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function whose inputs are different capital vintages and study properties of a bal-
anced growth in their model. They obtain various investment age-profiles along
balanced growth for different levels of vintages substitutability in the case of linear
utility. Hritonenko, Yatsenko, and Boranbayev [14] formally prove that, when the
elasticity of substitution among vintages increases indefinitely, bell-shaped invest-
ment profiles in the model of [16] converge to a Dirac-type spiked investment into
one vintage with the largest productivity. Both papers [14] and [16] are restricted
to the analysis of balanced growth dynamics. The transition dynamics in such a
class of models is notoriously challenging to analyze. The only paper related to
the transition dynamics in our model is the paper of Hritonenko, Kato, and Yat-
senko [11], that studies the structure of solutions in the optimization problem with
a linear utility and shows that initially bang-bang optimal investment eventually
converges to a steady-state trajectory that represents a balanced economic growth.
The present paper is the first which treats at the same time: (i) nonlinear prefer-
ences; (ii) nonlinear production function; (iii) investment in old vintages, and (iv)
characterization of stationary solutions (balanced growth paths) and transitional
dynamics.

The optimal trajectory in most vintage capital models consists of two parts: bal-
anced growth path and transition dynamics [5, 6, 9–13]. The related mathematical
analysis includes finding a solution to the corresponding optimal control problem
without its initial conditions (a balanced growth path), and the most efficient way
to get to the balanced growth path from the given initial conditions (a transition
dynamics). Both balanced and transition dynamics are analyzed in this paper.
Economic interpretation of all theoretical outcomes is provided, and practical rec-
ommendations are outlined. They lead to better understanding of the investment
pattern into old and new vintages of capital.

The rest of the paper is as follows. In Section 2, the optimal control problem,
its applied relevance to economics and place in the related research are presented.
Necessary optimal conditions in form of maximum principle are proven in Section 3.
Section 4 describes a unique balanced growth path at concave utility and compares
the results with a linear utility case. Section 5 addresses the transition dynamics
in the nonlinear utility model, which appear to be different from the previously
obtained results for the model with linear utility. Section 6 concludes and discusses
the obtained outcomes.

2. Optimal control problem and its applied relevance

Let us consider the following optimal control problem (OCP):

(2.1) max
u,x

I = max

∫ ∞

0
e−rt c

1−η(t)

1− η
dt, x ≥ 0, u ≥ 0,

subject to

(2.2) y(t) =

(∫ t

−∞
A(t− v)

(
z(v)kβ(v, t)

)
dv

)α/β

,
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(2.3) k(v, t) = e−δ(t−v)x(v) +

∫ t

v
e−δ(t−s)u(v, s)ds for 0 < v < t,

(2.4) k(v, t) = e−δ(t−v)k0(v) +

∫ t

0
e−δ(t−s)u(v, s)ds for −∞ < v ≤ 0,

(2.5) y(t) = c(t) + x(t) +

∫ t

−∞
u(v, t)dv.

with respect to the unknown functions u(v, t) ∈ L∞(−∞,∞] × [0,∞), x(t) ∈
L∞[0,∞), y(t) ∈ L∞[0,∞), c(t) ∈ L∞[0,∞), and k(v, t) ∈ L∞(−∞,∞) × [0,∞)
The constants r, α, β, δ, η and functions A(t − v) and z(t) ∈ L∞[0,∞), ko(v), v ∈
(−∞, 0], are given. The initial condition k(v, 0) = ko(v), v ∈ (−∞, t], for capital is
incorporated in (2.4).

In economic growth theory, the OCP (2.1)-(2.5) is known as a vintage capital
model (VCM) with distributed investments into new and old capital and limited
substitutability among vintages of different ages. A production output is described
by the CES production function with continuum of capital vintage inputs and con-
cave utility [16], and the model functions and parameters are interpreted as follows:

c(t) is a consumption,
x(t) is the investment in new capital,
u(v,t) is the investment in the various vintages of old capital,
y(t) is a product output,
z(v) is a unit efficiency of the capital of vintage v,
k(v,t) is the amount of capital at date t embodying technology of vintage v,
A(t-v) is the age-dependent “learning curve” for the capital of vintage v,v∈
(-∞,t], t∈ [0,∞),
ko(v), v∈ (-∞,0], is a distribution of capital over past vintages v<0 at date
zero,
r is the discount rate,
η is a parameter of the isoelastic utility function, η > 0,
δ is a deterioration rate,
α, 0 < α < 1, describes diminishing returns to scale,
β, 0 < β < 1, reflects substitutability of vintages, which are perfectly sub-
stitutable at β = 1. The elasticity of substitution σ =1/(1-β) is a common
economic measure of how easy it is to switch between production inputs.

The decision variables in (2.1)-(2.5) are the investment x(t) in new capital and
the investment u(v,t), in vintages of old capital, v∈ (-∞,t], t∈ [0,∞). The unknown
capital amount k(v,t), product output y(t), and consumption c(t) are determined
from (2.3)-(2.4) and (2.2) respectively.

The linear version of the OCP (2.1)-(2.5) with η = 0 was first suggested and
studied in [16]. In this paper we consider both balanced and transition dynamics at
nonlinear utility, 0 < η < 1. Our goal is to better understand investment patterns
into capital vintages in the modern technologically advanced world.
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3. Optimality conditions

Following standard optimization techniques, let us derive the first-order extremum
condition for any (including corner) solution u(v,t):

Lemma 3.1 (necessary conditions for an extremum). If (x(t), u(v,t)), 0≤ t<∞,
-∞<v≤ t, is a solution of the problem (2.1)-(2.5), then

I ′(t, t) ≤ 0 at x(t) = 0, I ′(t, t) = 0 at x(t) > 0, 0 ≤ t < ∞,

I ′(v, t) ≤ 0 at u(v, t) = 0, I ′(v, t) = 0 at u(v, t) > 0, 0 ≤ t < ∞−∞ < v < t,

where

(3.1) I ′(v, t)

= αzβ(v)

∫ ∞

t
e−(r+δ)s+δty(α−β)/α(s)A(s− v)kβ−1(v, s)c−η(s)ds− e−rtc−η(t),

0 < v < t, 0 < t < ∞.

Proof. The increment of the Lagrangean of the OCP(2.1)-(2.5) is

δL =

∞∫
0

e−rt (c(t) + δc(t))1−η

1− η
dt

+

∞∫
0

e−rtλ(t)[(x(t) + δx(t)) + (c(t) + δc(t))

+

t∫
−∞

(u(t, v) + δu(t, v))dv

− (

t∫
−∞

A(t− v)((z(v)(k(v, t) + δk(v, t)))βdv)
α/β

]dt

−
∞∫
0

e−rt c
1−η(t)

1− η
dt−

∞∫
0

e−rtλ(t)[x(t) + c(t)

+

t∫
∞

u(t, v)dv − (

A∫
−∞

A(t− v)(z(v)k(v, t))βdv)α/β ]dt.

Applying Taylor series expansion and using (2.3) as

δk(v, t) = e−δ(t−v)δx(v) +

t∫
v

e−δ(t−s)δu(v, s)ds,
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we get

δL =

∞∫
0

[e−rtc−η(t) + e−rtλ(t)]δc(t)dt

+

∞∫
0

[e−rtλ(t)δx(t)− e−rtλ(t)αy
α−β
α (t)

t∫
−∞

(A(t− v)zβ(v)kβ−1(v, t)e−δ(t−v)δx(v))dv]dt

+

∞∫
0

[e−rtλ(t)

t∫
−∞

δu(v, t)dv − e−rtλ(t)αy
α−β
α (t)

t∫
−∞

(A(t− v)zβ(v)kβ−1(v, t)

t∫
v

e−δ(t−s)δu(v, s)ds)dv]dt,

that after interchanging limits of integration, collecting coefficients of δx(t), δu(v, t),
δc(t), and setting the coefficient of δc(t) equal 0, leads to (3.1). The Lemma is
proven. □

The function (3.1) characterizes optimal investments into various capital vintages.
Formally, (3.1) is the Fréchet derivative of the objective function (2.1) of the OCP
(2.1)-(2.5). Economically, it describes the future rental value of vintage v at time t.
In particular, if I′(v,t) is less than zero, then by Lemma 3.1, the optimal u(v,t)= 0,
which means no investment at date t into capital of vintage v should be provided,
i.e., no old vintages should be bought.

4. Balanced growth analysis

The balanced growth in economics is an interior steady-state solution to the
OCP without initial conditions. If there is an exponential balanced growth, then
all functions of the OCP should grow with the same rate. The existence of a
balanced growth is often taken as an indicator of the quality of an economic model.
If a balanced growth exists, then a transition dynamic path can be analyzed. The
transition dynamics shows the most efficient way to reach the balanced growth
trajectory from the given initial conditions. A combination of a transition dynamic
path and a balanced growth path delivers a complete solution to the OCP with
initial conditions.

To find a balanced growth, denoted by (ỹ(t), c̃(t), k̃(v, t), x̃(t), ũ(v, t)), let us set
(3.1) equal zero for ∞<v<t, 0<t<∞ and differentiate it with respect to t to get the
first-order extremum condition

(4.1) αzβ(v)y(α−β)/α(t)A(t− v)kβ−1(v, t) = r + δ + ηc′(t)/c(t).

for an interior solution u(v, t) > 0, x(t) > 0.
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As common in the economic growth theory, we assume the exponential techno-
logical change:

(4.2) z(t) = z̄eγt, γ > 0,

where the technological rate γ and the constant z are given, and analyze the pos-
sibility of a balanced growth of ỹ(t), k̃(v, t), ũ(v, t), -∞<v<t, 0<t<∞. We start

with assuming the existence of a balanced capital k̃(v, t) in the form

(4.3) k̃(v, t) = egttχ(t− v), gt > 0,

where the factor χ(t− v) depends on the capital age a=t-v only. In looking for the

balanced growth ỹ(t), k̃(v, t), ũ(v, t) we disregard 1 the given distribution k0(v)
capital over past vintages v < 0 at t=0 and assume that (4.1) holds for all
-∞<v<t. The substitution of (4.2) and (4.3) into (4.1) leads to the equality

αz̄βeγβvy(α−β)/α(t)A(t− v)χ(t− v)β−1e(β−1)gtt = r + δ + ηc′(t)/c(t),

that should hold for all -∞<v<t, 0<t<∞. In the variables a=t-v and v, the last
equality is written as

(4.4) αz̄βeγβvy(α−β)/α(v+a)A(a)χβ−1(a) = (r+δ+ηc′(v+a)/c(v+a))e(1−β)gt(v+a),

−∞ < v < ∞, 0 < a < ∞.

Now, let us take a look at y(t). Substituting (4.1) and (4.2) into the output
equation (2.2), we obtain

(4.5) ]y(t) = z̄αeαgtt
(∫ t

−∞
eγβvA(t− v)χβ(t− v)dv

)α/β

,

or, replacing the integration with respect to the vintage installation time v with the
integration with respect to the vintage age a=t-v,

(4.6) y(t) = z̄αeα(gt+γ)t

(∫ ∞

0
e−γβaA(a)χβ(a)da

)α/β

.

The substitution (4.6) into (4.4) delivers the following equation

(4.7) αz̄αe[αγ−gt(1−α)]v

(∫ ∞

0
e−γβsA(s)χβ(s)ds

)α−β
β

= (r + δ ++ηc′(v + a)/c(v + a))e[−γ(α−β)+gt(1−α)]aA−1(a)χ1−β(a).

Along the balanced growth path, the consumption c(t) should grow with the rate
gt, that is,

(4.8) c(t)′/c(t) = const = gt.

In order to hold (4.7) at any age 0<a<∞ and vintage -∞<v<∞, and any un-
known χ(a), the equality

(4.9) gt =
γα

1− α
,

1The given capital distribution at -∞<v<0 impacts the transition dynamics of the problem (2.1)-
(2.5), which is considered in detail in next sections.
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should be valid for the dynamics in v and

(4.10) αz̄α
(∫ ∞

0
e−γβsA(s)χβ(s)ds

)α−β
β

= (r + δ + ηgt)e
γβaA−1(a)χ1−β(a).

for the dynamics in a. The rate gt coincides with the growth rate in the linear
utility case in [16].

The integral equation (4.10) has a unique solution

(4.11) χ(a) = k̄e
− γβ

1−β
a
A

1
1−β (a),

with the constant

(4.12) k̄ =

(
αz̄α

r + δ + η γα
1−α

) 1
1−α(∫ ∞

0
e
− γβ

1−β
s
A

1
1−β (s)ds

) α−β
β(1−α)

,

that can be verified by direct substitution of (4.11) and (4.12) into (4.10) and routine
algebraic transformations. Uniqueness of a solution follows from a deeper analysis
of the integral equation (4.10).

By (4.6) and (4.12), the optimal balanced output grows as

(4.13) y(t) = ςegtt,

where

(4.14) ς = (kβ−1zβ
α

r + δ + ηgt
)
− α

α−β .

Knowing the optimal balanced k̃(v, t) by (4.3), (4.8), (4.11), (4.12), we can find
from (2.3) that the optimal investment into new capital at v=t is

(4.15) x̃(t) = k̃(t, t) = χ0e
gtt = k̄A

1
1−β (0)e

γα
1−α

t.

and obtain the following Volterra integral equation of the first kind

e−δ(t−v)

∫ t

v
eδ(s−v)ũ(v, s)ds = egtt[χ(t− v)− k̄e−(gt+δ)(t−v)A

1
1−β (0)].

for the optimal investment into old capital ũ(v, t) for 0 < v< t, 0 < t< ∞. The
equation (2.4) for the optimal investment into past vintages v< 0 is different.
However, the impact of such vintages deteriorates with time, so we focus on the last
equation in the long-term analysis of this section. To obtain its balanced solution,
we assume that ũ(v, t) grows exponentially in t:

(4.16) ũ(v, t) = egutω(t− v), gu > 0,

where ω(t−v)depends on the capital age a=t-v only. Substituting (4.11) and (4.16)
into (4.15), we obtain that gu=gt (that is, the same exponential growth) and∫ a

0
e(δ+

γα
1−α)sω(s)ds = k̄

[
e

(
δ+ γα

1−α
− γβ

1−β

)
a
A

1
1−β (a)−A

1
1−β (0)

]
, a > 0.

The differentiation of this equality gives the explicit formula for the optimal age-
dependent investment profile

(4.17) ω(a) = k̄e
− γβ

1−β
a
[(

δ +
γα

1− α
− γβ

1− β

)
A

1
1−β (a) +

d

da

(
A

1
1−β (a)

)]
.
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in terms of the given model parameters. Finally

(4.18) c̃(t) =

(
ς − k̄A

1
1−β (0)−

∫ ∞

0
ω(a)da

)
eqtt,

where k, ω(a), and ς are calculated by (4.12), (4.14), (4.17).
We can summarize the outcomes obtained above as

Theorem 4.1 (the balanced growth). If the technological change occurs at a con-
stant rate γ>0, then the optimal control problem (2.1)-(2.5) has a unique balanced

growth solution (ỹ(t), c̃(t), k̃(v, t), x̃(t), ũ(v, t)) that grows at the exponential rate
gt =

γα
1−α and is described by (4.13), (4.18), (4.3), (4.15) and (4.16).

Henceforth, we will restrict ourselves to the case with no learning:

(4.19) A ≡ 1, β < βcr =
γα+ δ(1− α)

γ + δ(1− α)
.

The inequality in (4.19) guarantees a positive optimal investment in the long run
for each vintage ∞ < v < t [16]. Then, by (4.2), (4.12), (4.13), (4.15), (4.16) and
(4.18), the balanced growth is

(4.20) y(t) = k̄αz̄α(
γβ

1− β
)α/βe

γα
1−α

t,

(4.21) k̃(v, t) = k̄e
− γα

1−β
(t−v)

e
γα
1−α

t, k̄1−α =
α

r + δ + ηg

(
γβ

1− β

)(α−β)/β

,

(4.22) ũ(v, t) = k̄

(
δ + g − γβ

1− β

)
e
− γβ

1−β
(t−v)

e
γα
1−α

t,

(4.23) c̃(t) = (y(t)− x(t)−
∞∫

−∞

u(v, t)dv)e
γα
1−α

t.

The long-term investment into vintage declines monotonically as a function of its
age. Its dynamics is shown in Figures 1a and 1b.

At β < βcr, the age-dependent investment profile (4.22) is positive for 0≤ a<∞
and decreases exponentially with the rate ga=

γβ
1−β from the initial ũ(0) = k̄(δ +

c(t)− c(a)) to zero at a→ ∞. The optimal ũ(v, t) tends to zero when β → βcr and
ũ(v, t)≡ 0 at β > βcr.

The obtained properties of balanced growth lead to the following recommenda-
tions:

(a) At α > β, the firm buys more capital of all vintages. The actual amount of
a specific vintage v increases in time t (see Figure 1a).

(b) If α < β < βcr, then the actual investment into a fixed vintage v decreases
in time t because of (4.23). So, the firm buys less capital of older vintages in the
future. The amount k(v,t) of a specific fixed vintage v decreases in time t because
the investment into the vintage v does not compensate deterioration (see Figure
1b).
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(c) If βcr≤ β ≤ 1, then the firm should not buy old capital at all: u(v,t)=0. The
amount of a specific vintage v decreases in time as e−δt because of deterioration.

Remark 4.2. Case α = 1 in (2.1)-(2.5) describes the AK production function,
which is known to produce endogenous growth in the classic economic growth models
with homogeneous capital [3]. Earlier remarkable analysis of an AK model with
vintages was done by R. Boucekkine et al. [7], who assumed no technological change,
finite exogenous lifetime of vintages, no investment in old vintages allowed, and
β = 1. Boucekkine et al showed that key properties of the AK model change
dramatically in vintage setting.

A preliminary analysis of the case α = 1 in our model (2.1)-(2.5) demonstrates
interesting qualitive picture that lies somewhere between the AK models of [3] and
[7]. Specifically, by (4.2), (4.11), and (4.12), in presence of technological change
(γ > 0), there is no balance growth and the investments and capital grow indefinitely
in the model (2.1)-(2.5). In the absence of technological change (γ = 0), there is no
balance growth in our model and the investment and capital grow indefinitely at
t −→ ∞ if z > r+ δ, while the balance growth path is zero and the investments and
capital tend to zero at z < r + δ (where z is the constant productivity). The latter
inequalities resemble well known conditions in [3] for having positive or negative
growth rate in the AK model. As in [7], convergence is not instantaneous and
may be monotonic or non-monotonic depending on the initial distribution k0(v)
of vintages in (2.4). More diverging nature of the optimal growth occurs because
of non-diminishing returns and availability of unlimited resource. More detailed
comparative study of the model (2.1)-(2.5) and the one of [7] may bring new insights
into the AK model features and represents a prospective venue for future research.

5. Transition dynamics

The short-term (transition) dynamics in the model (2.1)-(2.5) is caused by old
vintages that have been installed on the prehistory (-∞,0]. The purpose of the
transition dynamics is to change the original non-optimal capital distribution k0(v)

by vintages to the optimal k̃(v, t) for each past vintage v<0. The transition pattern
depends on whether the old capital vintages were well-funded or underfunded on
the prehistory -∞<v<0.

In the case of the “ideal” initial distribution of capital

k0(v) = k̃(v, 0) for all vintages −∞ < v < 0,

there is no transition dynamics and the solution is given by the balanced growth
path (4.20)-(4.23) for t>0.

If the vintages are initially overfunded: k0(v) > k(v, 0), then the optimal policy

is to wait until the capital decrease to the level k̂(v, t) because of deterioration.
If the vintages are initially underfunded: k(v)0 < k(v, 0), then the optimal policy

is to provide the investment up to the level k̂(v, 0) from the initial given level k0(v).
In the last two cases, the dynamic analysis requires solving the model equations

when the capital dynamics follow the equation (2.4) or

(5.1) k(v, t) = e−δtk0(v) +

∫ t

0
e−δ(t−s)u(v, s)ds for −∞ < v < 0.
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Figure 1. The dependence of long-term optimal investment on the
vintage v and current time t. Figure (a) corresponds to the case
α>β while Figure (b) illustrates the case α<β

The corresponding output y(t) is not equal to ỹ(t) if k0(v) ̸= k̃(v, 0) for, at least,
some past vintages.

Transition dynamics in the linear utility case was systematically analyzed in [11],
where it is proven that at η = 0 and γ > 0, the problem (2.1)-(2.5) has a unique
solution such that transition dynamics ends at a finite time t̄max and the optimal
u(v, t) = ũ(v, t), k(v, t) = k̃(v, t), y(t) = ỹ(t) for -∞ < v< t, t̄max ≤ t< ∞.

5.1. Transition Dynamics in Concave Utility Case. The transition dynamics
in the model with nonlinear utility is much richer though brings more challenges
to its analysis. In particular, the existence and uniqueness of solutions cannot be
proven in a general case. However, some relevant structural (myopic) properties of
the optimal investments can be established. In the case of nonlinear utility (2.1),
by the optimality condition (4.1), the optimal capital

(5.2) k(v, t) =
[
αeγβvy(α−β)/α(t)/(r + δ + ηc′(t)/c(t))

] 1
1−β

.

depends on both, the output y(t) and the consumption c(t). Let us rewrite (5.2) as

(5.3) k(v, t) = e
γβ
1−β

v
f(t),

where

(5.4) f(t) =
[
αy(α−β)/α(t)/(r + δ + ηc′(t)/c(t))

] 1
1−β

.
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Then, by (2.3), the investment into new vintages is

(5.5) x(t) = e
γβ
1−β

t
f(t).

and the optimal investment into the vintages 0 < v < t is

(5.6) u(v, t) = e
γβ
1−β

v [
δf(t) + f ′(t)

]
for 0 < t < ∞.

Cases of well-funded or underfunded vintages are considered below.

5.2. The case of overfunded past vintages. The optimal policy for overfunded
vintages is not to invest into old vintages, that is, keep u(v, t)=0, and wait until the
capital decreases to an optimal level because of deterioration.

Case A. For simplicity, let us assume that all past vintages are overfunded:

k0(v) > k̃(v, 0) for each vintage −∞ < v < 0.

In this case, the optimal investment u(v, t)= 0 for all vintages v<0, while the capital
k(v, t) gradually decreases to the optimal level (5.5) following (1.4). The transition

period ends at a time t̄max such that k(v, t) =k̃(v, t) for all vintages. To find the
instant t̄max, we need to indentify the ”most overfunded” vintage from the condition

⌣
v = argmax

−∞<v≤0
e
− γβ

1−β
v
k0(v).

Then, the length t̄max of transition dynamics can be found from the condition

(5.7) k0(
⌣
v)e

− γβ
1−β

⌣
v
= f̃(tmax),

where f̃(t) = k̄e

(
γα
1−α

− γβ
1−β

)
t
.

The condition (5.7) holds because the dynamics after the transition period coin-

cides with the known long-term balanced growth ũ(v, t), k̃(v, t), ỹ(t).

5.3. The case of underfunded past vintages. The transition dynamics of “un-
derfunded” vintages is significantly different from the linear utility case. We cannot
invest instantaneously into all underfunded vintages because the consumption y
should remain positive. So, the transition investment u(v,t) should be finite and
determined from a certain balance between the positivity of consumption and the
necessity of investing fast in underfunded vintages. The formulas for such interior
transitory investment appear to be more complicated compared to the “overfunded”
case of Section 5.2.

Case B. Let us assume that all past vintages are underfunded:

(5.8) k0(v) < k̃(v, 0)

for each vintage −∞ < v < 0.
Then, the structure of the optimality conditions (Lemma 3.1) dictates the fol-

lowing investment choice at the beginning of transition period.

Lemma 5.1. The optimal strategy at t=0 is to invest only into the “most unbal-
anced” vintage (or vintages) v̂ determined from the condition

(5.9) v̂ = argmin
−∞<v≤0

e
− γβ

1−β
v
k0(v).
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For the vintages v̂, the optimal capital amount is given by (5.3) and the optimal
investment is given by (5.4) for 0<t<∞.

Proof. Substituting the desired optimal capital distribution (5.3) into (2.3), we ob-
tain the equation

(5.10) e−δtk0(v) +

∫ t

0
e−δ(t−s)u(v, s)ds = e

γβ
1−β

v
f(t),−∞ < v < 0,

for possible interior investment u(v,t), where the endogenous function f(t) depends
on y(t), c(t), c′(t) by (5.4). In a general case, this equation cannot be satisfied
at t=0 for all -∞<v<0 simultaneously. Since I ′(v, t) ≤ 0 by Lemma 3.1, the only
possible choice is to satisfy (5.10) for v̂, then I ′(v, t) = 0 for v =v̂ and I ′(v, t) < 0
for v ̸=v̂ . We can choose y(t), c(t), c′(t) such that

(5.11) f(0) = k0(
⌢
v).

Indeed, the initial value y(0) =
(∫ 0

−∞ eγβvk0β(v)dv
)α/β

is determined from (2)

at t=0. Let the number of vintages v̂, be countable, at most. Then, by (2.5),

c(0) = y(0) − x(0) = y(0) − f(0) = y(0) − k0(
⌢
v) is also given. On the other side,

f(0) =
[
αy(α−β)/α(0)/(r + δ + ηc′(0)/c(0))

] 1
1−β by (5.4). So, the value c′(0) found

from r + δ + ηc′(0)/c(0) = αy(α−β)/α(0)fβ−1(0) satisfies (5.11).
Finally, at condition (5.11), the solution of (5.10) at v =v̂ exists and is given by

(5.6).
The lemma is proven. □
So, the initial optimal investment at t= 0 is positive only for the “most unbal-

anced” vintages v̂. The transition dynamics at t> 0 is characterized by the following
conjecture.

Proposition 5.2 (transition of underfunded vintages). At the condition (5.8), for

every fixed t> 0 there exists a set V̂ ⊂ (−∞, 0], mesV̂ >0, of past vintages such that

investments u(v, t)> 0 are determined by (5.6) and u(v,t)=0 for v∈ (−∞, 0] − V̂ .

The size (mesV̂ ) of the set V̂ increases in t. When V̂ becomes equal to (−∞, 0], the
transition ends and the further solution coincides with the balanced growth path.

The intuition under Proposition 1 is that the initial investing into the most un-
derfunded vintages increases and equalizes their capital. So, when time increases,
a larger set V̂ of “equally underfunded” vintages appears to invest in. The specific
structure of the set V̂ heavily depends on the shape of the initial capital distribution
k0(v). For example, if all past vintages are equally underfunded: k0(v) = ak̃(v, 0),

0<a<1, then V̂=(−∞, 0] starting t=0.

The set V̂ at small t>0 is illustrated in Figure 2 in the case when the function
exp(− γβ

1−β v)k
0(v) possesses a unique absolute minimum over (-∞, 0] at point v̂. In

this case, the set V̂ is simply a certain range [v(t), v̄(t)]. Still, the exact formulas
for v(t) and v̄(t) involve the inverse of k0(v) and should be found from nonlinear
functional equations. At t → 0, both v(t) and v̄(t) approach the “most unbalanced”
vintage v̂. The function v̄(t) increases and v(t) decreases when time grows. Other

structures of the set V̂ are quite possible depending on the shape of k0(v).
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The desired properties of the set V̂ are:
(1) the uniqueness of V̂ for each t and

(2) the convergence of the set V̂ to the interval (−∞, 0] as time t increases.

Figure 2. The structure of the set V̂=[v(t), v̄(t)] around the most
unbalanced vintage v̂.

The convergence of the transition dynamics to the balanced growth path during a
finite time can be relatively easily proven in Case A of all overfunded past vintages.
To prove the convergence in a general case, we can construct a similar problem
with constrained investments 0 ≤ u(v,t) ≤ ū(t). For a certain given level ū(t)>0,
the optimal transitory investment will be u(v,t) =ū(t) and the convergence in a
finite time can be justified. The problem (2.1)-(2.5) will have more flexibility, so its
transition dynamics should end even sooner.

The uniqueness issue is extremely challenging to consider. The set V̂ is unique
when the optimal y(t) and c(t) are unique. Because of complex nonlinear depen-
dence, it is difficult to prove the uniqueness of y(t) and c(t) even in simple special
cases when all vintages k0(v) are equally overfunded or underfunded, or k0(v) is

close to k̃(v, t), and similar. To highlight arising challenges, we consider the follow-
ing example.

Example 5.1. Let us assume that all past vintages are equally underfunded:

k0(v) = ak̃(v, 0) = ak̄e
γβ
1−β

v
, 0 < a < 1, for all −∞ < v < 0.

Then, y(0) = aỹα(0) < ỹ(0) by (2.2), V̂ = (−∞, 0] by (5.9), andf(0) = af̃(0) < f̃
by (5.11). By proposition 5.2, the optimal strategy is to invest u(v,t)>0 uniformly
into all vintages v starting t=0. So, the investment structure by vintages is simple
in this case. Nevertheless, the problem of determining the optimal balance between
consumption c(t) and the total investment appears to be tricky. Indeed, by

c(t) = y(t)− x(t)−
∫ t

−∞
û(v, t)dv

or

(5.12) c(t) = fα(t)e
γα
1−β

t
(
1− β

γβ

)α/β

−f(t)e
γβ
1−β

t − 1− β

γβ

(
δf(t) + f ′(t)

)
e

γβ
1−β

t
.
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On the other hand, from (5.4) we have

(5.13) r + δ + ηc′(t)/c(t) = α−1y(α−β)/α(t)fβ−1(t).

So, we obtain the system (5.12),(5.13) of two first-order nonlinear differential

equations with respect to c(t) and f(t) for t≥ 0. The value f(0) = af̃(0) is given,
but the initial value c(0) is not fixed. Instead, the relative rate c′(0)/c(0) is fixed
by (5.13) and is larger than the long-term rate c̃(0)′/c̃(0). So, the initial problem
for ODE system (5.12), (5.13) is non-standard and the uniqueness of its solution is
not obvious even in this simple case.

5.4. General Case. In a general case, assuming that the unique optimal y(t) and
c(t) exist, we can summarize the above investment dynamics in the following formal
statement about the structure of optimal investments in the case on nonlinear utility.

Proposition 5.3 (on the structure of optimal investments). Let a unique solution
to the OCP (2.1)-(2.5) exist. Then:

(1) For vintages 0 < v< ∞, the optimal investment is

(5.14) x(t) = e
γβ
1−β

t
f(t) at t = v,

(5.15) û(v, t) = e
γβ
1−β

v [
δf(t) + f ′(t)

]
at t > v,

and the corresponding optimal capital is

(5.16) k(v, t) = e
γβ
1−β

v
f(t) for 0 < t < ∞,

where

f(t) =
[
αy(α−β)/α(t)/(r + δ + ηc′(t)/c(t))

] 1
1−β

.

(2) For the past vintages -∞ < v≤ 0, the transition dynamics starts with the

vintage (or vintages) v̂ = argmin
−∞<v≤0

e
− γβ

1−β
v
k0(v) (with the smallest initial “ef-

ficient capital”). Once started, the optimal investment into a specific vintage
never stops.

If all past vintages are overfunded: k0(v̂) > k(v̂, 0), then the investments
into all past vintages are delayed until a certain finite time t>0.

If k0(v̂) ≤ k(v̂, 0), then the optimal investment in vintages v̂ starts at
t=0, while the investment into vintages v ̸=v̂ is delayed by a certain time
t̄(v)>0:

u(v, t) =

{
0 for 0 < t ≤ t̄(v)

û(v, t) for t̄(v) ≤ t < ∞ .

The corresponding optimal capital for these vintages is

k(v, t) =

{
e−δtk0(v) for 0 < t < t̄(v)

k̂(v, t) for t̄(v) ≤ t < ∞ .

After the transition dynamics ends, f(t) = k̄e

(
γα
1−α

− γβ
1−β

)
t
and the optimal

trajectory (5.14)-(5.16) coincides with the long-term balanced growth ũ(v, t)

k̃(v, t), x̃(t) given by (4.20)-(4.22).
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Figure 3. The short-term optimal investment into vintage v̂ at time
t. The dashed lines depict the exponential long-term balance growth
from Figure 1a.

So, the dynamics of the optimal investment into past vintages is different
from the balanced growth regime until t = tmax. A robust feature of the

optimal investment is the age-dependent vintage profile e
γβ
1−β

v
, which is the

same during the transition and long-term dynamics (see Figure 3).

6. Discussion

The considered optimal control problem can be interpreted as a vintage capital
model with distributed investments into new and old capital and limited substi-
tutability among vintages of different ages. A production output is described by
the CES production function with continuum of vintage inputs and concave utility.
The model possesses an “ideal” initial distribution of capital on the prehistory (-∞,
0] such that there is no transition dynamics at all and the optimal controls coincide
with the balanced growth trajectory of Section 4.

In the general case, the optimal dynamics for the old vintages (installed before
the planning horizon) is richer and includes a transition period. During this period,
the optimal investment in each old vintage depends whether the vintage was initially
overfunded or underfunded.

For initially underfunded vintages, the optimal investment is finite and balanced
with a positive consumption because of the convexity of the problem. Namely,
the investment at time zero starts with the most underfunded old vintage (s) v̂.
Eventually, investing into the most underfunded vintages increases and equalizes
their capital. So, when the time increases, the set of “equally underfunded” vintages
investments grows. As shown in Figure 2, the structure of investment into and
around the most unbalanced vintage v̂ looks like filling an uneven surface with
water. This analogue can be useful for making ad hoc investment decisions. The
described structure of the investment to underfunded vintages is quite interesting
and represents a novel effect in the vintage capital theory.

For initially overfunded vintages, the structure of the optimal investment into old
vintages is simpler: the optimal policy is to wait until the vintage capital decreases
to the optimal level because of deterioration.
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Finally, the obtained transition dynamics in model (2.1)-(2.5) does not possess
investment echoes or industry shakeouts. To have dynamic patterns with invest-
ment echoes, the vintage capital model (2.1)-(2.5) should include a certain economic
balance restriction, similar to the given industry-wide consumer demand in [11] or
the given labor in [5,6] or various resource restrictions at a firm’s level in [10,12,13].
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