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transfer rates, any coalition cannot achieve greater utilities of all members in the
coalition than the inner core payoff vector. The fictitious transfer rates can be
different among inner core payoff vectors.

The inner core is of significance in the relations to solutions of economic models
with richer structures than NTU games.1 An exchange economy or a production
economy naturally generates an NTU game. The inner core of the NTU game gen-
erated from an economy is relevant to Walrasian equilibria of the original economy
(see Billera [3], Qin [17], Inoue [11], and Brangewitz and Gamp [5]). Also, the inner
core is relevant to the strictly inhibitive set. When a payoff vector can be improved
upon by multiple coalitions, it is not clear which coalition actually improves upon
the payoff vector. Myerson [15, Section 9.8] considered the situation where an im-
proving coalition is chosen at random. The strictly inhibitive set is the set of payoff
vectors that cannot be improved upon by any randomized plan. Qin [16] proved
that the inner core coincides with the strictly inhibitive set in some classes of NTU
games.

We provide two coincidence theorems. Our first coincidence theorem (Theorem
3.1) is a synthesis of Brouwer’s fixed point theorem and Debreu and Schmeidler’s
separation theorem for convex sets. Our second coincidence theorem (Theorem 3.6)
is a modification of the first one. If two correspondences are defined properly from
a given NTU game so that those domains are the space of transfer rates of util-
ities, then payoff vectors in the intersection of the two correspondences are inner
core payoff vectors. Hence, our coincidence theorems are useful for proving the
nonemptiness of the inner core. Furthermore, our coincidence theorems are suitable
in the sense that one of the assumptions in our first coincidence theorem is equiv-
alent to the cardinal balancedness of the NTU game. The cardinal balancedness is
essential for the inner core to be nonempty and it is sufficient for the core to be
nonempty.

By applying our first coincidence theorem, we can prove Inoue’s [12] theorem.
Inoue [12] proved that, if an NTU game is cardinally balanced and if every normal
vector at every individually rational and efficient payoff vector is strictly positive,
then the inner core is nonempty. An NTU game generated by an exchange economy
where every consumer has a continuous, concave, and strongly monotone utility
function satisfies Inoue’s sufficient condition for the inner core to be nonempty. In
the first step of our proof of Inoue’s [12] theorem, as a direct consequence of our
first coincidence theorem, we can obtain a payoff vector and nonnegative fictitious
transfer rates of utilities such that the payoff vector is stable under the transfer
rates. Although transfer rates must be strictly positive at inner core payoff vectors,
the transfer rates obtained in the first step need not be strictly positive. In the
second step, by using the assumption of Inoue’s theorem on normal vectors, we can
prove that the transfer rates are actually strictly positive.2

1Regarding economic models generating NTU games, see Inoue [12] for more details on the
following literature.

2Inoue [12] proved the theorem by applying Qin’s [18] theorem. Inoue’s theorem can be proven
also by the method of Aubin [2] (see Inoue [13, Appendix]).
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In our second coincidence theorem, the domains of two correspondences are the
set of strictly positive transfer rates of utilities. Thus, our second coincidence theo-
rem guarantees the existence of a strictly positive vector of transfer rates where two
correspondences have a nonempty intersection. Qin’s [18] theorem on the nonempti-
ness of the inner core is a direct consequence of our second coincidence theorem.

The rest of the present paper is as follows. In Section 2, we give the precise
definitions of NTU games and the inner core, and we introduce two correspondences
whose intersection is a subset of the inner core. Then, we discuss the properties
of these correspondences. In Section 3, we prove two our coincidence theorems.
In Section 4, we first review a characterization of the efficient surface with only
strictly positive normal vectors. Then, we prove that Inoue’s [12] theorem follows
from our first coincidence theorem and Qin’s [18] theorem follows from our second
coincidence theorem.

2. NTU games and the inner core

We begin with some notation. Let N = {1, . . . , n} with n ≥ 2 be the set of n
players. Let RN be the n-dimensional Euclidean space of vectors x with coordinates
xi indexed by i ∈ N . For x, y ∈ RN , let x · y =

∑
i∈N xiyi. For x, y ∈ RN , we write

x ≥ y if xi ≥ yi for every i ∈ N ; x � y if xi > yi for every i ∈ N . The symbol 0
denotes the origin in RN as well as the real number zero. Let RN++ = {x ∈ RN |x�
0}. For a nonempty subset S of N , let RS = {x ∈ RN |xi = 0 for every i ∈ N \ S},
let RS+ = {x ∈ RS |xi ≥ 0 for every i ∈ S}, and let eS ∈ RN be the characteristic

vector of S, i.e., eSi = 1 if i ∈ S and 0 otherwise. For x ∈ RN , xS denotes the
projection of x to RS . Let ∆ = {p ∈ RN+ |

∑
i∈N pi = 1} and let ∆◦ = {p ∈ ∆ | p�

0}. For A ⊆ RN , cl(A) and co(A) denote the closure and the convex hull of set A,
respectively.

Let N be the set of all coalitions, i.e., N = {S ⊆ N |S 6= ∅}. A non-transferable
utility game (NTU game, for short) with n players is a correspondence V : N ↠ RN
such that, for every S ∈ N , V (S) is a nonempty subset of RS with V (S) − RS+ =
V (S). An NTU game is compactly generated if, for every S ∈ N , there exists a
nonempty compact subset CS of RS with V (S) = CS − RS+. In the present paper,
we consider only compactly generated NTU games V with V (N) convex.

The core is the set of payoff vectors which are feasible for the grand coalition
N and which cannot be improved upon by any coalition. By adopting a different
notion of improvement by a coalition, we can define the inner core.

Definition 2.1. (1) The core C(V ) of NTU game V is the set of payoff vectors
u ∈ RN such that u ∈ V (N) and there exists no S ∈ N and u′ ∈ V (S) with
u′i > ui for every i ∈ S.

(2) The inner core IC(V ) of NTU game V is the set of payoff vectors u ∈ RN
such that u ∈ V (N) and there exists λ ∈ RN++ such that, for every S ∈ N
and every u′ ∈ V (S), λS · u ≥ λS · u′ holds.

By definition, IC(V ) ⊆ C(V ) holds. The vector λ ∈ RN++ in the definition of the
inner core represents fictitious transfer rates of utilities among players. Note that
we can restrict the space of fictitious transfer rates to ∆◦.
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Let V : N ↠ RN be a compactly generated NTU game with V (N) convex. For
every S ∈ N , let CS be a compact subset of RS with V (S) = CS − RS+ and let CN
be also convex. For every λ ∈ ∆ and every S ∈ N , define

vλ(S) = max {λ · u |u ∈ V (S)} = max {λ · u |u ∈ CS} .
Note that, by Berge’s maximum theorem, ∆ 3 λ 7→ vλ(S) ∈ R is continuous. For
every i ∈ N , define

bi = max {ui ∈ R |u ∈ V ({i})} ,
the utility level that player i can achieve by himself.

Define correspondences F : ∆ ↠ RN and G : ∆ ↠ RN by

F (λ) =
{
x ∈ RN

∣∣x ≥ b and λS · x ≥ vλ(S) for every S ∈ N \ {N}
}

and
G(λ) = {y ∈ CN |λ · y = vλ(N)} .

Note that, for any λ ∈ ∆◦, condition “x ≥ b” in F (λ) is redundant and condition
“y ∈ CN” in G(λ) can be replaced by “y ∈ V (N).” These conditions are put for
correspondences F and G to be uniformly bounded from below and compact-valued,
respectively, on the whole domain ∆.

Note also that IC(V ) =
⋃
λ∈∆◦ (F (λ) ∩G(λ)). Then, for the nonemptiness of the

inner core, it suffices to show that two correspondences F and G have a nonempty
intersection at strictly positive vector λ. Hence, coincidence theorem is a key tool.

The following properties of correspondences F and G are straightforward.

Proposition 2.2. Let V : N ↠ RN be a compactly generated NTU game with
V (N) convex. Two correspondences F : ∆ ↠ RN and G : ∆ ↠ RN are defined as
above. Then,

(i) F is nonempty-, convex-, uniformly-bounded-from-below-valued, and has a
closed graph. Furthermore, for every λ ∈ ∆, F (λ) + RN+ = F (λ).

(ii) G is nonempty-, compact-, convex-valued and upper hemi-continuous.

Since F (λ) is unbounded for every λ ∈ ∆, the closed graph property of F does
not imply the upper hemi-continuity. Actually, F does not satisfy even the upper
demi-continuity. A correspondence φ : ∆ ↠ RN is upper demi-continuous if for
every λ0 ∈ ∆ and every open half-space H = {x ∈ RN | q · x > c} containing φ(λ0),
there exists U ⊆ ∆ such that U is open in ∆, λ0 ∈ U , and φ(λ) ⊆ H for every
λ ∈ U (see Fan [9, p.106]). Thus, φ : ∆ ↠ RN is upper demi-continuous if and only
if, for every q ∈ RN \ {0} and every c ∈ R, the set{

λ ∈ ∆
∣∣φ(λ) ⊆ {x ∈ RN | q · x > c}

}
is open in ∆. Clearly, the upper hemi-continuity implies the upper demi-continuity.
In addition, if φ : ∆ ↠ RN is of the form φ(λ) = φ1(λ) + RN+ for an upper demi-
continuous correspondence φ1, then φ also is upper demi-continuous.

The example below illustrates that F need not be upper demi-continuous.

Example 2.3. Let N = {1, 2, 3}. Let C{i} = {(0, 0, 0)} for every i ∈ N , C{1,2} =
{(1, 0, 0)}, and C{1,3} = C{2,3} = {(0, 0, 0)}. Since correspondence F is independent
of CN , we do not specify CN . Then, we have

F (λ) =
{
x ∈ RN |x ≥ 0, λ1x1 + λ2x2 ≥ λ1}
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Figure 1. F is not upper demi-continuous

Let λ0 = (1, 0, 0) and λr = (1 − 1/r, 1/r, 0) for every r ∈ N. Let H = {x ∈
RN |λ0 · x > c} = {x ∈ RN |x1 > c} with 0 < c < 1. Then, F (λ0) = {x ∈ RN |x ≥
0, x1 ≥ 1} ⊆ H. Since F (λr) 6⊆ H for every r ∈ N and λr → λ0, F is not upper
demi-continuous (see Figure 1).

In Example 2.3, the vector λ0 = (1, 0, 0) normal to the hyperplane of the open
half-spaceH is not strictly positive. Note that, when we fix the inequality sign in the
half-space {x ∈ RN | q·x > c}, from the property that F (λ)+RN+ = F (λ), the normal

vector q must be nonnegative for the set {λ ∈ ∆ |F (λ) ⊆ {x ∈ RN | q · x > c}} to
be nonempty. The following proposition states that F has the same property as the
upper demi-continuity if we restrict open half-spaces to those generated by strictly
positive normal vectors.

Proposition 2.4. Let V : N ↠ RN be a compactly generated NTU game. Corre-
spondence F : ∆ ↠ RN is defined as above. Then, for every q ∈ RN++ and every
c ∈ R, the set {

λ ∈ ∆
∣∣F (λ) ⊆ {

x ∈ RN | q · x > c}
}

is open in ∆.

Proof. Suppose, to the contrary, that there exist q ∈ RN++ and c ∈ R such that the

above set is not open in ∆. Then, there exist λ0 ∈ ∆ with F (λ0) ⊆ {x ∈ RN | q ·x >
c} and a sequence (λr)r in ∆ such that λr → λ0 and F (λr) 6⊆ {x ∈ RN | q ·x > c} for
every r ∈ N. Therefore, for every r ∈ N, there exists xr ∈ F (λr) with q·xr ≤ c. Since
q ∈ RN++ and xr ≥ b for every r ∈ N, the sequence (xr)r is bounded. By passing to
a subsequence if necessary, we may assume that xr → x0. Then, q ·x0 ≤ c. Since F
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has a closed graph by Proposition 2.2, we have

x0 ∈ F (λ0) ⊆
{
x ∈ RN | q · x > c} ,

a contradiction. This completes the proof. □

One of the key assumptions of the theorems on the nonemptiness of the inner
core is the cardinal balancedness. Let Γ be the set of balancing vectors of weights,
i.e.,

Γ =

{
γ = (γS)S∈N

∣∣∣∣∣ γS ≥ 0 for every S ∈ N and
∑
S∈N

γS e
S = eN

}
.

An NTU game V is cardinally balanced if, for every γ ∈ Γ,∑
S∈N

γS V (S) ⊆ V (N).

This notion of balancedness is stronger than the balancedness due to Scarf [19].
Scarf’s ordinal balancedness is sufficient for the nonemptiness of the core. When an
NTU game is generated by an exchange economy, Scarf’s ordinal balancedness holds
if consumers have quasi-concave utility functions, whereas the cardinal balancedness
holds if consumers have concave utility functions.

The following proposition gives conditions equivalent to the cardinal balanced-
ness.

Proposition 2.5. Let V : N ↠ RN be a compactly generated NTU game with
V (N) convex. Then, the following conditions are equivalent:

(i) V is cardinally balanced.
(ii) For every γ ∈ Γ with γN = 0,

∑
S∈N γS V (S) ⊆ V (N).

(iii) For every λ ∈ ∆◦ and every γ ∈ Γ with γN = 0,
∑

S∈N γS vλ(S) ≤ vλ(N).
(iv) For every λ ∈ ∆◦,

min
{
λ · x

∣∣λS · x ≥ vλ(S) for every S ∈ N \ {N}
}
≤ vλ(N).

(v) For every λ ∈ ∆◦, there exist x ∈ F (λ) and y ∈ G(λ) such that λ · x ≤ λ · y.

The equivalence (i) ⇔ (ii) can be easily shown. The equivalence (ii) ⇔ (iii) is due
to Shapley (see Qin [18, Proposition 1]). The equivalence (iii) ⇔ (iv) is essentially
the same as Bondareva-Shapley theorem (Bondareva [4], Shapley [20]) and, there-
fore, it follows from the duality theorem of linear programming (see Qin [18, p.437]).
The equivalence (iv) ⇔ (v) follows from the definition of correspondences F and G.

3. Coincidence theorems

We give two coincidence theorems that are variants of Fan’s coincidence the-
orem [9, Theorem 5]. Fan’s coincidence theorem can be regarded as a synthesis
of Kakutani’s fixed point theorem [14] and the standard separation theorem for
convex sets. Our first coincidence theorem is a synthesis of Brouwer’s fixed point
theorem [6] and a stronger separation theorem due to Debreu and Schmeidler [8].
Our second coincidence theorem is a mathematical theorem behind Qin’s [18] proof



COINCIDENCE THEOREM AND THE INNER CORE 767

of the nonemptiness of the inner core. Since coincidence theorems per se are of in-
terest, we give more general forms than those needed for proving the nonemptiness
of the inner core.

3.1. Coincidence theorem I.

Theorem 3.1. Let ∆ = {p ∈ RN+ |
∑

i∈N pi = 1}. Let φ : ∆ ↠ RN and ψ : ∆ ↠
RN be correspondences satisfying the following conditions.

(i) φ is nonempty-, closed-, convex-valued, and, for every p ∈ ∆, φ(p) +RN+ =

φ(p) and φ(p) contains no straight line;3

(ii) ψ is nonempty-, compact-, and convex-valued;
(iii) for every q ∈ RN++ and every c ∈ R, the sets{

p ∈ ∆
∣∣φ(p) ⊆ {

x ∈ RN | q · x > c}
}

and {
p ∈ ∆

∣∣ψ(p) ⊆ {
y ∈ RN | q · y < c}

}
are both open in ∆; and

(iv) for every p ∈ ∆◦, there exist x ∈ φ(p) and y ∈ ψ(p) such that p · x ≤ p · y.
Then, there exists p∗ ∈ ∆ with φ(p∗) ∩ ψ(p∗) 6= ∅.

It is worth emphasizing that, by Proposition 2.5, condition (iv) is equivalent to
the cardinal balancedness when two correspondences are F and G defined in Section
2. The proof of Theorem 3.1 will be given in the next subsection. For the purposes
of comparison, we give Fan’s coincidence theorem [9, Theorem 5] in the context of
a Euclidean space.
Fan’s coincidence theorem. Let K be a nonempty, compact, convex subset of
RN . Let φ : K ↠ RN and ψ : K ↠ RN be correspondences satisfying the following
conditions.

(a) φ and ψ are nonempty-, closed-, convex-valued, and, for every p ∈ K, φ(p)
or ψ(p) is compact;

(b) φ and ψ are upper demi-continuous; and
(c) for every q ∈ RN and every p ∈ K with q · p = maxp′∈K q · p′, there exist

x ∈ φ(p) and y ∈ ψ(p) such that q · x ≤ q · y.
Then, there exists p∗ ∈ K with φ(p∗) ∩ ψ(p∗) 6= ∅.

The domain of correspondences in our coincidence theorem is more specific than
that of Fan’s. In addition, we require that one correspondence ψ be compact-valued
and the other correspondence be of the form φ(p) + RN+ = φ(p). Our continuity
condition (iii) is weaker than Fan’s continuity condition (b). Our condition (iv) is
related to Fan’s condition (c), because for every p ∈ ∆ and every p′ ∈ ∆, p·(p/‖p‖) ≥
p · (p′/‖p′‖), where ‖ · ‖ is the Euclidean norm. Namely, every p ∈ ∆ is normal to
{p′/‖p′‖ | p′ ∈ ∆}, which is homeomorphic to ∆, at p/‖p‖.4

It is known that Kakutani’s fixed point theorem [14] can be proven by a simple
application of Fan’s coincidence theorem (see, e.g., Ichiishi [10, p.52]). By a simple

3A set A ⊆ RN contains no straight line if, for every z ∈ RN \ {0} and every y ∈ RN , there
exists α ∈ R with y + αz ̸∈ A.

4For a nonempty subset A of RN and x ∈ A, p ∈ RN is normal to A at x if p ·x ≥ p · y for every
y ∈ A.
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application of our coincidence theorem, Brouwer’s fixed point theorem [6] can be
proven.

Proposition 3.2. Theorem 3.1 implies Brouwer’s fixed point theorem: every con-
tinuous function on ∆ has a fixed point.

Proof. Let f : ∆ → ∆ be a continuous function. Define φ : ∆ ↠ RN and ψ : ∆ ↠
RN by

φ(p) =

{
f(p)

‖f(p)‖

}
+ RN+ and ψ(p) =

{
p

‖p‖

}
.

It is clear that φ and ψ satisfy conditions (i)-(iii) of Theorem 3.1. Since, for every
p ∈ ∆◦ and every x ∈ RN \ {0}, p · (x/‖x‖) ≤ p · (p/‖p‖) holds, condition (iv) is
satisfied. Then, by Theorem 3.1, there exists p∗ ∈ ∆ such that φ(p∗) ∩ ψ(p∗) 6= ∅
and, therefore,

p∗

‖p∗‖
∈
{

f(p∗)

‖f(p∗)‖

}
+ RN+ .

Since f(p∗)/‖f(p∗)‖ is a unique point in φ(p∗) with Euclidean norm one, we have
p∗/‖p∗‖ = f(p∗)/‖f(p∗)‖. Since p∗, f(p∗) ∈ ∆, we have

1

‖p∗‖
=

∑
i∈N

p∗i
‖p∗‖

=
∑
i∈N

fi(p
∗)

‖f(p∗)‖
=

1

‖f(p∗)‖
.

Thus, we have p∗ = f(p∗). □

3.2. Proof of Theorem 3.1. The basic idea of the proof is the same as Fan’s [9,
Theorems 3 and 5]. A difference is that we rely on a stronger separation theorem
for convex sets. We start with some lemmas. The first lemma is due to Debreu and
Schmeidler [8, Corollary 2]. A straight line in RN is a set of the form {y+αz |α ∈ R}
for some y ∈ RN and z ∈ RN \ {0}.

Lemma 3.3 (Debreu and Schmeidler). Let X be a nonempty, closed, convex subset
of RN containing no straight line. Let z ∈ RN \X. Then, there exists a nonempty
open set of normal vectors strictly separating z and X, i.e., there exists a nonempty
open subset U of RN such that, for every p ∈ U ,

p · z < inf
x∈X

p · x.

Lemma 3.4. Let X be a nonempty, closed, convex subset of RN containing no
straight line. Let Y be a nonempty, bounded subset of RN . Then, X − Y = {x −
y |x ∈ X, y ∈ Y } contains no straight line.

Proof. By translating X if necessary, we may assume that 0 ∈ X. Since X is convex
and contains no straight line, for every z ∈ RN \ {0}, there exists α0 ∈ R such that
either [α ≥ α0 implies αz 6∈ X] or [α ≤ α0 implies αz 6∈ X] holds.

Claim 1. Let z ∈ RN \ {0}. Suppose that α ≥ α0 implies αz 6∈ X. Then,

dist(αz,X) = inf {‖αz − x‖ |x ∈ X} → ∞ as α→ ∞.
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Proof. Let α ≥ α0. Since αz 6∈ X and X is closed convex, by the separation
theorem, there exists p ∈ RN \ {0} such that

p · (αz) < inf
x∈X

p · x ≤ 0.

The last inequality follows from 0 ∈ X. Thus, p · (αz) → −∞ as α → ∞. Let
A = {w ∈ RN | p · w = infx∈X p · x}. Then,

dist(αz,X) ≥ dist(αz,A) =
| infx∈X p · x− p · (αz)|

‖p‖
→ ∞ as α→ ∞.

□
Suppose now that X−Y contains a straight line. Then, there exist z0 ∈ RN \{0}

and z1 ∈ RN such that

{z1}+ {αz0 |α ∈ R} ⊆ X − Y.

Then, {αz0 |α ∈ R} ⊆ X − Y − {z1}. Since X contains no straight line, we may
assume that there exists α0 > 0 such that for every α ≥ α0, αz

0 6∈ X holds. (In
the case where for some ᾱ ∈ R, α ≤ ᾱ implies αz0 6∈ X, by replacing z0 by −z0, we
have the above property.)

Let (αk)k be a sequence in R with αk → ∞ as k → ∞. Then, for every k ∈ N,
there exist xk ∈ X and yk ∈ Y such that

αkz
0 = xk − yk − z1.

Thus,
dist(αkz

0, X) ≤ ‖αkz0 − xk‖ = ‖yk + z1‖ ≤ ‖yk‖+ ‖z1‖.
Since dist(αkz

0, X) → ∞ as k → ∞ by Claim 1, we have ‖yk‖ → ∞ as k → ∞.
This contradicts that Y is bounded. Hence, X − Y contains no straight line. □
Lemma 3.5. Let X be a nonempty, closed, convex subset of RN containing no
straight line with the property X+RN+ = X. Let Y be a nonempty, compact, convex

subset of RN . If X ∩ Y = ∅, then there exists a nonempty, open subset U of RN++

such that, for every p ∈ U ,

inf
x∈X

p · x > sup
y∈Y

p · y.

Proof. Note that X − Y is nonempty, closed, and convex. In addition, by Lemma
3.4, X − Y contains no straight line. Since X ∩ Y = ∅, we have 0 6∈ X − Y . By
Lemma 3.3, there exists a nonempty, open subset U of RN such that, for every
p ∈ U ,

0 < inf
z∈X−Y

p · z.

Since X + RN+ = X, we have U ⊆ RN+ . Since U is open, we have U ⊆ RN++.
Let p ∈ U and c = infz∈X−Y p · z > 0. Since, for every x ∈ X and every y ∈ Y ,

p · (x− y) ≥ c > 0 holds, we have, for every y ∈ Y ,

inf
x∈X

p · x ≥ c+ p · y.

Thus,
inf
x∈X

p · x ≥ c+ sup
y∈Y

p · y > sup
y∈Y

p · y.
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This completes the proof of Lemma 3.5. □
We are now ready to prove Theorem 3.1. Suppose, to the contrary, that φ(p) ∩

ψ(p) = ∅ for every p ∈ ∆. Define a correspondence η : ∆ ↠ ∆◦ by

η(p) =

{
q ∈ ∆◦

∣∣∣∣∣ inf
x∈φ(p)

q · x > sup
y∈ψ(p)

q · y

}
.

By Lemma 3.5, η is nonempty-valued. It is clear that η is convex-valued.

Claim 2. For every q ∈ ∆◦, the set {p ∈ ∆ | q ∈ η(p)} is open in ∆.

Proof. Let q ∈ ∆◦ and p0 ∈ ∆ with q ∈ η(p0). Then, there exists c ∈ R such that

inf
x∈φ(p0)

q · x > c > sup
y∈ψ(p0)

q · y.

Thus,

φ(p0) ⊆ {x ∈ RN | q · x > c} and ψ(p0) ⊆ {y ∈ RN | q · y < c}.
By condition (iii) of Theorem 3.1, there exists U ⊆ ∆ such that U is open in ∆,
p0 ∈ U , and, for every p ∈ U ,

φ(p) ⊆ {x ∈ RN | q · x > c} and ψ(p) ⊆ {y ∈ RN | q · y < c}.
Thus, for every p ∈ U ,

inf
x∈φ(p)

q · x ≥ c > max
y∈ψ(p)

q · y.

Therefore, p0 ∈ U ⊆ {p ∈ ∆ | q ∈ η(p)}. Hence, the set {p ∈ ∆ | q ∈ η(p)} is open in
∆. □

By Browder’s theorem [7, Theorem 1],5 correspondence η has a continuous selec-
tion, i.e., there exists a continuous function h : ∆ → ∆◦ such that h(p) ∈ η(p) for
every p ∈ ∆. By Brouwer’s fixed point theorem [6], there exists p̂ ∈ ∆ such that

p̂ = h(p̂) ∈ ∆◦.

Since p̂ = h(p̂) ∈ η(p̂), we have

inf
x∈φ(p̂)

p̂ · x > sup
y∈ψ(p̂)

p̂ · y.

This contradicts condition (iv) of Theorem 3.1. Therefore, there exists p∗ ∈ ∆ with
φ(p∗) ∩ ψ(p∗) 6= ∅. This completes the proof of Theorem 3.1.

3.3. Coincidence theorem II. We give another coincidence theorem behind Qin’s
[18, Theorem 1] proof of the nonemptiness of the inner core. In contrast to Theorem
3.1, the following theorem guarantees that two correspondences have a nonempty
intersection at a strictly positive vector.

Theorem 3.6. Let φ : ∆◦ ↠ RN and ψ : ∆◦ ↠ RN be correspondences satisfying
conditions (i)-(iii) of Theorem 3.1 on ∆◦. Let σ : ∆◦ → ∆◦ be a continuous function
such that

(s-1) cl (σ (∆◦)) ⊆ ∆◦ and

5From the proof of Theorem 1 of Browder, it follows that there exists a continuous selection.
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(s-2) for every p ∈ ∆◦, there exist x ∈ φ(σ(p)) and y ∈ ψ(σ(p)) such that p · x ≤
p · y.

Then, there exists p∗ ∈ ∆◦ with φ(p∗) ∩ ψ(p∗) 6= ∅.

Proof. Suppose, to the contrary, that φ(p) ∩ ψ(p) = ∅ for every p ∈ ∆◦. Define a
correspondence η : ∆◦ ↠ ∆◦ by

η(p) =

{
q ∈ ∆◦

∣∣∣∣∣ inf
x∈φ(p)

q · x > sup
y∈ψ(p)

q · y

}
.

Then, by the same argument as the proof of Theorem 3.1, we can show that η
satisfies all the requirements for Browder’s theorem [7, Theorem 1].6 Then, there
exists a continuous function h : ∆◦ → ∆◦ such that h(p) ∈ η(p) for every p ∈ ∆◦.

Let K be the closed convex hull of σ (∆◦). Then, by condition (s-1), we have
K ⊆ ∆◦. Since the composite function σ ◦ h : K → K is continuous, by Brouwer’s
fixed point theorem, there exists p̂ ∈ K with p̂ = σ ◦ h(p̂). Since h(p̂) ∈ η(p̂), we
have

inf
x∈φ(p̂)

h(p̂) · x > sup
y∈ψ(p̂)

h(p̂) · y.

Since p̂ = σ ◦ h(p̂), by condition (s-2), there exist x ∈ φ(p̂) and y ∈ ψ(p̂) such that
h(p̂) · x ≤ h(p̂) · y. This is a contradiction. Therefore, there exists p∗ ∈ ∆◦ with
φ(p∗) ∩ ψ(p∗) 6= ∅. □

4. Nonemptiness of the inner core

The cardinal balancedness is not sufficient for the nonemptiness of the inner core.
To guarantee the nonemptiness of the inner core, we assume that every normal
vector to V (N) at every individually rational and efficient payoff vector is strictly
positive. In Section 4.1, we give a characterization of the efficient surface of V (N)
with only strictly positive normal vectors analyzed by Inoue [12]. In Section 4.2, we
prove that Inoue’s [12] and Qin’s [18] theorems on the nonemptiness of the inner
core follow from our coincidence theorems.

4.1. Characterization of efficient surface with strictly positive normal vec-
tors. Let V : N ↠ RN be a compactly generated NTU game such that V (N) is
convex and the set {x ∈ V (N) |x ≥ b} is nonempty. Define

Eff(V (N), b) ={
x ∈ V (N)

∣∣x ≥ b, there exists no x′ ∈ V (N) with x′ ≥ x and x′ 6= x
}

and

Effw(V (N), b) =
{
x ∈ V (N)

∣∣x ≥ b, there exists no x′ ∈ V (N) with x′ � x
}
.

Thus, Eff(V (N), b) (resp. Effw(V (N), b)) is the set of individually rational efficient
payoff vectors (resp. individually rational and weakly efficient payoff vectors). The
set Effw(V (N), b) can be characterized by vectors normal to V (N).

6Note that the compactness of the domain of a correspondence in Browder’s theorem is dispens-
able, because any subset of a Euclidean space is paracompact.
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Lemma 4.1.

Effw(V (N), b) = {x ∈ V (N) |x ≥ b, there exists λ ∈ ∆ with λ · x = vλ(N)}.

For the proof of this lemma, see Inoue [12, Lemma 1].
One of the following conditions of Proposition 4.2 is assumed in Inoue’s [12]

theorem on the nonemptiness of the inner core.

Proposition 4.2. The following two conditions are equivalent.

(1) There exists a nonempty, closed, convex subset V ′(N) of RN such that
V (N) ⊆ V ′(N), V ′(N) is generated by a compact set C ′

N , {x ∈ V (N) |x ≥
b} = {x ∈ V ′(N) |x ≥ b}, and[

x ∈ Eff(V ′(N), b), λ ∈ RN \ {0}, and λ · x = max
y∈V ′(N)

λ · y
]

implies λ� 0.

(2) There exists a compact subset K of ∆◦ such that, for every x ∈ Effw(V (N), b),
there exists λ ∈ K with λ · x = maxy∈V (N) λ · y.

For the proof of this proposition, see Inoue [12, Proposition 3]. Clearly, condition
(1) is weaker than the following condition (3).

(3) Let x ∈ Eff(V (N), b) and λ ∈ RN \ {0} be such that λ ·x = maxy∈V (N) λ · y.
Then, λ� 0. Namely, for every x ∈ Eff(V (N), b), the normal cone to V (N)
at x is a subset of RN++ ∪ {0}.7

Condition (1) means that condition (3) is met for an extension V ′(N) of V (N).
Since the extension V ′(N) has the same set of individually rational payoff vectors
as before, this extension does not make the inner core larger.

The following lemma implies that, in conditions (1) and (3), Eff(V ′(N), b) and
Eff(V (N), b) can be replaced by Effw(V

′(N), b) and Effw(V (N), b), respectively.

Lemma 4.3. Under condition (3), Eff(V (N), b) = Effw(V (N), b) holds.

For the proof of this lemma, see Inoue [12, Lemma 2]. Since the set Effw(V (N), b)
is always closed, condition (3) implies that the set Eff(V (N), b) also is closed.8

4.2. Nonemptiness of the inner core. By applying our first coincidence theo-
rem, we provide another proof to the following theorem due to Inoue [12, Theorem
2]. Inoue [12] proved the theorem by using Qin’s [18] theorem (Theorem 4.5 in the
present paper).9

Theorem 4.4. Let V : N ↠ RN be a compactly generated NTU game with V (N)
convex. If V is cardinally balanced and if V satisfies condition (1) or (2) of Propo-
sition 4.2, then the inner core IC(V ) of V is nonempty.

7For a nonempty subset A of RN and x ∈ A, the normal cone to A at x is the set of all vectors
normal to A at x.

8In general, the set of efficient payoff vectors need not be closed. For such an example, see
Arrow et al. [1].

9Also, Aubin [2] proved Theorem 4.4 under a slightly stronger assumption. For the proof of
Aubin, see Inoue [13, Appendix].
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Proof. Since conditions (1) and (2) of Proposition 4.2 are equivalent, we may assume
that condition (1) holds. Let V ′ be an NTU game such that V ′(N) is the one in
condition (1) and V ′(S) = V (S) for every S ⊊ N . Then, V ′ is compactly generated
and V ′(N) is convex. Since V is cardinally balanced and V (N) ⊆ V ′(N), V ′ is
cardinally balanced. Thus, the new NTU game V ′ satisfies the same conditions
as the original NTU game V . In addition, V ′ satisfies condition (3), a stronger
condition than condition (1). Since IC(V ′) ⊆ IC(V ) holds, it suffices to prove that
IC(V ′) 6= ∅. Therefore, we may assume that V satisfies condition (3) from the
outset and it suffices to prove that IC(V ) 6= ∅.

Define correspondences F : ∆ ↠ RN and G : ∆ ↠ RN as in Section 2, i.e.,

F (λ) =
{
x ∈ RN

∣∣x ≥ b and λS · x ≥ vλ(S) for every S ∈ N \ {N}
}

and

G(λ) =

{
y ∈ CN

∣∣∣∣λ · y = max
z∈V (N)

λ · z
}
.

Then, by Propositions 2.2, 2.4, and 2.5, F and G satisfy all the conditions of
Theorem 3.1. Thus, there exists λ∗ ∈ ∆ with F (λ∗) ∩G(λ∗) 6= ∅.

Let x∗ ∈ F (λ∗) ∩G(λ∗). Since λ∗ ∈ ∆, x∗ ≥ b, x∗ ∈ CN ⊆ V (N), and λ∗ · x∗ =
maxz∈V (N) λ

∗ · z, by Lemma 4.1, we have x∗ ∈ Effw(V (N), b). By Lemma 4.3,
condition (3) implies that

Effw(V (N), b) = Eff(V (N), b).

Therefore, x∗ ∈ Eff(V (N), b). Again, by condition (3), we have λ∗ � 0. Therefore,
x∗ ∈ IC(V ). □

The next theorem is due to Qin [18, Theorem 1].

Theorem 4.5 (Qin). Let V : N ↠ RN be a compactly generated NTU game with
V (N) convex. Correspondences F and G are defined as in Section 2. If there exists
a continuous function σ : ∆◦ → ∆◦ such that

(s-1) cl(σ(∆◦)) ⊆ ∆◦ and
(s-2) for every λ ∈ ∆◦, there exist x ∈ F (σ(λ)) and y ∈ G(σ(λ)) such that

λ · x ≤ λ · y,
then the inner core IC(V ) of V is nonempty.

This can be shown by a simple application of Theorem 3.6. In the original
theorem by Qin [18, Theorem 1], σ is specified as follows. For m ∈ N with m ≥ n,
let ∆1/m = {λ ∈ ∆ |λi ≥ 1/m for every i ∈ N}, and define continuous functions

pm : ∆◦ → [1/m, 1]N and σm : ∆◦ → ∆1/(m+n−1) by, for every j ∈ N ,

pmj (λ) =

{
λj if λj ≥ 1/m,
1/m if λj < 1/m,

and

σmj (λ) =
pmj (λ)

pm(λ) · eN
.

Then, for every m ≥ n, function σm satisfies condition (s-1). Since σm(λ) = λ on
∆1/m, condition (s-2) can be decomposed into the following (s-2.i) and (s-2.ii).

(s-2.i) for every λ ∈ ∆1/m, there exist x ∈ F (λ) and y ∈ G(λ) such that λ ·x ≤ λ ·y.
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(s-2.ii) for every λ ∈ ∆◦ \∆1/m, there exist x ∈ F (σm(λ)) and y ∈ G(σm(λ)) such
that λ · x ≤ λ · y.

By the duality theorem of linear programming, conditions (s-2.i) and (s-2.ii) are
equivalent to conditions (i) and (ii) of Qin [18, Theorem 1], respectively.

Qin [18, Corollary 1] proved that if a compactly generated NTU game V with
V (N) convex is cardinally balanced with slack, i.e., for every γ ∈ Γ with γN = 0, the
set

∑
S∈N γS V (S) is in the interior of V (N), then there exists m ≥ n such that the

function σm above satisfies conditions (s-2.i) and (s-2.ii) and, therefore, its inner
core is nonempty.
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