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A production process (or, an activity) converts (transforms) a (non-negative) n-
vector x of inputs into a (non-negative) n-vector y of outputs. Let T be the set of
all production processes (“the technology”). To clarify the role of resources, it is
convenient to write x = (x̃, s) and y = (ỹ, s′), where x̃ (respectively, ỹ) denotes the
quantities of producible goods used as inputs (respectively, quantities of produced
as outputs) and s (respectively, s′) denotes the quantities of natural resources used
as inputs (generated as outputs). Exhaustible natural resources are distinguished
by the property that for all (x, y) ∈ T , s ≧ s′ (see T.1). The essential role of the
resources as inputs is captured by the assumption that for any producible good i, if
yi > xi then there is some resource k such that sk > s′k (see T.5). The consumption
possibilities consistent with T can best be described by the set of net output vectors
Z = {z : z = y−x, where (x, y) ∈ T }. Now, if T is a convex cone, so is Z. By T.5, Z
does not contain any semipositive u ≥ 0. For our result a more restrictive property
of Z seems needed: we assume (see T.6) that the closure of Z (denoted by cl(Z))
is a convex cone that does not contain any semipositive u ≥ 0. When T happens
to be a polyhedral convex cone, it is necessarily closed, and Z too, is a polyhedral
(hence, closed) convex cone that does not contain (by T.5) any semipositive u ≥ 0.
The activity analysis models of von Neumann and Leontief are examples of the
polyhedral case.

A result on the duality of convex cones (see Theorem 2.2, in Section 2, recalled for
completeness of exposition) guarantees that there is a positive price system p > 0
such that p · z ≦ 0 for all z ∈ cl(Z) (see Lemma 3.2). This positive price system
at which no process generates a positive profit plays a crucial role in calculations
that establish our main result which we now state informally. Given the initial
stocks of producible goods (X̃ > 0) and natural resources S > 0, a program is
a complete specification of decisions on the choice of inputs, consumptions, and
production processes that meet the appropriate conditions of consistency and non-
negativity (see (3.3) in Section 3). Let c̃t = ỹt−x̃t be the (non-negative) n1-vector of
consumptions in period t. generated by any program, and we write ∥ c̃t ∥=

∑n1
k=1 c̃k,

and p = (p1, p2) where p1 is the positive n1-vector of prices of producible goods
and p2 is the n2-vector of prices of exhaustible resources. One can then show that
for any finite T,

T∑
t=1

(p1 · c̃t) ≦ [p1 · X̃ + p2 · S].

It follows that

∞∑
t=1

(p1 · c̃t) = lim
T→∞

[
T∑
t=1

(p1 · c̃t)] ≦ [p1 · X̃ + p2 · S].

From a standard property of a convergent infinite series, we get:

lim
t→∞

(p1 · c̃t) = 0,

which, in turn, implies (as p1 > 0),

lim
t→∞

∥ c̃t ∥= 0.
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In Section 4 we provide a few remarks on the development of the literature
initiated by the von Neumann model and on some results following Solow (1974)—
but do not attempt a survey in either direction. At this moment it suffices to
say that the researchers on development planning found the analytical framework
of a closed linear model particularly appealing to explore optimal growth in labor
surplus economies (see Chakravarty (1969, pages 185-189). We follow this line of
interpretation: a look at the long-run prospects of a labor surplus economy facing
constraints on the supply of natural resources that are essential as inputs. Our
main result stresses the importance of the development of new technologies that are
less reliant on exhaustible resources for generating positive, constant consumptions
in all future periods. Better still is to study the question, not for an economy in
isolation, but one in which there is internal production, as well as external trade
with the outside world.

2. Duality for closed convex cones

Convex cones and their duals have been explored not only in huge mathematical
literature on convexity and linear inequalities, but also in many articles and mono-
graphs that have been influential in the development of mathematical economics
(see Uzawa (1958), Gale (1960), Karlin (1959) and Nikaido (1968)). Since there are
variations in definitions and notation, we shall follow Nikaido (1968) in collecting
very briefly the relevant concepts and mathematical results that are needed in the
statement and proof of our main result in Section 4.

A non-negative (respectively, positive) real number a is denoted by a ≧ 0 (re-
spectively, a > 0). A vector x = (xi) ∈ Rn is called non-negative (written, x ≧ 0),
if xi ≧ 0 for all i = 1, 2...n. It is called semipositive (written, x ≥ 0), if x ≧ 0 and
xi > 0 for some i, and positive (written, x > 0) if xi > 0 for all i = 1, 2...n.

A (nonempty) subset K of Rn is a convex cone if it satisfies:

(i) x + y ∈ K for any x, y ∈ K;
(ii) λx ∈ K for any x ∈ K and λ ≧ 0.

The dual convex cone K∗ of a convex cone K is defined as:

K∗ = {y ∈ Rn : x · y ≧ 0 for any x ∈ K}.

Observe that even though K may not be closed, K∗ is always closed. Now,
K∗ has its dual (K∗)∗, usually denoted simply by K∗∗. For a convex cone K, we
have:

(i) K∗∗ ⊃ K;
(ii) K∗∗ = K if and only if K is closed.

An application of a separation theorem leads to the following conclusion (Theo-
rem 3.5 of Nikaido (1968, p.35)):

Theorem 2.1. Let X be a convex set in Rn that contains no positive vector. Then
there is a semipositive vector p ≥ 0 such that p · x ≤ 0 for all x ∈ X.

Observe that in general, we cannot claim that p is positive (Nikaido (1968, p.35)).
However, we have the following (see Nikaido (1968), Theorem 3.6):
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Theorem 2.2. Let K be a closed convex cone. If K contains no semipositive vector
u ≥ 0, then −K∗ contains a positive p > 0, and vice versa.

A convex cone K is polyhedral if it is generated by a finite set of vectors
{a1, a2, . . . , as}, i.e., K = {y =

∑s
i=1 λ

iai : λi ≧ 0}. A polyhedral convex cone
K is closed. A convex cone K is polyhedral if and only if K is the set of all solu-
tions to a finite system of linear inequalities (see Nikaido (1968), Moore (2007)).

3. A closed linear model of production

We turn to a variation of Gale’s closed linear model of production (1956). A
finite number of goods are “produced” by means of processes denoted by a pair
(x, y) of nonnegative n-vectors. We interpret x as an input vector that the process
“converts” into an output vector y with a one-period lag in this conversion. We
shall also refer to (x, y) as an input-output pair. The set of all technologically
feasible processes (briefly, the technology) is described by a nonempty set T in R2n

+ .
Formally,

T = {(x, y) : x can be converted into y}.
A good k is an exhaustible resource if for all (x, y) ∈ T , yk ≦ xk. In other

words, no known process can augment the stock of an exhaustible resource. Of
the n goods, there are n1 producible goods that can be either used as an input
or consumed. There are n2 exhaustible resources, these are important inputs that
are not consumed directly (n1 + n2 = n). For an input or output vector x or y,
we have the following ordering convention: the first n1 coordinates of x (or y)
denote the quantities of producible goods (to be written x̃ = (x̃i) or ỹ = (ỹi), where
i = 1, 2, . . . , n1). The following n2 coordinates will denote quantities of exhaustible
resources, to be written s = (sk) as input stock, and s′ = (s′k) as an output stock
where k = n1+1, n1+2, . . . , n1+n2. We write x = (x̃, s) and y = (ỹ, s′) to explicitly
distinguish between producible goods and resources. Formally,

T.1. For any process (x, y) ∈ T , where x = (x̃, s), and y = (ỹ, s′), the inequality
“ s ≧ s′” holds.

We assume that all producible capital goods, as well as the resource can be stored
costlessly (no depreciation when stored):

T.2. For any x = (x̃, s) ≧ 0, (x, x) ∈ T . Also, “ (0, y) ∈ T ” implies that “y = 0”
(impossibility of free production).

T.3. “((x = (x̃, s), y = (ỹ, s′)) ∈ T )” implies “((x̃∼, s∼), (ỹ∼, s
′
∼) ∈ T ) where

(x̃∼, s∼) ≧ (x̃, s), 0 ≦ ỹ∼ ≦ ỹ, and 0 ≦ s′∼ ≦ s′” (free disposal).

To think of the future consumption possibilities and resource exhaustion, it is
important to introduce the set Z of net outputs generated by T defined by:

Z = {z : z = (y − x), where (x, y) ∈ T }.
= {z : z = (ỹ − x̃, s′ − s) where ((x̃, s), (ỹ, s′)) ∈ T }.(3.1)

Note that the storage process (x, x) is assumed to be technologically feasible. So
0 ∈ Z. The structure of Z is determined by the properties of T .

T.4. T is a closed convex cone.
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The importance of the role of resources in converting x to y is captured by the
following assumption:

T.5. Let “(x = (x̃, s), y = (ỹ, s′)) ∈ T ”. If for any i, ỹi > x̃i, there is some (one
or more) k such that sk > s′k .

In other words, for a positive net production of any producible good i, a positive
quantity of some (one or more) resource is needed.

Lemma 3.1. Under T.4. and T.5, Z is a convex cone that does not contain any
u ≥ 0.

Proof. Z is clearly a convex cone since T is. Consider z = (ỹ − x̃, s′ − s) ∈ Z.
Observe that s′ − s ≦ 0. On the other hand, ỹ − x̃ ≥ 0 implies, by T.5., that
s′ − s ≤ 0. □

We assume a stronger property of Z than that ensured by this Lemma 3.1.
Let cl(Z) be the closure of Z. cl(Z) is a convex cone (Nikaido (1969, Theorem

2.6). We assume:
T.6 cl(Z) is a convex cone that does not contain any u ≥ 0.
We now turn to the basic “duality” result: At a price system p ≧ 0, define the

profit of a process (x, y) ∈ T as π[(x, y), p] = p · y −p · x = p · z. We prove the
existence of a positive p > 0 such that no process in T generates a positive profit.

Lemma 3.2. There is p > 0 such that p · z ≦ 0 for all z ∈ cl(Z.).

Proof. Since cl(Z) is a closed convex cone that does not contain any u ≥ 0, it follows
from Theorem 2.2 that −(cl(Z))∗ contains a positive p > 0. Hence, −p · z ≧ 0 for
all z ∈ cl(Z), or p · z ≦ 0 for all z ∈ cl(Z). □

We write p = (p1, p2) > 0 to stress that the n1-vector p1 > 0 denotes the vector
of prices of producible goods and p2 > 0 is the n2-vector denoting the prices of
exhaustible resources. We can write more explicitly

(3.2) p · z = p1 · (ỹ − x̃) + p2 · (s′ − s) ≦ 0.

The initial stocks of the producible goods X̃ > 0 and the resources S > 0 are
given. A program from (X̃, S) is a sequence (x,y, c̃) = (xt, yt+1, c̃t+1) satisfying:

x̃0 = X̃, s0 = S,(3.3)

(xt, yt+1) = (xt = (x̃t, st), yt+1 = (ỹt+1, s
′
t+1)) ∈ T for t ≧ 0,

st+1 = s′t+1 for t ≧ 0,

c̃t+1 = (ỹt+1 − x̃t+1) ≧ 0 for t ≧ 0.

A program specifies a sequence of decisions described as follows. The initial stocks
X̃ and S are used in period 0 as inputs in a chosen process to generate the first-
period output vector (ỹ1, s

′
1), where s

′
1 ≦ S. A part c̃1 of ỹ1, the vector of producible

goods available, is chosen for consumption. The rest, the vector x̃1(= ỹ1 − c̃1) and
the available stocks of the resources s1 = s′1 are used as inputs in a chosen process
to generate the output vector (ỹ2, s

′
2) where s

′
2 is the stock of resource, s′2 ≦ s′1, and

the story is repeated.
Observe that as resources are not consumed, by setting st+1 = s′t+1 (use of the

entire stocks of resources as inputs in period t + 1), the formulation introduces
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a “conservation” or (in Hurwicz’s words) “nonwastefulness” clause in the defini-
tion. A program defines a corresponding sequence (s′t) of resource vectors that is
nonincreasing.

We now come to the main result on the long-run behavior of consumptions in
our model.

For any non-negative vector c ∈ Rn1
+ we define the norm

(3.4) ∥ c ∥=
n1∑
k=1

ck.

Theorem 3.3. Let (x,y, c) = (xt, yt+1, c̃t+1) be a program from (X̃, S) > 0. Then

(3.5) lim
t→∞

∥ c̃t ∥= 0.

Proof. We use (3.2) repeatedly. First, by the definition of a program in (3.3) we
have

(3.6) c̃1 = ỹ1 − x̃1 and
(
(X̃, S), (ỹ1, s

′
1)
)
∈ T .

Hence, using (3.2) and the price vector p = (p1, p2) > 0

p1 · (ỹ1 − X̃) + p2 · (s′1 − S) ≦ 0 or,

p1 · ỹ1 ≦ p1 · X̃ + p2 · (S − s′1).(3.7)

It follows from (3.6) and (3.7) that

(3.8) p1 · c̃1 = p1 · (ỹ1 − x̃1) ≦ p1 · X̃ + p2 · (S − s′1)− p1 · x̃1.

Similarly,

(3.9) c̃2 = ỹ2 − x̃2, and (( x̃1, s1), (ỹ2, s
′
2)) ∈ T with s1 = s′1.

Again, using (3.2),

p1 · (ỹ2 − x̃1) + p2 · (s′2 − s′1) ≦ 0 or,

p1 · ỹ2 ≦ p1 · x̃1 + p2 · (s′1 − s′2).(3.10)

From (3.9) and (3.10),

(3.11) p1 · c̃2 = p1 · (ỹ2 − x̃2) ≦ p1 · x̃1 + p2 · (s′1 − s′2)− p1 · x̃2.

From (3.8) and (3.11) we get, after simplifying,

p1 · c̃1 + p1 · c̃2 ≦ p1 · X̃ + p2 · (S − s′2)− p1 · x̃2.

Repeating the steps we get, for any finite T,

T∑
t=1

(p1 · c̃t) ≦ p1 · X̃ + p2 · (S − s′T )− p1 · x̃T ≦ p1 · X̃ + p2 · S.

It follows that:

∞∑
t=1

(p1 · c̃t) = lim
T→∞

[

T∑
t=1

(p1 · c̃t)] ≦ p1 · X̃ + p2 · S.
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In particular,

(3.12) lim
t→∞

(p1 · c̃t) = 0.

Let α = mink(p1k) > 0. Since (p1 · c̃t) ≧ α∥c̃t∥ ≧ 0, (3.5) follows from (3.12). □

Remark 3.1. We now turn to the “polyhedral” case. Replace T.4 by
T.4’ T is a polyhedral convex cone.
It follows that (under T.4’ and T.5):
Z is a polyhedral (hence, closed) convex cone that does not contain any u ≥ 0.
Now, from Theorem 2.2 we get that −Z∗ contains a positive p > 0. Hence,

−p · z ≧ 0 for all z ∈ Z, or p · z ≦ 0 for all z ∈ Z. Using the same arguments
as in the above proof, we see that for any program (x,y, c) = (xt, yt+1, c̃t+1) from

(X̃, S) > 0, limt→∞ ∥ c̃t ∥= 0.
In a more restricted situation (a single resource that is essential in all processes),

we analyzed the polyhedral case earlier (Majumdar and Bar (2013)). The point
that we should stress is this: under T.5, any property of T that ensures that Z
is a closed convex cone enables us to invoke Theorem 2.2 and get the positive p
satisfying p · z ≦ 0 for all z ∈ Z. The polyhedral case T.4’ merely identifies a class
of prominent technologies.
Remark 3.2. Note that, even without assuming T.6, we get a semipositive price
system p ≥ 0 such that p · z ≦ 0 for all z ∈ Z by using Lemma 3.1 and Theorem
2.1. The proof of Theorem 3.3, however, rests crucially on the fact that the price
system used in the calculations is positive (see the line below (3.12)). We needed
the more restrictive T.6 to establish Lemma 3.2.

4. A leaf from the past

In his article, von Neumann (1945-46) assumed explicitly (page 2) that “the natu-
ral factors of production, including labor, can be expanded in unlimited quantities”.
In his paper, Gale (1956) announced two objectives: first, to provide a generaliza-
tion in which the “condition (H)” (“each process involves each good in the economy
as input or output”, “a serious weakness”) is dispensed with. Secondly, he wanted
to provide an elementary treatment of the two main results of von Neumann as
“the original proofs... were extremely involved, depending on fixed point theorem”.
Karlin (1959) provided a succinct account of the two main aspects of the von Neu-
mann equilibrium (the existence of a process generating a maximal rate of balanced
expansion, and the existence of a supporting price system) by using a compactness
and a separation argument respectively. The notoriously difficult lemma in the von
Neumann paper was proved in a simpler manner by Kakutani (1941, Theorem 2),
using his celebrated fixed point theorem. In the subsequent development of in-
tertemporal economics, Gale’s framework or the “von Neumann-Gale model” (see
Makarov and Rubinov (1977)) appeared regularly: often in contexts far removed
from “balanced” growth. It should be mentioned that in their well-known paper,
Kemeny, Morgenstern and Thompson (1956) also rejected the condition (H), but
thought that assuming an unlimited supply of natural factors “was quite proper” for
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an economist,“because there are or have been many instances of economic develop-
ment where it is true”. Neither Gale nor Kemeny, Morgenstern and Thompson ques-
tioned the appropriateness of “balanced” growth (all production activities growing
over time at the same rate) as even a remotely realistic description of economic
development. But Koopmans (1965) did (“arbitrary and contrary to all experience
about economic growth”). “Worse than that, it seems quixotic to ignore completely
the historically given capital stock at the beginning,. . . and to assume that out of
some fourth dimension one can pull forth a capital sock” that can use a von Neu-
mann process. Finally, “a more unusual defect is that consumption is not treated
as an end in itself”. Our variation - with an explicit treatment of consumption and
initial stock, is more in the tradition of McFadden’s study (1967) of optimal growth
in “reachable” economies. The von Neumann-Gale economies are members of this
class, but those facing constraints from exhaustible resources typically are not.

We now turn to the issue of sustainability that appeared in Solow (1974): Our
remarks are based on Mitra’s investigation inspired by Solow (see Mitra (1978)
and Cass and Mitra (1991)). We use the short summary of Majumdar and Bar
(2013) in reviewing Mitra’s result. Consider as above an input-output pair with one
producible good (n1 = 1) and one exhaustible resource (n2 = 1). Let (x̃, r) ∈ R2

+

be such that x denotes the quantity of the producible good that is used an input
(“capital”) and r is the quantity of an exhaustible resource. Let G : R2

+ → R+ be
the net output function for the input x̃. Let F (x̃, r) = G(x̃, r) + x̃ be the gross
output function when there is no depreciation. We can describe the technology as:

T = {
(
(x̃, s), (ỹ, s′)

)
∈ R2

+ × R2
+ : 0 ≤ ỹ ≤ F (x̃, r), for some 0 ≤ r ≤ s− s′}.

Given the initial stocks of the producible good X > 0 and of the resource S > 0.
A program is a sequence (x,y, c) = ((x̃t, st), (ỹt+1, s

′
t+1), c̃t+1) as defined in (3.3).

Assume the net input function G(x̃, r) satisfies the following assumptions:
G.1. G is continuous on R2

+; it is homogeneous of degree one, concave, twice
continuously differentiable for (x̃, r) > 0, Gx > 0, Gr > 0.

A program from (X,S) > 0 is said to sustain a positive consumption level
if inft≥1 ct > 0.

For any positive scalar d > 0, we define a set Q(d) that represents all the quanti-
ties of the input x̃ so that together with some quantity of the exhaustible resource
r, it is possible to produce output d from inputs x̃, r: Q(d) = {x̃ ≥ 0 : G(x̃, r) = d
for some r ≥ 0}. The isoquant function corresponding to the output level d is
id (x̃) : Q(d) → R+, i.e., for x̃ ∈ Q(d), G(x̃, id(x̃)) = d. Given the assumptions in
G.1., i′d < 0, i′′d < 0 hold. For any θ > 0 such that θ ∈ Q(d), the area under the

isoquant curve between θ and θ+L for some L ≥ 0,
∫ θ+L
θ id(x̃)dx̃ is non-decreasing

in L. Hence, as L → ∞,
∫ θ+L
θ id(x)dx either converges to some finite limit or

diverges to ∞. The integral
∫∞
θ id(x)dx is called θ-area under the d-isoquant.

Definition 4.1. The production function G(x̃, r) is said to be “regular” if, for every
d > 0 and every θ ∈ Q(d), the θ-area under the d-isoquant is finite.

One of the main results due to Mitra is that if G is “regular”, there is a program
from (X,S) > 0 that sustains a positive consumption level. Moreover, under
some additional conditions (satisfied, for example, when G has the Cobb-Douglas



SUSTAINABILITY 805

functional form), the converse is also true. That is, if G is not “regular”, there is
no program from (X,S) > 0 that sustains a positive consumption level.

Consider, for example, a Cobb-Douglas production function G(x̃, r) = x̃αrβ where
α, β > 0 and α+ β = 1. Then, for any d > 0, and θ ∈ Q(d) = (0,∞) the d-isoquant

is given by id(x̃) = (d1/β)/x̃
α
β . So, the θ-area under the d-isoquant is finite if and

only if α
β > 1. Thus, a positive consumption level is sustainable if and only if α > β.

This result was obtained by Solow (1974).

5. Bon voyage

In a long and outstanding career, Professor Ali Khan has displayed an intimidat-
ing range in research and an inspiring commitment to scholarship. He has followed
many routes: “standard” or “nonstandard”:

“For thousands of years I roamed the paths of earth,
From waters round Sri Lanka, in dead of night, to seas up the Malabar Coast.
Much have I wandered. I was there in the gray world of Ashoka,
And of Bimbisara, pressed on through the city of Vidarbha.
I am a weary heart surrounded by life’s frothy ocean.”
(Banalata Sen by Jibanananda Das, translated by Clinton Seeley).

However, unlike the traveler of the poet, Professor Khan is never weary: there is
always an alluring Cinnamon Island on the horizon for him to set sail.
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