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ON THE FUNDUMENTAL THEOREM
FOR YOUNG MEASURES

TORU MARUYAMA

ABSTRACT. Let 2 be a measure space and X a topological space with the Borel
o-field. Measurable functions u, : 2 — X(n = 1,2,...) and a real-valued
continuous function f : X — R are assumed to be given. We examine the
convergence of the sequence { fouy, } of the compositions of f and u,(n =1,2,...)
in view of the criteria (1) the weak*-convergence in £ (£2,R) and (2) the weak-
convergence in £'(£2,R). The theory of the narrow convergence of the Young
measures is effectively made use of.

1. INTRODUCTION

Consider a sequence {u, : {2 — X} of measurable mappings, where {2 is a
measure space and X is a topological space endowed with the Borel o-field.

Given a continuous function f : X — R, we would like to examine the convergence
properties of the sequence {f owu,} of compositions. The criteria of convergence are
(1) the weak*- convergence in £°(£2,R) and (2) the weak-convergence in £!(£2,R).

Under certain assumptions, there is a subsequence {u,,/} of {u,} such that

f oty —>/ f(x)dv, as n' — oo,
X

where {v,|lw € 2} is a “measurable family” of Borel probability measures. The
criteria of convergence are stated above.

This fact, called “the fundamental theorem for Young measures”, was discovered
and proved by several authors including Balder [1], Ball [2], Evans [4], and so on.
Applications to nonlinear partial differential equations are neatly explained in Evans
[4].

The object of the present paper is to give a proof of the fundamental theorem
from the viewpoint of Maruyama [6], in which I tried to provide an overview of the
basic structure of the theory of Young measures. Its framework is a little bit more
general than the previous works by Ball, Evans, and others.

2. BASIC CONCEPTS AND FACTS

I start by explaining briefly some basic materials concerning the theory of Young
measures, which are prerequisites for the analysis developed in the following sections.
For the details, please consult Maruyama [6].
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Let (£2,&, 1) be a measure space and X a Hausdorff topological space endowed
with the Borel o-field B(X). The projection of the product space 2 x X into
£2(resp.X) is denoted by mp(resp.mx).

A measure v on (2 x X,E ® B(X)) which satisfies

(2.1) yomy =k
is called a Young measure. The set of all the Young measures is denoted by
D (2, p; X).

A set {v,|w € 2} of finite measures on (X, B(X)) is called a measurable family
if the mapping
w +— 1,(B)

is measurable for all B € B(X).
Throughout this paper, we always assume that :

(A) (2,&,u) is a finite complete measure space, and £ is countably
generated.
(B) X is a locally compact metrizable Souslin space.

We denote by M(X) the space of all the Radon signed measures on X. Since X
is Souslin, any (positive) finite measure on (X, B(X)) is a Radon measure.! 9(X)
is a normed vector space with the norm ||v|| = |v|(X) (total variation), v € M(X).
9M(X) is isomorphic to the dual space of € (X, R); ie. €oo(X,R) = M(X) where
Coo (X, R) is the space of all real-valued continuous functions on X which vanish at
infinity (with the sup-norm || - ||o). Hence we can define the weak*-topology on
M(X) via this dual relation.

£, € (X, R)) is the space of all the €, (X, R)-valued integrable functions, and
L£2°(02,M(X)) is the space of all the M(X)-valued essentially bounded measurable
functions, where 9t(X) is endowed with the Borel o-field generated by the weak*-
topology. Then it is established that?

(2.2) £, € (X, R)) = £°(02,M(X)).

The set of Carathéodory functions ¢ : 2 x X — R which satisfiy (i) z +— ¢(w,x) €

Coo(X,R) and (ii) [, sup|e(w,z)|dp < co is denoted by &g (2, pu; X). It is clear
zeX

that B¢ (2, u; X) can be identified with £1(£2, €+ (X, R)).

A measurable family v = {v,|w € 2} with finite essential sup of ||v,|| may be
regarded as an element of £°(2, M(X)).

The set of positive(resp.probability) Radon measures is denoted by 9, (X) (resp.

M} (X))
It is an established fact that any Young measure - can be represented in the form
(2.3) v(A) = / {/ xa(w, z)dv, bdp, A€ €@ B(X)
(9} X

by means of some measurable family {1, € ML (X)| w € 2}, and such a {y,} is
unique.? This representation is called the disintegration of ~.

IMaruyama [5] pp.392-395. Schwartz[7] 122-124.
2Bourbaki [3] chap.VI, Warga [9] chap.IV.
3Maruyama [6] Theorem 2.7, 2.8.
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Hence (2, u; X) corresponds with B(£2, u; X), the set of measurable families
consisting of probability measures, in one-to-one way via (2.3). If we define

D {y,lw e 2} =7,

& is a mapping of P ({2, u; X) onto P (12, u; X).
We write the relation (2.3) symbolically as

(2.4) v = / 0w ® V,dv.
7]

We introduce the relative weak*- topology on (42, p; X) from £°(£2,M(X)).A
topology on (2, u; X) generated by the mappings

(2.5) v o(w,z)dy =/ / o(w, z)dvydp, ¢ € e (92, 13 X)
2xX JX

is called the narrow topology. The mapping @ is a homeomorphism between B ({2, u; X)
and (12, j1; X).

A subset H of (2, u; X) is said to be uniformly tight if there exists a compact
set K. in X for each € > 0 such that

sup 7(£2 x (X\K)) S e.
yeH

If H is uniformly tight, H is sequentially compact in the narrow topology.*
In the case X is not locally compact, the concept of “vanishing at infinity” does

not make sense. Taking account of such a general case, the generalized narrow
topology is defined on ({2, u; X) by the family of mappings

s (p(w7l‘)d77 p e 66(07/-1'7)())
2xX
instead of G¢__ (12, u; X).S¢ is the set of Carathéodory functions which satisfy
/ sup | (w, z)|dp < oo.
NzreX

However, under assumption [B], the two topologies coincide for H C (€2, u; X) if
H is relatively compact with respect to the generalized narrow topology.”

3. STATEMENT OF THE FUNDAMENTAL THEOREM

We now state the so-called “fundamental theorem” in our setting.

Theorem 3.1. We assume (A) and (B) in section 2. A sequence {u,, : 2 — X}
of (£,B(X)) - measurable functions is assumed to be given. F is a closed set in X .

4Maruyama [6] Theorem 3.5.
SMaruyama [6] Theorem 3.5.
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(I)  Suppose that p(u,(w),F) — 0 in measure as n — 00,° where p is a
metric on X compatible with the given topology. Then the following propositions
hold good.

(i) There exists a subsequence {u,} of {u,} and a measurable family v =

{volw € 2} € £2°(02, M(X)) such that

a. w*- lim f(u,) :/ f(z)dv, for any f € € (X, R),
X

n/—o0
b. supp v, CF a.e.,
c. 1y(X)s1 ae

(ii) For any real-valued continuous function f € €(X,R) such that {f(un)} is
weakly sequentially compact,

w- lim f(uy) — /del/w in £1(2,R).

n/—o00

(IT)  Assume, in addition, that for any € > 0, there exists some compact set
K. C X such that

sup p{w € Q2)up(w) ¢ K.} S e.

Then the following propositions also hold good.
(i) The same results as in (I) hold good with v,(X) =1 a.e.
(ii) For any f € €5 (X,R),

n/—o00

w- lim f(u,y) = /deuw in £(2,R).

The above result can be extended to the case where {2 is o-finite. In this case,
there exists an increasing sequence {(2,,} of £-measurable sets of finite measures
such that 2 = {Jo_;2m. f € €x(X,R) is given. Applying the Theorem 3.1 to
21, we obtain a subsequence {u1,,} of {u,} and a measurable family v! = {v}|w €
21} € £°(821,M(X)) such that

a. w*-lim f(ugy) :/ f(z)dyl in £°(02,R),

V. supp vl CF ae. in (2,

d.oyl(X)<1 ae. in 8.

w

Next we apply the Theorem 3.1 to the sequence {u;,} and {22 to get a further
subsequence {uy,} of {u1 ,} and v? € £(£, M(X)) which satisfies the conditions
similar to a’, b, and ¢ on 2, rather than 2;.By the uniqueness, v is an extension
of v! a.e. Repeat this process infinitely and obtain a subsequence {u,} of {u,} by

6p(tn(w), F) = irellfpp(un (w),x).(1) is equivalent to lim p{w € 2]un(w) ¢ V} =0 for any open
x n—oo

set V' containing F.
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Cantor’s diagonal process. Finally define a measurable family v, by

1
vo(E) = V:%(E) for we (X,
vHE) for we 2, \2p—1 (m22)

w

for each E € B(X).

Thus we obtain a small generalization of the Theorem 3.1 to a o-finite measure
space.

In Ball[2] and Evans[4], both {2 and X are assumed to be subsets of some Eu-
clidean spaces, and p is specified as the usual Lebesgue measure.

4. PROOF OF THE THEOREM

We prove the fundamental theorem in several steps.

1. Define a sequence v" = {V|w € 2} : 2 — M(X) of measurable families by

(4.1) =5

Y U () ynm=12,...,

where 0y, is the Dirac measure concentrating at up(w). It is obvious that
[lv2]] = [v2|(X)(total variation) = 1. Since the unit ball S of £%(£2,M(X)) is
metrizable 7, {v"} has a subsequence {v™'} which w* - converges to some v* €
£2°(02,M(X)) with |[v*]] < 1. 8

We denote by 7, and 7, the measures on ({2 x X,€ ® B(X)) which enjoy the
representations

(4.2) V! = / 8 @ v dp,

We know that {~,/} converges to 7, in the narrow topology since v — v* in the
weak*- topology as n’ — oo (cf.Maruyama [6] Theorem 2.7). In other words,

(4.3) / o(w, z)dy,y — o(w, x)ds as n' — oo
2xX 2xX

for any ¢ € &¢_ (12, 11; X).

Obviously g(w)f(z) € B¢ (2, ;X) for any f € € (X,R) and g € £}(2,R).
Consequently it follows from (4.3) that

TWe assume that o - field € on (2 is countably generated and X is a metrizable locallly compact
Souslin space. Hence £'(£2, € (X, R)) is separable. Consequently the unit ball S of the dual space
£H02,C00(X,R)) = £°(02,M(X)) is w*-metrizable.

8In the case X is compact, ||[v*|| = 1. (cf.Maruyama [5] Theorem 2.6.)
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(4.4) /Q g @

~ [ o / (@) dp

/ f e (@) g(@)dp (by (4.1)),

g(w)f(@)dy.  (by (4.3))
2xX

:/g(w)/ fl@)dvidy  as 0’ — oo

Since this holds good for any g € £1(£2,R), we obtain
(4.5) ) — / f(x as n — oo
with respect to the weak™ -topology in £°(£2,R).

2.  We next show that supp v, € F a.e.

Since p(un, F') — 0in measure (asn’ — 00), there exists a subsequence {u,»} of
{tun} such that p(u,»(w), F) — 0 a.e.(as n” — o0). Define a correspondence( =
multi-valued mapping ) I},: 2 - X(p=1,2,...) by

(4.6) Iy(w) = cl.{unu(w)‘n" Zplip=12,....

Then each I, is a closed - valued and measurable correspondence. Needless to
say, up(w) € I'p(w). We also define a function f, : 2 x X — R by

0 for x € I,(w),

(4.7) Jp(w,z) = {oo for ¢ Ip(w).

Then f, is a positive normal integrand defined on {2 x X. Since {,»} converges to
% in the narrow topology, we obtain

/ fp(w, z)dvs < lim mf/ fp(w, z)dypr
2xX " Joxx

n

:limgnf/ Jp(w, upr(w))dp  (by(4.1))
' Ja
=0 (by(4.7))

(cf. Maruyama [6] Theorem 3.2).
Thus we must have

/ fp(w,2)dv; =0 a.e.,
X
which implies that
vo(X\Ip(w)) =0 ae., e suppy, C Ip(w) a.e.
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Taking account of the relation °

ﬂ Iy( Ly(upr(w)) CF  ae.,

we obtaion
suppv, C F a.e.

3.  Suppose that f:X — R is a continuous function such that {f(u,(w))} is
weakly sequentially compact in £1(£2,R). Then there exisits a subsequence { f(u,)}
which weakly converges to, say, h(w) € £(£2,R). For the sake of simplicity , we
assume that {f(u,)} itself weakly converges to h. We may also assume, without

loss of generality, that f is nonnegative.'® Define a sequence {#*) : R — R}(k =
1,2,...) in €4 (R,R) by

2] for [t] = &,

(4.8) 08 (1) = ¢ —k|t| + k(k + 1) for k<[t <k+1,
0 for |t| 2 k+1.

We now prove that

(4.9) 0% o fY(up) — flu,) as k— oo

weakly and uniformly in n.

Let ¢ be any element of £>°(f2,R). Then we obtain the evaluation
| [ o0 0 1)ua) — Flun) et

<llelle | 169 0 F)n) = flu)ldn (Holder's imcqualiy)

[ / | (tn(@))]dp
{we2| |f(un(w))|2k}

< constant / | f(un(w))|dp.
{we2] |f(un(w))|Zk}

Since {f(u,)} is weakly sequentially compact in £!(£2,R) by assumption, there
exists some K > 0, for each € > 0,which satisfies

A

VAN

(4.10) sup

/ fun(@))dp <
n J{we|f(un(w))2K}

(note that f = 0).
This completes the proof of (4.9).1

9L (tpr (w)) is the topological limit sup of the set {u,»(w)}. See Maruyama [6] footnote 66.

107¢ not, we represent f as f = f* — f~ (where f* and f~ are the positive part and the negative
part of f, respectively). Both of {f*(u,)} and {f~ (un)} are weakly sequentially compact. So we
have only to show what we need for fT and f~, and then combine the results.

HFor the characterization of the weak compactness in £1(2,R), see Maruyama [5] pp.275-278.
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Let 7 be any element of £°(£2,R). Since uf2 < oo, it is obvious that n € £1(£2, R).
By the result already established in the step 1, it holds good that

(4.11) im [ - (0® o f)(un)dpu = / / 2)dvdp.

n—o0

(We use 8% o f instesd of f.) It follows that

(4.12) lim / / Vo £ (un) v di

k—o0

— lim i e
(4.11) klingov}irgo 977 0V o f)(un)du

= lim lim [ n- (0% o f)(uy)du

n—oo k—oo [

= lim 77 f(un)

(4 9) n—00

o o f o

:/ n-hdp  (w- lim f(u,) = h).
Q n—oo

Consequently we obtain
~ [ ra
X

4. If we assume the condition (II), then the set
Yo = /5w ® Oy, (W)dp = m=1,2,......
v

of Young measures is uniformly tight with respect to the narrow topology.'? Hence
{7} is sequentially compact in the narrow topology.!> There exist some subse-
quence {7, } of {7,} and a Young measure v* € 9(f2, u; X) such that

Yn' — " in the narrow topology asn’ — co.
In other words,

(4.13) v )i = [ eudn— [ v o)y
02xX k0] 2xX

as ’I’Ll—>OO

for any ¢ € ¢ (2,0 : X).v* can be represented in the form of disintegration by
means of a measurable family v* = {1}|w € 2} € P(2,1; X) ; i.e.

v = / by @ VSdp  where v, € ML (X) ace.
02
If we specify ¢ (w, x) as
Y(w,x) = W) flx), el (2R), feCo(X,R),

12Maruyama [6] Theorem 3.6.
BMaruyama [6] Theorem 3.5.
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then Y(w,z) € Ge ((£2, 1; X). It follows from (4.13) that

(4.

14) /ng( ) F (g (w0 du—>/ /f Vavidp asn’ — oo.

Since uf2 < 00, £°(2,R) C £}(2,R). Hence (4.14) holds good for any ¢ €
£°(£2,R). Thus we have proved that

w- limf () /f
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