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Let (Ω, E , µ) be a measure space and X a Hausdorff topological space endowed
with the Borel σ-field B(X). The projection of the product space Ω × X into
Ω(resp.X) is denoted by πΩ(resp.πX).

A measure γ on (Ω ×X, E ⊗ B(X)) which satisfies

(2.1) γ ◦ π−1
Ω = µ

is called a Young measure. The set of all the Young measures is denoted by
Y(Ω,µ;X).

A set {νω|ω ∈ Ω} of finite measures on (X,B(X)) is called a measurable family
if the mapping

ω 7→ νω(B)

is measurable for all B ∈ B(X).
Throughout this paper, we always assume that :

(A) (Ω, E , µ) is a finite complete measure space, and E is countably
generated.

(B) X is a locally compact metrizable Souslin space.

We denote by M(X) the space of all the Radon signed measures on X. Since X
is Souslin, any (positive) finite measure on (X,B(X)) is a Radon measure.1 M(X)
is a normed vector space with the norm ||ν|| = |ν|(X) (total variation), ν ∈ M(X).
M(X) is isomorphic to the dual space of C∞(X,R); i.e. C∞(X,R)′ ∼= M(X) where
C∞(X,R) is the space of all real-valued continuous functions on X which vanish at
infinity (with the sup-norm || · ||∞). Hence we can define the weak∗-topology on
M(X) via this dual relation.

L1(Ω,C∞(X,R)) is the space of all the C∞(X,R)-valued integrable functions, and
L∞(Ω,M(X)) is the space of all the M(X)-valued essentially bounded measurable
functions, where M(X) is endowed with the Borel σ-field generated by the weak∗-
topology. Then it is established that2

(2.2) L1(Ω,C∞(X,R))′ ∼= L∞(Ω,M(X)).

The set of Carathéodory functions φ : Ω×X → R which satisfiy (i) x 7→ φ(ω, x) ∈
C∞(X,R) and (ii)

∫
Ω sup

x∈X
|φ(ω, x)|dµ < ∞ is denoted by GC∞(Ω,µ;X). It is clear

that GC∞(Ω,µ;X) can be identified with L1(Ω,C∞(X,R)).
A measurable family ν = {νω|ω ∈ Ω} with finite essential sup of ||νω|| may be

regarded as an element of L∞(Ω,M(X)).
The set of positive(resp.probability) Radon measures is denoted by M+(X) (resp.

M1
+(X)).
It is an established fact that any Young measure γ can be represented in the form

(2.3) γ(A) =

∫
Ω

{∫
X
χA(ω, x)dνω

}
dµ, A ∈ E ⊗ B(X)

by means of some measurable family {νω ∈ M1
+(X)| ω ∈ Ω}, and such a {νω} is

unique.3 This representation is called the disintegration of γ.

1Maruyama [5] pp.392–395. Schwartz[7] 122–124.
2Bourbaki [3] chap.VI, Warga [9] chap.IV.
3Maruyama [6] Theorem 2.7, 2.8. .
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Hence Y(Ω,µ;X) corresponds with P(Ω,µ;X), the set of measurable families
consisting of probability measures, in one-to-one way via (2.3). If we define

Φ : {νω|ω ∈ Ω} 7→ γ,

Φ is a mapping of P(Ω,µ;X) onto Y(Ω,µ;X).
We write the relation (2.3) symbolically as

(2.4) γ =

∫
Ω
δω ⊗ νωdν.

We introduce the relative weak∗- topology on P(Ω,µ;X) from L∞(Ω,M(X)).A
topology on Y(Ω,µ;X) generated by the mappings

(2.5) γ 7→
∫
Ω×X

φ(ω, x)dγ =

∫
Ω

∫
X
φ(ω, x)dνωdµ, φ ∈ GC∞(Ω,µ;X)

is called the narrow topology. The mapping Φ is a homeomorphism betweenP(Ω,µ;X)
and Y(Ω,µ;X).

A subset H of Y(Ω,µ;X) is said to be uniformly tight if there exists a compact
set Kε in X for each ε > 0 such that

sup
γ∈H

γ(Ω × (X\Kε)) ≦ ε.

If H is uniformly tight, H is sequentially compact in the narrow topology.4

In the case X is not locally compact, the concept of “vanishing at infinity” does
not make sense. Taking account of such a general case, the generalized narrow
topology is defined on Y(Ω,µ;X) by the family of mappings

γ 7→
∫
Ω×X

φ(ω, x)dγ, φ ∈ GC(Ω,µ;X),

instead of GC∞(Ω,µ;X).GC is the set of Carathéodory functions which satisfy∫
Ω
sup
x∈X

|φ(ω, x)|dµ <∞.

However, under assumption [B], the two topologies coincide for H ⊂ Y(Ω,µ;X) if
H is relatively compact with respect to the generalized narrow topology.5

3. Statement of the fundamental theorem

We now state the so-called “fundamental theorem” in our setting.

Theorem 3.1. We assume (A) and (B) in section 2. A sequence {un : Ω → X}
of (E ,B(X)) - measurable functions is assumed to be given. F is a closed set in X.

4Maruyama [6] Theorem 3.5.
5Maruyama [6] Theorem 3.5.
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(I) Suppose that ρ(un(ω), F ) → 0 in measure as n → ∞,6 where ρ is a
metric on X compatible with the given topology. Then the following propositions
hold good.

(i) There exists a subsequence {un′} of {un} and a measurable family ν =
{νω|ω ∈ Ω} ∈ L∞(Ω,M(X)) such that

a. w∗- lim
n′→∞

f(un′) =

∫
X
f(x)dνω for any f ∈ C∞(X,R),

b. supp νω ⊂ F a.e.,

c. νω(X) ≦ 1 a.e.

(ii) For any real-valued continuous function f ∈ C(X,R) such that {f(un′)} is
weakly sequentially compact,

w- lim
n′→∞

f(un′) →
∫
X
fdνω in L1(Ω,R).

(II) Assume, in addition, that for any ε > 0, there exists some compact set
Kε ⊂ X such that

sup
n
µ{ω ∈ Ω|un(ω) /∈ Kε} ≦ ε.

Then the following propositions also hold good.
(i) The same results as in (I) hold good with νω(X) = 1 a.e.
(ii) For any f ∈ C∞(X,R),

w- lim
n′→∞

f(un′) =

∫
X
fdνω in L1(Ω,R).

The above result can be extended to the case where Ω is σ-finite. In this case,
there exists an increasing sequence {Ωm} of E-measurable sets of finite measures
such that Ω =

⋃∞
m=1Ωm. f ∈ C∞(X,R) is given. Applying the Theorem 3.1 to

Ω1, we obtain a subsequence {u1,n} of {un} and a measurable family ν1 = {ν1ω|ω ∈
Ω1} ∈ L∞(Ω1,M(X)) such that

a′. w∗- lim
n→∞

f(u1,n) =

∫
X
f(x)dν1ω in L∞(Ω,R),

b′. supp ν1ω ⊂ F a.e. in Ω1,

c′. ν1ω(X) ≦ 1 a.e. in Ω1.

Next we apply the Theorem 3.1 to the sequence {u1,n} and Ω2 to get a further
subsequence {u2,n} of {u1,n} and ν2 ∈ L∞(Ω2,M(X)) which satisfies the conditions
similar to a′, b′, and c′ on Ω2 rather than Ω1.By the uniqueness, ν2 is an extension
of ν1 a.e. Repeat this process infinitely and obtain a subsequence {un′} of {un} by

6ρ(un(ω), F ) = inf
x∈F

ρ(un(ω), x).(1) is equivalent to lim
n→∞

µ{ω ∈ Ω
∣∣un(ω) /∈ V } = 0 for any open

set V containing F .
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Cantor’s diagonal process. Finally define a measurable family νω by

νω(E) =

{
ν1ω(E) for ω ∈ Ω1,

νmω (E) for ω ∈ Ωm\Ωm−1 (m ≧ 2)

for each E ∈ B(X).
Thus we obtain a small generalization of the Theorem 3.1 to a σ-finite measure

space.
In Ball[2] and Evans[4], both Ω and X are assumed to be subsets of some Eu-

clidean spaces, and µ is specified as the usual Lebesgue measure.

4. Proof of the theorem

We prove the fundamental theorem in several steps.

1. Define a sequence νn = {νnω |ω ∈ Ω} : Ω → M(X) of measurable families by

(4.1) νnω = δun(ω)
; n = 1, 2, . . . ,

where δun(ω)
is the Dirac measure concentrating at un(ω). It is obvious that

||νnω || = |νnω |(X)(total variation) = 1. Since the unit ball S of L∞(Ω,M(X)) is

metrizable 7, {νn} has a subsequence {νn′} which w∗ - converges to some ν∗ ∈
L∞(Ω,M(X)) with ||ν∗|| ≦ 1. 8

We denote by γn′ and γ∗ the measures on (Ω × X, E ⊗ B(X)) which enjoy the
representations

γn′ =

∫
Ω
δω ⊗ νn

′
ω dµ,(4.2)

γ∗ =

∫
Ω
δω ⊗ ν∗ωdµ.

We know that {γn′} converges to γ∗ in the narrow topology since νn
′ → ν∗ in the

weak∗- topology as n′ → ∞ (cf.Maruyama [6] Theorem 2.7). In other words,

(4.3)

∫
Ω×X

φ(ω, x)dγn′ →
∫
Ω×X

φ(ω, x)dγ∗ as n′ → ∞

for any φ ∈ GC∞(Ω,µ;X).

Obviously g(ω)f(x) ∈ GC∞(Ω,µ;X) for any f ∈ C∞(X,R) and g ∈ L1(Ω,R).
Consequently it follows from (4.3) that

7We assume that σ - field E on Ω is countably generated and X is a metrizable locallly compact
Souslin space. Hence L1(Ω,C∞(X,R)) is separable. Consequently the unit ball S of the dual space
L1(Ω,C∞(X,R))′ ∼= L∞(Ω,M(X)) is w∗-metrizable.

8In the case X is compact, ||ν∗|| = 1. (cf.Maruyama [5] Theorem 2.6.)
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∫
Ω×X

g(ω)f(x)dγn′(4.4)

=

∫
Ω
g(ω)

∫
X
f(x)dνn

′
ω dµ

=

∫
Ω
f(un′(ω))g(ω)dµ (by (4.1)),

−→
∫
Ω×X

g(ω)f(x)dγ∗ (by (4.3))

=

∫
Ω
g(ω)

∫
X
f(x)dν∗ωdµ as n′ → ∞.

Since this holds good for any g ∈ L1(Ω,R), we obtain

(4.5) f(un′(ω)) →
∫
X
f(x)dν∗ω as n′ → ∞

with respect to the weak∗ -topology in L∞(Ω,R).

2. We next show that supp νω ∈ F a.e.
Since ρ(un′ , F ) → 0 in measure (as n′ → ∞), there exists a subsequence {un′′} of

{un′} such that ρ(un′′(ω), F ) → 0 a.e.(as n′′ → ∞). Define a correspondence( =
multi-valued mapping ) Γp : Ω ↠ X(p = 1, 2, . . . ) by

(4.6) Γp(ω) = cl.
{
un′′(ω)

∣∣n′′ ≧ p
}
; p = 1, 2, . . . .

Then each Γp is a closed - valued and measurable correspondence. Needless to
say, un′′(ω) ∈ Γp(ω). We also define a function fp : Ω ×X → R̄ by

(4.7) fp(ω, x) =

{
0 for x ∈ Γp(ω),

∞ for x /∈ Γp(ω).

Then fp is a positive normal integrand defined on Ω×X. Since {γn′′} converges to
γ∗ in the narrow topology, we obtain∫

Ω×X
fp(ω, x)dγ∗ ≦ lim inf

n′′

∫
Ω×X

fp(ω, x)dγn′′

= lim inf
n′′

∫
Ω
fp(ω, un′′(ω))dµ (by(4.1))

= 0 (by(4.7))

(cf. Maruyama [6] Theorem 3.2).
Thus we must have ∫

X
fp(ω, x)dν

∗
ω = 0 a.e.,

which implies that

ν∗ω(X\Γp(ω)) = 0 a.e., i.e. supp ν∗ω ⊂ Γp(ω) a.e.
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Taking account of the relation 9

∞⋂
p=1

Γp(ω) = Ls(un′′(ω)) ⊂ F a.e.,

we obtaion

supp ν∗ω ⊂ F a.e.

3. Suppose that f :X → R is a continuous function such that {f(un(ω))} is
weakly sequentially compact in L1(Ω,R). Then there exisits a subsequence {f(un′)}
which weakly converges to, say, h(ω) ∈ L1(Ω,R). For the sake of simplicity , we
assume that {f(un)} itself weakly converges to h. We may also assume, without

loss of generality, that f is nonnegative.10 Define a sequence {θ(k) : R → R}(k =
1, 2, . . . ) in C∞(R,R) by

(4.8) θ(k)(t) =


|t| for |t| ≦ k,

−k|t|+ k(k + 1) for k ≦ |t| ≦ k + 1,

0 for |t| ≧ k + 1.

We now prove that

(4.9) (θ(k) ◦ f)(un) → f(un) as k → ∞

weakly and uniformly in n.

Let φ be any element of L∞(Ω,R). Then we obtain the evaluation∣∣ ∫
Ω
φ{(θ(k) ◦ f)(un)− f(un)}dµ

∣∣
≦ ||φ||∞

∫
Ω
|(θ(k) ◦ f)(un)− f(un)|dµ (Hölder’s inequality)

≦ ||φ||∞ × 2

∫
{ω∈Ω| |f(un(ω))|≧k}

|f(un(ω))|dµ

≦ constant

∫
{ω∈Ω| |f(un(ω))|≧k}

|f(un(ω))|dµ.

Since {f(un)} is weakly sequentially compact in L1(Ω,R) by assumption, there
exists some K > 0, for each ε > 0,which satisfies

(4.10) sup
n

∫
{ω∈Ω|f(un(ω))≧K}

f(un(ω))dµ ≦ ε

(note that f ≧ 0).
This completes the proof of (4.9).11

9Ls(un′′(ω)) is the topological limit sup of the set {un′′(ω)}. See Maruyama [6] footnote 66.
10If not, we represent f as f = f+−f−(where f+ and f− are the positive part and the negative

part of f , respectively). Both of {f+(un)} and {f−(un)} are weakly sequentially compact. So we
have only to show what we need for f+ and f−, and then combine the results.

11For the characterization of the weak compactness in L1(Ω,R), see Maruyama [5] pp.275-278.
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Let η be any element of L∞(Ω,R). Since µΩ <∞, it is obvious that η ∈ L1(Ω,R).
By the result already established in the step 1, it holds good that

lim
n→∞

∫
Ω
η · (θ(k) ◦ f)(un)dµ =

∫
Ω
η(ω) ·

∫
X
(θ(k) ◦ f)(x)dν∗ωdµ.(4.11)

(We use θ(k) ◦ f instesd of f .) It follows that

lim
k→∞

∫
Ω
η ·

∫
X
(θ(k) ◦ f)(un)dν∗ωdµ(4.12)

=
(4.11)

lim
k→∞

lim
n→∞

∫
Ω
η · (θ(k) ◦ f)(un)dµ

= lim
n→∞

lim
k→∞

∫
Ω
η · (θ(k) ◦ f)(un)dµ

=
(4.9)

lim
n→∞

∫
Ω
η · f(un)dµ

=
(4.5)

∫
Ω
η(ω)

∫
X
f(x)dν∗ωdµ

=

∫
Ω
η · hdµ (w- lim

n→∞
f(un) = h).

Consequently we obtain

h(ω) =

∫
X
f(x)dν∗ω.

4. If we assume the condition (II), then the set

γn =

∫
γ
δω ⊗ δun(ω)dµ : n = 1, 2, . . . . . .

of Young measures is uniformly tight with respect to the narrow topology.12 Hence
{γn} is sequentially compact in the narrow topology.13 There exist some subse-
quence {γn′} of {γn} and a Young measure γ∗ ∈ Y(Ω,µ;X) such that

γn′ → γ∗ in the narrow topology as n′ → ∞.

In other words,∫
Ω×X

ψ(ω, x)dγn′ =

∫
Ω
ψ(ω, un′(ω))dµ −→

∫
Ω×X

ψ(ω, x)dγ∗(4.13)

as n′ → ∞
for any ψ ∈ GC∞(Ω,µ : X). γ∗ can be represented in the form of disintegration by
means of a measurable family ν∗ = {ν∗ω|ω ∈ Ω} ∈ P(Ω,µ;X) ; i.e.

γ∗ =

∫
Ω
δω ⊗ ν∗ωdµ where ν∗ω ∈ M1

+(X) a.e.

If we specify ψ(ω, x) as

ψ(ω, x) = φ(ω) · f(x), φ ∈ L1(Ω,R), f ∈ C∞(X,R),

12Maruyama [6] Theorem 3.6.
13Maruyama [6] Theorem 3.5.
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then ψ(ω, x) ∈ GC∞((Ω,µ;X). It follows from (4.13) that∫
Ω
φ(ω)f(un′(ω))dµ −→

∫
Ω
φ(ω)

∫
X
f(x)dν∗ωdµ as n′ → ∞.(4.14)

Since µΩ < ∞,L∞(Ω,R) ⊂ L1(Ω,R). Hence (4.14) holds good for any φ ∈
L∞(Ω,R). Thus we have proved that

w- lim
n′→∞

f(un′) =

∫
X
f(x)dν∗ω .

□
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