sets X and Z, a function
g : X ×X × Z → R and a correspondence φ : X → Z, find x ∈ X and z ∈ φ(x)
such that

g(x, y, z) ≤ 0 for all y ∈ X.

A problem that includes the generalized equilibrium problem and the quasi-
equilibrium problem as special cases is the generalized quasi-variational equilibrium
problem.

Generalized Quasi-Variational Equilibrium Problem (GQVE): Given
sets X and Z, a function g : X×X×Z → R and two correspondences K : X → X
and φ : X → Z, find x ∈ X and z ∈ φ(x) such that x ∈ K(x) and

g(x, y, z) ≤ 0 for all y ∈ K(x).

If g(x, y, z) = f(x, y) for some function f , then the problem specializes to the
quasi-equilibrium problem and if in addition K(x) = X for all x, we recover the
Ky Fan equilibrium problem as a special case. If g(x, y, z) = z · (x − y), then
the GVEP specializes to the generalized quasi-variational inequality problem. The
GQVE problem was introduced in Chan and Pang [9] (see also Wu and Shen [38]) as
part of their study of the generalized quasi-variational inequality problem in finite
dimensions

The GQVE problem can be further generalized to relations. (see e.g., Yang [39]
or Hung and Kieu [16]).

Generalized Quasi-Variational Relation Problem (GQVR): Given sets X
and Z, a relation R ⊆ X × X × Z and two correspondednces K : X → X and
φ : X → Z, find x ∈ X and z ∈ φ(x) such that x ∈ K(x) and

(x, y, z) ∈ R for all y ∈ K(x).

The GQVR problem includes the quasi-variational inclusion problem studied in,
e.g., Hai et al. [14], Lin [17] and the references therein. Our goal is to prove an
existence result for the GQVR problem with minimal continuity assumptions. The
assumptions that we do impose are again motivated by weakened contnuity ideas
that have been developed for Nash equilibrium existence results for discontinuouus
games.

We begin with a result that does not assume local convexity and generalizes
Theorem 3.4 above by extending the notion of transfer semi-continuity.

Definition 6.1. Suppose that X and Z topological spaces. Suppose that Q : X →
X is a correspondence, φ : X → Z is a correspondence and R ⊆ X × X × Z is
a relation. Then R is transfer semi-continuous with respect to Q and φ if for all
(x, y, z) ∈ X×X×Z such that y ∈ Q(x), z ∈ φ(x) and (x, y, z) /∈ R, there exists an
open set V (x, z) ⊆ X ×Z containing (x, z) and y∗ ∈ Q(x) such that (x′, y∗, z′) /∈ R
for all (x′, z′) ∈ V (x, z).
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Theorem 6.2. Suppose that X is a non-empty, convex subset of a Hausdorff TVS
and that Z is a Hausdorff TVS. Suppose that K : X → X and Q : X → X are
correspondences, φ : X → Z is a correspondence and R ⊆ X ×X ×Z is a relation.
Define P (x, z) = {y ∈ X|(x, y, z) /∈ R} and suppose that

(i) R is transfer semi-continuous with respect to Q and φ
(ii) Q is non-empty valued with open lower sections and conQ(x) ⊆ K(x) for

each x ∈ X.
(iii) φ is non-empty valued and convex valued with the local intersection property.
(iv) The set F = {(x, z) ∈ X × Z|(x, z) ∈ K(x)× φ(x)} is closed.
(v) For each (x, z) ∈ X × Z, x /∈ con(P (x, z) ∩Q(x)).
(vi) There exists a non-empty, convex compact subset M ⊆ X×Z and a compact

subset C ⊆ X × Z such that, for each (x, z) ∈ (X × Z)\C, there exists an
open set U(x, z) containing (x, z) such that ∩

(x′,z′)∈U(x,z)

[
[
P (x′, z′) ∩Q(x′)

]
× φ(x′)]

 ∩M 6= ∅.

Then there exists x ∈ X and z ∈ Z such that x ∈ K(x), z ∈ φ(x) and

(x, y, z) ∈ R for all y ∈ Q(x).

Proof. We again argue by contradiction.
Suppose that the conclusion of the theorem is false. Then for every (x, z) ∈ X×Z

with x ∈ K(x) and z ∈ φ(x), there exists a y ∈ K(x) such that (x, y, z) /∈ R.
Therefore, P (x, z) ∩ K(x) 6= ∅ for every (x, z) ∈ F. Define a non-empty valued
correspondence T : X × Z → X as

T (x, z) = P (x, z) ∩Q(x) if (x, z) ∈ F

= Q(x) if (x, z) /∈ F.

We show that T has the local intersection property. Suppose that y ∈ T (x, z). we
must show that for each (x, z), there exists an open set U(x, z) in X×Z containing
(x, z) such that ∩

(x′,z′)∈U(x,z)

T (x′) 6= ∅.

If (x, z) ∈ F , then y ∈ P (x, z) ∩ Q(x). Since R ⊆ X × X × Z is transfer semi-
continuous in (x, z) with respect to Q and φ, there exists an open set V1(x, z) ⊆ X×
Z containing (x, z) and y∗ ∈ Q(x) such that (x′, y∗, z′) /∈ R for all (x′, z′) ∈ V1(x, z).
Since y∗ ∈ Q(x) and Q has open lower sections, there exists an open V2(x) ⊆ X
containing x such that y∗ ∈ Q(x′) for all x′ ∈ V2(x). Therefore, U(x, z) = V1(x, z)∩
[V2(x) × Z] ⊆ X × Z is an open set containing (x, z) and y∗ ∈ P (x′, z′) ∩ Q(z′) ⊆
T (x′, z′) for all (x′, z′) ∈ U(x, z). If (x, z) /∈ F, then y ∈ Q(x) so there exists an
open set U1(x) ⊆ X containing x such that y ∈ Q(x′) for all x′ ∈ U1(x). Choosing
an open set U2(x, z) ⊆ X\F containing (x, z), it follows that y ∈ Q(x′) = T (x′, z′)
for all (x′, z′) ∈ [U1(x)× Z] ∩ U2(x, z).

Next, define a non-empty valued, convex valued correspondence η : X × Z →
X × Z as η(x, z) = conT (x, z) × φ(x) and note that η has the local intersection
property. In addition, note that [P (x, z) ∩Q(x)]× φ(x) ⊆ η(x, z) for each (x, z) so
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condition (vi) implies that for each (x, z) ∈ (X × Z)\C, there exists an open set
U(x, z) containing (x, z) such that we have ∩

(x′,z′)∈U(x,z)

η(x′, z′)

 ∩M 6= ∅.

Applying Proposition 2.1, it follows that there exists (x, z) ∈ X × Z such that
(x, z) ∈ η(x, z). Note that (x, z) ∈ F for otherwise, x /∈ K(x) and x ∈ conQ(x) ⊆
K(x). But (x, z) ∈ F implies that x ∈ con[P (x, z) ∩Q(x)] violating condition (v).

To generalize Theorem 4.2, we need to extend the notion of correspondence se-
curity. □

Definition 6.3. Suppose that X and Z are topological spaces. Suppose that Q :
X → X is a correspondences, φ : X → Z is a correspondence and R ⊆ X ×X × Z
is a relation. Let P (x, z) = {y ∈ X|(x, y, z) /∈ R}. Then R is correspondence secure
with respect to Q and φ if whenever x ∈ X, y ∈ Q(x), z ∈ φ(x) and (x, y, z) /∈ R,
there exists an open set U(x, z) containing (x, z) and a co-closed correspondence
d : U(x, z) → X such that d(x′, z′) ⊆ Q(x′) ∩ P (x′, z′) for all (x′, z′) ∈ U(x, z).

Remark. If Q has open lower sections and if R is transfer semi-continuous with
respect to Q and φ, then R is correspondence secure with respect to Q and φ.

Theorem 6.4. Suppose that X is a non-empty, convex, compact subset of a locally
convex Hausdorff TVS and that Z is a locally convex Hausdorff TVS. Suppose that
K : X → X and Q : X → X are correspondences, φ : X → Z is a correspondence
and R ⊆ X × X × Z is a relation. Define P (x, z) = {y ∈ X|(x, y, z) /∈ R} and
suppose that

rm (i) R is correspondence secure with respect to Q and φ.
(ii) Q is non-empty valued with the continuous inclusion property and conQ(x) ⊆

K(x) for each x ∈ X.
(iii) φ is non-empty valued and convex valued with the continuous inclusion prop-

erty.
(iv) The set F = {(x, z) ∈ X × Z|(x, z) ∈ K(x)× φ(x)} is closed.
(v) For each (x, z) ∈ X × Z, x /∈ con(P (x, z) ∩Q(x)).

Then there exists x ∈ X and z ∈ Z such that x ∈ K(x), z ∈ φ(x) and

(x, y, z) ∈ R for all y ∈ Q(x).

Proof. We argue by contradiction. Suppose that the conclusion of the theorem is
false. Define a non-empty valued correspondence

T (x, z) = Q(x) ∩ P (x, z) if (x, z) ∈ F

= Q(x) if (x, z) /∈ F.

Using an argument analogous to that of Theorem 4.2, we can use (i) and (ii)
to establish that T has the continuous inclusion property. Defining η(x, z) =
conT (x, z)×φ(x), it follows (using (iii)) that η : X×Z → X×Z is a non-empty val-
ued, convex valued correspondence with the continuous inclusion property so apply-
ing Proposition 2.2, we conclude that there exists (x, z) ∈ X×Z with (x, z) ∈ η(x, z).
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Note that (x, z) ∈ F for otherwise, x /∈ K(x) and x ∈ conQ(x) ⊆ K(x). But
(x, z) ∈ F implies that x ∈ con(P (x, z) ∩Q(x)) violating condition (v).

As an application of Theorem 6.4, we consider an optimization-based approach
to generalized games. Let Xi be a non-empty, compact, convex subset of a Banach
space Vi with dual V ∗

i and let ui : X → R denote the payoff function of player i.
Let Ki : X → Xi denote the feasible set correspondence for player i. For x ∈ X, let
NKi(x)(xi) ⊆ V ∗

i denote the normal cone to Ki(x) at xi, i.e.,

NKi(x)(xi) = {z ∈ V ∗
i |〈z, y − xi〉 ≤ 0 for all y ∈ Ki(x)}.

For each x−i ∈ X−i and yi ∈ Xi, let ∂
+
i ui(x−i, yi) denote the superdifferential of

zi 7→ ui(x−i, zi) evaluated at yi. Note that ∂+i ui(x−i, yi) is a convex, weak∗-closed
set in V ∗

i for each x−i and yi. Then a strategy profile is a Nash equilibrium if for
each i we have xi ∈ Ki(x) and

∂+i ui(x−i, xi) ∩NKi(x)(xi) 6= ∅.

To formulate the problem as a GQVE problem, let

g(x, y, z) =
∑
i

〈zi, yi − xi〉

φ(x) =
∏
i

φi(x−i, xi) =
∏
i

∂+i ui(x)

K(x) =
∏
i

Ki(x).

Then a strategy profile x = (x1, .., xn) is a Nash equilibrium if the GQVE problem
has a solution, i.e., if there exists an x ∈ X and z ∈ φ(x) such that∑

i

〈zi, yi − xi〉 ≤ 0 for all y ∈ K(x).

Suppose that for each i, x 7→ ∂+i ui(x) is non-empty valued with the continuous
inclusion property and that K is non-empty valued and convex valued with the
continuous inclusion property. Furthermore, suppose (letting Q = K) that condi-
tions (i) and (iv) of Theorem 6.4 are satisfied. Condition (v) is trivially satisfied so
applying Theorem 6.4, we conclude that the QQVE problem has a solution. □
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