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Usually, we assume that the ‘consumption set’ Ω is the nonnegative orthant
{x ∈ Rn|xi ≥ 0 for all i}. The positive vector p denotes the price system, and
m > 0 represents the income. If u satisfies several assumptions, then the solution
of the above maximization problem is unique, and is denoted by fu(p,m). The
function fu is called the demand function.

In the usual theory, the consumer is assumed to determine their consumption
behavior by solving this problem, and thus u is given and fu is derived. However,
there is another view for this theory, in which a candidate f of the demand function
is given, and u is derived from f . The reason for taking such a position is as follows.
The utility function is unobservable, because it is hidden in the consumer’s mind.
In contrast, the demand function is observable, because it corresponds to the
consumer’s actual purchase behavior. Therefore, if we wish to obtain the utility
function, then we must use the information of the demand function and derive
the utility function by some calculation. The research area for obtaining such a
calculation method is called integrability theory.

In fact, the above argument is a little rough, because the demand function in-
cludes infinitely many information about the purchase behavior, whereas we
can only obtain finite purchase data. Therefore, the statement that “the demand
function is observable” is an exaggeration. However, although the demand func-
tion is actually unobservable, we can say that integrability theory has a meaning in
modern econometric theory. That is, the estimation of a utility function is quite dif-
ficult, because it is hidden in consumer’s mind. On the other hands, the estimation
for a demand function is, at least, easier than that for a utility function, because
it corresponds to actual purchase behavior. Although the demand function is ac-
tually unobservable, we can obtain the ‘estimated’ demand function for purchase
data; thus, by using integrability theory, we can immediately obtain the ‘estimated’
utility function.

There are two approaches in integrability theory, the direct approach and the
indirect approach.1 The direct approach treats the following partial differential
equation:

DE(q) = f(q, E(q)), E(p) = m.

If f = fu for some appropriate function u, then the function Ex(q) = inf{q ·
y|u(y) ≥ u(x)} solves the above equation (Shephard’s lemma). Therefore, solving
this equation means calculating Ex without the use of any information about u, and
using the information of Ex allows us to re-construct u.2 In contrast, the indirect
approach treats the following total differential equation:

Du(x) = λ(x)g(x),

where the function g(x) is assumed to satisfy

f(g(x), g(x) · x) = x.

That is, g(x) is the price system under which x is chosen. The function g is called
the inverse demand function. If u is smooth and increasing, then by Lagrange’s

1These names were assigned by Hurwicz and Uzawa (1971).
2For the actual calculation procedure of u in the direct approach, see Hurwicz and Uzawa (1971)

or Hosoya (2017).
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multiplier rule, there exists a positive function λ such that Du(x) = λ(x)g(x) for
every x. Therefore, for a given g, we obtain the information of u by solving the
above equation.3

We clarify the relationship between the above partial and total differential equa-
tions. Both have famous results regarding local existence theorems for their solu-
tions. The local existence theorem for the solution of the above partial differential
equation is called Nikliborc’s Theorem, and that of the above total differential
equation is called Frobenius’ Theorem. In this paper, we reveal that if Nikli-
borc’s Theorem is correct, then Frobenius’ Theorem is also correct, and vice versa
(Theorems 1 and 2). That is, the relationship between Nikliborc’s Theorem and
Frobenius’ Theorem is similar to that between the inverse function theorem and the
implicit function theorem, and once one of them is proved, the other can be proved
immediately.

This result has an important meaning. That is, if one succeeds in extending one
of these theorems, then the other can also be extended. To clarify this, we present
extensions of these theorems and show that if the extended version of Nikliborc’s
Theorem is correct, then the extended form of Frobenius’ Theorem is also correct,
and vice versa (Theorems 3 and 4).

Section 2 introduces some basic knowledges regarding these equations. In section
3, we present the main results. Several comments on Nikliborc’s Theorem and
Frobenius’ Theorem are given in section 4. Section 5 treats the extensions of our
main results.

2. Preliminaries

2.1. Nikliborc’s Theorem. Consider the following partial differential equation
(PDE)

(2.1) DE(q) = f(q, E(q)),

where f : P → Rn, P ⊂ Rn+1 is open, and f is continuous. A function E : V → R
is a solution of the above PDE if and only if 1) V is an open set, 2) E is C1, and
3) DE(q) = f(q, E(q)) for all q ∈ V .4 Note that, if f is C1, then any solution E is
automatically C2. If E : V → R is a solution of (2.1) and p ∈ V , then E is called a
local solution around p.

If P ⊂ Rn+1 is open and f : P → Rn is differentiable, define

(2.2) sij(p,m) =
∂fi
∂pj

(p,m) +
∂fi
∂m

(p,m)fj(p,m).

The function f is said to be integrable if and only if sij(p,m) = sji(p,m) for every
(p,m) ∈ P .

The following classical result was derived by Nikliborc (1929).

3For the actual calculation procedure of u in the indirect approach, see Debreu (1972) or Hosoya
(2013). Note that, almost all classical results in integrability theory focus on the indirect approach.
For example, see Antonelli (1886), Pareto (1906), Samuelson (1950), and Katzner (1970).

4Throughout the paper, we assume that n ≥ 2. If n = 1, then (2.1) is just a standard form of
the ordinary differential equation. However, because n ≥ 2, this is a PDE.
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Nikliborc’s Theorem. Suppose that f : P → Rn, P ⊂ Rn+1 is open, and f is C1.
Then, f is integrable if and only if for every (p,m) ∈ P , there exists a local solution
E : V → R of (2.1) around p such that E(p) = m. Moreover, if f is Ck for k ≥ 1,
then any solution E of (2.1) must be Ck+1.

2.2. Frobenius’ Theorem. Consider the following total differential equation (TDE)

(2.3) Du(x) = λ(x)g(x),

where g : U → Rn \ {0}, U ⊂ Rn is open, and g is C1. A pair (u, λ) of functions
from V to R is a solution of the above TDE if and only if 1) V is an open set,
2) u is C1 and λ is positive and continuous, and 3) Du(x) = λ(x)g(x) for every
x ∈ V . If (u, λ) is a solution defined on V and x∗ ∈ V , then this pair is called a
local solution of (2.3) around x∗.

The function g is said to satisfy Jacobi’s integrability condition if, for all
i, j, k ∈ {1, . . . , n} with i 6= j 6= k 6= i,5

(2.4) gi

(
∂gj
∂xk

− ∂gk
∂xj

)
+ gj

(
∂gk
∂xi

− ∂gi
∂xk

)
+ gk

(
∂gi
∂xj

− ∂gj
∂xi

)
= 0

for all x ∈ U .
Then, the following result is known.

Frobenius’ Theorem. Suppose that g : U → Rn \ {0}, U ⊂ Rn is open, and g is
C1. Then, g satisfies Jacobi’s integrability condition if and only if, for every x∗ ∈ U ,
there exists a local solution (u, λ) around x∗ such that for every w ∈ R, u−1(w) is
either the empty set or an n − 1 dimensional C2 manifold. If g is Ck for k ≥ 2,
then a local solution (u, λ) can be chosen as follows: 1) u is Ck, 2) λ is Ck−1, and
3) for every w ∈ R, u−1(w) is either the empty set or an n − 1 dimensional Ck+1

manifold.

2.3. A Note on Jacobi’s Integrability Condition. Suppose that g satisfies
(2.4) for all i, j ∈ {1, . . . , n − 1} and k = n with i 6= j, and gn(x) 6= 0. Then, g
satisfies (2.4) for all i, j, k ∈ {1, . . . , n}. To show this, choose any i, j, k ∈ {1, . . . , n}
with i 6= j 6= k 6= i. If i = n, j = n or k = n, then our assumption implies that
(2.4) holds. Therefore, we assume that i, j, k ∈ {1, . . . , n− 1}. By our assumption,

gi

(
∂gj
∂xn

− ∂gn
∂xj

)
+ gj

(
∂gn
∂xi

− ∂gi
∂xn

)
+ gn

(
∂gi
∂xj

− ∂gj
∂xi

)
= 0,

gj

(
∂gk
∂xn

− ∂gn
∂xk

)
+ gk

(
∂gn
∂xj

− ∂gj
∂xn

)
+ gn

(
∂gj
∂xk

− ∂gk
∂xj

)
= 0,

gk

(
∂gi
∂xn

− ∂gn
∂xi

)
+ gi

(
∂gn
∂xk

− ∂gk
∂xn

)
+ gn

(
∂gk
∂xi

− ∂gi
∂xk

)
= 0.

Multiplying the first equation by gk, the second equation by gi, the third equation
by gj , and summing up all three equations, we obtain

gn

[
gi

(
∂gj
∂xk

− ∂gk
∂xj

)
+ gj

(
∂gk
∂xi

− ∂gi
∂xk

)
+ gk

(
∂gi
∂xj

− ∂gj
∂xi

)]
= 0,

5In this paper, we frequently abbreviate the variables of functions to prevent the formulas
becoming too long.
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which implies that (2.4) holds.

2.4. A Note on Nikliborc’s Theorem. First, suppose that f : P → Rn, P ⊂
Rn+1 is open, and f is C1. Let (p,m) ∈ P , and p ∈ V , where V is an open and
convex set. If there exists a solution E : V → R of (2.1) that satisfies E(p) = m,
then such a solution is unique.6

To verify this, suppose that there is another solution F : V → R of (2.1) that
satisfies F (p) = m. Choose any q ∈ V . Define c1(t) = E((1 − t)p + tq) and
c2(t) = F ((1− t)p+ tq). Then, ci is the solution of the following ODE:

ċ(t) = f((1− t)p+ tq, c(t)) · (q − p), c(0) = m.

Because of the Picard-Lindelöf uniqueness theorem of solutions to ODEs, we have
that c1(t) ≡ c2(t). In particular,

F (q) = c2(1) = c1(t) = E(q).

Because q ∈ V is arbitrary, we have that E ≡ F , and thus the uniqueness result
holds.

Second, suppose again that f : P → Rn, P ⊂ Rn+1 is open, and f is C1.
Moreover, suppose that f is integrable, and thatNikliborc’s Theorem is correct.
Fix (p,m) ∈ P . Let E : V → R be a local solution around p that satisfies E(p) = m.
Moreover, suppose that W is a bounded, open, convex neighborhood of p and that
V includes the closure of W . Then, there exists ε > 0 such that if |h| ≤ ε, then
there exists a local solution Eh : W → R around p that satisfies E(p) = m+ h, and
Eh(q) is continuous and increasing in h.

To verify this, consider the following parametrized ODE:

(2.5) ċ(t; q, w) = f((1− t)p+ tq, c(t; q, w)) · (q − p), c(0; q, w) = w.

Let W̄ denote the closure of W . If q ∈ W̄ , then c(t; q,m) = E((1 − t)p + tq),
and thus the solution function c(t; q, w) is defined on [0, 1] × W̄ × {m}. Because
the domain of c(t; q, w) is open, there exists ε > 0 such that this domain includes
[0, 1] × W̄ × [m − ε,m + ε]. Choose h ∈ [−ε, ε] and define Eh(q) = c(1; q,m + h)
for all q ∈ W . We will show that Eh is a solution of (2.1) with Eh(p) = m+ h, and
Eh(q) is increasing in h.

Because c(t; p,m+h) ≡ m+h for all t ∈ R, we have that Eh(p) = c(1; p,m+h) =
m+ h.

Next, choose any q ∈ W , and define p(t) = (1− t)p+ tq. Because we assume that
Nikliborc’s Theorem is correct and f is integrable, for every t ∈ [0, 1], there exists a
local solution Et : Vt → R of (2.1) around p(t) that satisfies Et(p(t)) = c(t; q,m+h).
Without loss of generality, we can assume that Vt is an open ball centered at p(t).
Suppose that for t1, t2 ∈ [0, 1] with t1 < t2, there exists r ∈ Vt1 ∩ Vt2 . This implies
that there exists t3 ∈ [t1, t2] such that p(t3) ∈ Vt1 ∩ Vt2 . Let ci(t) = Eti(p(t)) for
i ∈ {1, 2}. Then, ci satisfies the following ODE:

ċ(t) = f(p(t), c(t)) · (q − p), c(ti) = c(ti; q,m+ h),

6In this subsection, we frequently use some basic knowledges of ordinary differential equations
(ODEs), which is shown in the next subsection. For readers unfamiliar with ODEs, we recommend
reading the next subsection first, and then returning to this subsection.
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and thus, by the Picard-Lindelöf uniqueness theorem and (2.5), we have that ci(t) =
c(t; q,m+ h) if both are defined. In particular,

Et1(p(t3)) = c1(t3) = c(t3; q,m+ h) = c2(t3) = Et2(p(t3)).

This implies that both Et1 , Et2 are solutions of (1) on an open and convex set
Vt1 ∩ Vt2 that satisfy Eti(p(t3)) = c(t3; q,m + h). Thus, by the above uniqueness
result, we have that Et1(r) = Et2(r) for all r ∈ Vt1 ∩ Vt2 .

Therefore, if we define

F (r) = Et(r)

for r ∈ V ≡ ∪t∈[0,1]Vt, then F is a well-defined solution of (2.1) that satisfies
F (p) = m + h. Because V is open, there exists an open neighborhood U ⊂ Rn

of q such that (1 − t)p + tr ∈ V for all t ∈ [0, 1] and r ∈ U . Then, using the
Picard-Lindelöf uniqueness theorem again, we have

c(t; r,m+ h) = F ((1− t)p+ tr),

and thus,

Eh(r) = F (r),

which implies that Eh is C1 around q and

DEh(q) = DF (q) = f(q, F (q)) = f(q, Eh(q)),

as desired.
The continuity of Eh(q) in h follows from the continuity of c(t; q, w). Finally,

suppose that Eh(q) is not increasing in h. Then, there exists h1, h2 ∈ [−ε, ε] such
that h1 < h2 and Eh1(q) ≥ Eh2(q). Note that c(0; q,m+ h1) = m+ h1 < m+ h2 =
c(0; q,m+h2). Because of the definition and the intermediate value theorem, there
exists t ∈ [0, 1] such that c(t; q,m + h1) = c(t; q,m + h2). By the Picard-Lindelöf
uniqueness theorem, we have that m + h1 = c(0; q,m + h1) = c(0; q,m + h2) =
m+ h2 > m+ h1, which is a contradiction. This completes the proof of our claims.

Note that the above arguments do not use the differentiability of f . If f is not
necessarily C1 but locally Lipschitz, then all above arguments are still correct when
Nikliborc’s Theorem II is correct (this theorem is explained in section 5).

2.5. Properties of the Solution to an ODE. This subsection is intended to aid
readers who are unfamiliar with the theory of ODEs.

Consider the following equation:

(2.6) ẋ(t) = h(t, x(t)), x(t∗) = x∗,

where h : X → Rn and X ⊂ R×Rn. We assume that (t∗, x∗) ∈ X. The notation ẋ
denotes the derivative of the function x with respect to t. We call this an ordinary
differential equation.

We call a convex subset I ⊂ R an interval if it contains at least two points. A
function x : I → Rn is called a solution of (2.6) if and only if 1) I is an interval and
t∗ ∈ I, 2) x(t∗) = x∗, and 3) for every t ∈ I, (t, x(t)) ∈ X and ẋ(t) = h(t, x(t)). A
solution x : I → R of (2.6) is nonextendable if and only if for any other solution
y : J → R, if I ⊂ J and x(t) = y(t) for all t ∈ I, then J = I. Then, the following
results hold.
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Fact 1. If X is open and h is continuous, then there is at least one solution
x : I → R, where I is an open interval.7

Fact 2. If X is open and h is continuous in (t, x) and locally Lipschitz in x,8 then
for any two solutions x : I → Rn and y : J → Rn, x(t) = y(t) for every t ∈ I ∩ J .
In particular, the nonextendable solution is uniquely determined and its domain is
an open interval.9

Next, consider the following parametrized equation:

(2.7) ẋ(t) = h(t, x(t), y), x(t∗) = z,

where h : X → Rn and X ⊂ R × Rn × Rm. We assume that X is open and
h is continuos in (t, x, y) and locally Lipschitz in x. Then, for every y, z with
(t∗, z, y) ∈ X, there exists a unique nonextendable solution xy,z : I → R. Let us
write x(t; y, z) = xy,z(t), and call the function x the solution function of (2.7).
Then, the following results hold.

Fact 3. The domain of x(t; y, z) is open, and x is continuous.

Fact 4. If h is locally Lipschitz, then x(t; y, z) is also locally Lipschitz.

Fact 5. If h is Ck, then x(t; y, z) is also Ck.

Facts 1-3 and 5 are famous results, and thus we omit their proofs. To prove
these results, see textbooks on ODEs: we recommend Pontryagin (1962), Hartman
(1997), or Smale and Hirsch (1974). Only Fact 4 is not standard, and thus we
present a proof in the appendix.

3. Main result

Our main results are as follows.

Theorem 3.1. Frobenius’ Theorem implies Nikliborc’s Theorem.

Theorem 3.2. Nikliborc’s Theorem implies Frobenius’ Theorem.

Proof of Theorem 3.1. Suppose that Frobenius’ Theorem holds. Let f : P → Rn,
P ⊂ Rn+1 be open, and f be C1.

First, suppose that for every (p,m) ∈ P , there exists a local solution E : V → R
around p that satisfies E(p) = m. Then, E is C2, and thus the Hessian matrix

7This fact is known as Peano’s existence theorem.
8The function h is locally Lipschitz in x if and only if for every compact set C ⊂ X, there exists

L > 0 such that if (t, x1), (t, x2) ∈ C, then ∥h(t, x1)− h(t, x2)∥ ≤ L∥x1 − x2∥.
9This fact is known as the Picard-Lindelöf uniqueness theorem.
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D2E(p) is symmetric. Meanwhile,

∂2E

∂qj∂qi
(q) =

∂

∂qj
fi(q, E(q))

=
∂fi
∂pj

(q, E(q)) +
∂fi
∂m

(q, E(q))
∂E

∂qj
(q)

=
∂fi
∂pj

(q, E(q)) +
∂fi
∂m

(q, E(q))fj(q, E(q))

= sij(q, E(q))

by (2.2). Therefore, we have that

sij(p,m) = sij(p,E(p)) =
∂2E

∂qj∂qi
(p) =

∂2E

∂qi∂qj
(p) = sji(p,E(p)) = sji(p,m).

Because (p,m) is arbitrary, we have that f is integrable.
Conversely, suppose that f is integrable. Define

g(p,m) = (f(p,m),−1).

Then, g : P → Rn+1, P is open, and g is C1. Choose any i, j ∈ {1, . . . , n} with
i 6= j. Then,

gi

(
∂gj
∂m

− ∂gn+1

∂pj

)
+ gj

(
∂gn+1

∂pi
− ∂gi

∂m

)
+ gn+1

(
∂gi
∂pj

− ∂gj
∂pi

)
= fi

∂fj
∂m

− fj
∂fi
∂m

− ∂fi
∂pj

+
∂fj
∂pi

= sji − sij = 0.

By our arguments in subsection 2.3, we have that g satisfies Jacobi’s integrability
condition. Therefore, by Frobenius’ Theorem, for every (p,m) ∈ P , there exists a
local solution (u, λ) of (2.3) around (p,m). Because

∂u

∂m
(p,m) = λ(p,m)gn+1(p,m) = −λ(p,m) 6= 0,

we can use the implicit function theorem, and thus, there exists an open neighbor-
hood V of p and a C1 function E such that E(p) = m and

u(q, E(q)) ≡ u(p,m)

for all q ∈ V . Differentiating both sides with respect to qi, we have

∂E

∂qi
(q) = −

∂u
∂pi

(q, E(q))

∂u
∂m(q, E(q))

= − gi(q, E(q))

gn+1(q, E(q))

= fi(q, E(q)).

Therefore, E is a solution of (2.1) that satisfies E(p) = m.
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Finally, suppose that for k ≥ 1, if f is Ck, then the solution E of (2.1) must be
Ck+1. Suppose that f is Ck+1. Then, for any solution E of (2.1),

DE(q) = f(q, E(q)),

and the right-hand side is Ck+1. This implies that E is Ck+2, and thus by mathe-
matical induction, we have that all claims of Nikliborc’s Theorem are correct. This
completes the proof of Theorem 3.1. □

Proof of Theorem 3.2. Suppose that Nikliborc’s Theorem holds. Let g : U → Rn \
{0}, U ⊂ Rn be open, and g be C1. Throughout this proof, we use the following
notation: if x = (x1, . . . , xn), then x̃ = (x1, . . . , xn−1).

First, suppose that for any x∗ ∈ U , there exists a local solution (u, λ) of (2.3)
around x∗. Fix an x∗ ∈ U and choose such a solution (u, λ). Because g(x∗) 6= 0,
we can assume without loss of generality that gn(x

∗) 6= 0. Then, there exists
an open neighborhood V of x∗ such that gn(x) 6= 0 for every x ∈ V . Because
∂u
∂xn

(x∗) = λ(x∗)gn(x
∗) 6= 0, the implicit function theorem means that there exists

an open neighborhood W of x̃∗ and a C1 function E : W → R such that E(x̃∗) = x∗n
and u(x̃, E(x̃)) = u(x∗) for every x̃ ∈ W , where W is an open neighborhood of x̃∗

such that (x̃, E(x̃)) ∈ V for every x̃ ∈ W . Define fi(x) = − gi(x)
gn(x)

for every x ∈ V .

Then,

∂E

∂xi
(x̃) = −

∂u
∂xi

(x̃, E(x̃))
∂u
∂xn

(x̃, E(x̃))

= − gi(x̃, E(x̃))

gn(x̃, E(x̃))

= fi(x̃, E(x̃)).

Therefore, E is a local solution of (2.1) around x∗ with the above fi. Thus, E is C2

at x∗, and thus by Young’s theorem, we have that sij(x
∗) = sji(x

∗). To calculate
these values, we have that

sij =
∂fi
∂xj

+
∂fi
∂xn

fj

=
gi

∂gn
∂xj

− ∂gi
∂xj

gn + ∂gi
∂xn

gj − ∂gn
∂xn

gigj
gn

g2n
,

sji =
∂fj
∂xi

+
∂fj
∂xn

fi

=
gj

∂gn
∂xi

− ∂gj
∂xi

gn +
∂gj
∂xn

gi − ∂gn
∂xn

gigj
gn

g2n
,

and thus,

0 = sij − sji

= − 1

g2n

[
gi

(
∂gj
∂xn

− ∂gn
∂xj

)
+ gj

(
∂gn
∂xi

− ∂gi
∂xn

)
+ gn

(
∂gi
∂xj

− ∂gj
∂xi

)]
.
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By our arguments in subsection 2.3, we have that g satisfies Jacobi’s integrability
condition.

Conversely, suppose that g satisfies Jacobi’s integrability condition. Fix an x∗ ∈
U , and assume without loss of generality that gn(x

∗) > 0. Let W = {x ∈ U |gn(x) >
0}, and define fi(x) = − gi(x)

gn(x)
. Consider the following PDE:

(3.1) DE(x̃) = f(x̃, E(x̃)).

By repeating the above calculation, we have that sij = sji on W , and thus by
Nikliborc’s Theorem and our arguments in subsection 2.4, there exists ε > 0 such
that if |h| ≤ ε, then there exists a solution Eh :

∏n−1
i=1 ]x

∗
i − ε, x∗i + ε[→ R that

satisfies Eh(x̃
∗) = x∗n + h. Moreover, Eh is continuous and increasing in h.

Choose a sufficiently small δ > 0 such that if x̃ ∈
∏n−1

i=1 [x
∗
i − δ, x∗i + δ], then

E−ε(x̃) < x∗n − δ and Eε(x̃) > x∗n + δ. Define V =
∏n

i=1]x
∗
i − δ, x∗i + δ[. Then, by

the intermediate value theorem, for every x ∈ V , there uniquely exists h ∈] − ε, ε[
such that xn = Eh(x̃). Define u(x) as such an h. Consider the following ODE:

ċ(t; x̃, w) = f((1− t)x̃∗ + tx̃, c(t; x̃, w)) · (x̃− x̃∗), c(0; x̃, w) = w.

Note that this equation is equivalent to (2.5). By our arguments in subsection 2.4,
we have that Eh(x̃) = c(1; x̃, x∗n + h), and thus we have

u(x) = h ⇔ c(1; x̃, x∗n + h) = xn.

By definition, c(1; x̃∗, x∗n + h) = x∗n + h, and thus, if ε > 0 and δ > 0 are sufficiently

small, then ∂
∂hc(1; x̃, x

∗
n + h) > 0 for all x̃ ∈

∏n−1
i=1 ]x

∗
i − δ, x∗i + δ[ and h ∈] − ε, ε[.

Therefore, by the implicit function theorem, we have that u is differentiable and

∂u

∂xn
(x) =

1
∂c
∂w (1; x̃, x

∗
n + u(x))

> 0.

Choose any w ∈ R. If u−1(w) is nonempty, then

(3.2) u−1(w) = {(x̃, Ew(x̃))||xi − x∗i | < δ for all i ∈ {1, . . . , n− 1}} ∩ V,

and the right-hand side is an n − 1 dimensional C2 manifold. Next, choose any
x ∈ V and suppose that u(x) = h. Then,

∂Eh

∂xi
(x̃) = −

∂u
∂xi

(x)
∂u
∂xn

(x)

by a direct calculation, and

∂Eh

∂xi
(x̃) = fi(x) = − gi(x)

gn(x)

by definition. Therefore, we have either gi(x) =
∂u
∂xi

(x) = 0 or

∂u
∂xi

(x)

gi(x)
=

∂u
∂xn

(x)

gn(x)
.

Thus, if we define λ(x) =
∂u
∂xn

(x)

gn(x)
, then it is continuous and positive, and

Du(x) = λ(x)g(x),
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as desired.
Finally, if g is Ck, then f is also Ck, and thus Eh is Ck+1 and c(t; x̃, w) is Ck,

and by the implicit function theorem, u is Ck. Therefore, λ is Ck−1. Moreover, if
u−1(w) is nonempty, then by (3.2), we have that it is an n − 1 dimensional Ck+1

manifold. This completes the proof of Theorem 3.2. □

4. Comments on the two theorems

4.1. Comments on Nikliborc’s Theorem. If f is independent of m, then the
integrability condition coincides with

∂fi
∂pj

(p) =
∂fj
∂pi

(p),

and in this case, the existence of E such that DE(p) = f(p) is a famous result
derived by Poincaré. There are two alternative proofs of this result. One uses
Stokes’ theorem, and the other analyzes the De Rham cohomology. Both are well
known. Because of the similarity between this result and Nikliborc’s Theorem, we
doubt that the latter is a classical result, and Nikliborc himself may not be the
founder of this theorem. We can at least say that, to the best of our knowledge,
Nikliborc’s paper contains one of the classical results concerning the PDE in (2.1).

In Nikliborc’s original result, f is not C1, but is differentiable and locally Lips-
chitz. Theorems 3.1 and 3.2 suggest that an extension of Frobenius’ Theorem may
hold. That is, if g is differentiable and locally Lipschitz, then we may be able to
show the following result: there exists a solution (u, λ) of (2.3) if and only if g
satisfies Jacobi’s integrability condition (where λ is not necessarily continuous, and
u is not necessarily C1).

To show this, we are confronted with at least two difficulties. First, to prove
the differentiability of the solution function c(t; q, w) of (2.5), we usually assume
that f is C1. If f is not C1, then Hadamard’s lemma cannot be directly used, and
thus the present proof of the differentiability of this function is broken (see ch.4
of Pontryagin (1962)). Second, we use the implicit function theorem to ensure the
differentiability of u. If f is not continuously differentiable, however, c(t; x̃, w) is
probably not C1, and thus the usual implicit function theorem is broken. Hence,
whether the above extension of Frobenius’ Theorem holds or not is still an open
problem.

However, in the next section, we introduce a more extended form of Frobenius’
Theorem, and show that this is equivalent to an extended form of Nikliborc’s The-
orem.

4.2. Comments on Frobenius’ Theorem. The original version of Frobenius’
Theorem is written in the language of differential forms. Suppose that ω is a 1-form
on some manifold X that does not vanish. Then, the original Frobenius’ Theorem
states that the following two claims are equivalent: 1) for every x∗ ∈ X, there exists
an open neighborhood U ⊂ X of x∗ and a function u : X → R such that du does
not vanish and is proportional to ω on U ; 2) for every x∗ ∈ X, there exists an open
neighborhood U ⊂ X of x∗ and a 1-form θ defined on U such that dω = ω ∧ θ.
The relationship between our version of Frobenius’ Theorem and the original form
of Frobenius’ Theorem is explained by Hosoya (2012).
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There exists an extension of Frobenius’ Theorem. Suppose that ω1, . . . , ωk are
1-forms on some n dimensional manifold X, and the intersection of the kernels
of ωi is n − k dimensional at every point. Then, the following statements are
equivalent: 1) for every x∗ ∈ X, there exists an open neighborhood U ⊂ X of x∗

and u1, . . . , uk : U → R such that the intersection of the kernels of du1, . . . , duk is the
same as that of ω1, . . . , ωk for each point of U ; 2) for every x∗ ∈ X, there exists an
open neighborhood U and a family of 1-forms (θij)

k
i,j=1 defined on U such that dωi =∑k

j=1 ωj∧θij for every i ∈ {1, . . . , k}. For this extension, see, for example, Auslander

and MacKenzie (2009), Hicks (1965), Kosinski (1993), Matsushima (1972), and
Sternberg (1999). Our consideration suggests that this probably corresponds to
some variety of Nikliborc’s Theorem on the following differential equation:

DEi(p) = fi(p,E1(p), . . . , Ek(p)) for all i ∈ {1, . . . , k}, E(p) = m.

Finally, we note a fact. If g is Ck and (u, λ) is a solution of (2.3), then u−1(w)
is a Ck+1 manifold. One might think that u itself can be Ck+1. However, this is
incorrect. The following example was obtained by Debreu (1976). Let

g1(x) =


x2
2√

1+x4
2

if x2 ≥ 0,

0 otherwise,

and

g2(x) =

{
1√
1+x4

2

if x2 ≥ 0,

1 otherwise.

Then, g is C1, but not C2. If x∗ = (0, 0), we can obtain a local solution

u(x) =

{
x2

1−x1x2
if x2 ≥ 0,

x2 otherwise

and

λ(x) =

{ √
1+x4

2

(1−x1x2)2
if x2 ≥ 0,

1 otherwise,

of the TDE in (2.3). However, no C2 local solution v of (2.3) around (0, 0) exists for
the following reason. Suppose that (v, µ) is a solution of (2.3) and v is C2. Consider
the following differential equation:

c(t; d) = −g1(t, c(t; d))

g2(t, c(t; d))
, c(0; d) = d.

Then, there exists ε > 0 such that the solution function c(t; d) is defined on [−ε, ε]2.
Without loss of generality, we can assume that both u, v are defined on [−ε, ε]2.
Choose δ > 0 sufficiently small that if t ∈ [−δ, δ], then c(t;−ε) < −δ and c(t; ε) > δ.
Define W = [−δ, δ]2. By the intermediate value theorem, we have that for every
x ∈ W , there exists d ∈ [−ε, ε] such that c(x1; d) = x2. By the chain rule, we have
that u(x) = u(0, d) = d and v(x) = v(0, d). Define φ(d) = v(0, d). Then, φ is C2

and φ′(d) = µ(0, d)g2(0, d) > 0. By the above result, we have that for every x ∈ W ,

v(x) = φ(u(x)),
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and thus,
∂v

∂x2
(x) = φ′(u(x))

∂u

∂x2
(x),

and the right-hand side is not differentiable if x1 6= 0 and x2 = 0, which is a
contradiction. Therefore, such a (v, µ) does not exist.

5. Equivalence result for extensions

We extend the original version of Nikliborc’s result. First, we introduce an im-
portant theorem.

Rademacher’s Theorem. Suppose that f : U → R, U ⊂ Rn is open, and f is
locally Lipschitz. Then, f is Fréchet differentiable at almost every x ∈ U .

The proof of this theorem is given in Heinonen (2004). Because of this theorem,
if f : P → Rn, P ⊂ Rn+1 is open, and f is locally Lipschitz, then sij(p,m) can be
defined for almost all (p,m) ∈ P . Thus, we can extend the notion of integrability:
f is integrable if and only if sij(p,m) = sji(p,m) for almost all (p,m) ∈ P .

Our extended form of Nikliborc’s Theorem is as follows.

Nikliborc’s Theorem II. Suppose that f : P → Rn, P ⊂ Rn+1 is open, and f
is locally Lipschitz. Then, f is integrable if and only if for every (p,m) ∈ P , there
exists a local solution E : V → R of PDE (2.1) around p such that E(p) = m.

We do not present the proof of this theorem here, because this is not the main
theme of the current paper. In the near future, the proof of this theorem will
hopefully be published. This theorem has one important application in the the-
ory of consumer behavior, and thus we are preparing a paper that examines this
application. This future paper will contain a proof of this theorem.

Note that if f is also differentiable, then the proof of this theorem was given by
Nikliborc (1929), though this paper is written in French. For an English version, see
EXISTENCE THEOREM I of Hurwicz and Uzawa (1971). Although the proof of
EXISTENCE THEOREM I is missing some details,10 we can fill the gaps by using
a local Lipschitz constant.

The theme of this paper is the relationship between PDE (2.1) and TDE (2.3).
Therefore, we must present the counterpart of this theorem. Suppose that g : U →
Rn, U ⊂ Rn is open, and g is locally Lipschitz. A pair (u, λ) of real-valued functions
defined on some open set V is a solution of TDE (2.3) if and only if 1) u is locally
Lipschitz, 2) λ is positive, and 3) Du(x) = λ(x)g(x) for almost every x ∈ V . If
x∗ ∈ V , then (u, λ) is called a local solution of (2.3) around x∗.

Meanwhile, g is said to satisfy extended Jacobi’s integrability condition if
(2.4) holds for almost all x∗ ∈ U .

Frobenius’ Theorem II. Suppose that g : U → Rn \{0}, U ⊂ Rn is open, and g is
differentiable and locally Lipschitz. Then, g satisfies extended Jacobi’s integrability

10They do not assume that f is locally Lipschitz. However, the differentiability of the function
z(k) in their proof cannot be proved when f is not locally Lipschitz.
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condition if and only if, for every x∗ ∈ U , there exists a local solution (u, λ) of TDE
(2.3) around x∗ such that for every w ∈ R, u−1(w) is either the empty set or an
n− 1 dimensional C1 manifold.

Our next theorems are as follows.

Theorem 5.1. Frobenius’ Theorem II implies Nikliborc’s Theorem II.

Theorem 5.2. Nikliborc’s Theorem II implies Frobenius’ Theorem II.

Proof of Theorem 5.1. Suppose that Frobenius’ Theorem II holds. Let f : P → Rn,
P ⊂ Rn+1 be open, and f be locally Lipschitz.

First, suppose that for every (p,m) ∈ P , there exists a local solution E of (2.1)
around p such that E(p) = m. Because f is locally Lipschitz, by Rademacher’s
Theorem, it is differentiable almost everywhere. Choose any (p,m) ∈ P such that f
is differentiable, and let E be a local solution of (2.1) around p such that E(p) = m.
Then, E is twice differentiable at p. Now, the following result is needed.

Extended Young’s Theorem. Suppose that W ⊂ R2 is open, and g : W → R is
differentiable around (x∗, y∗) ∈ W and both ∂g

∂x and ∂g
∂y are differentiable at (x∗, y∗).

Then, ∂2g
∂y∂x(x

∗, y∗) = ∂2g
∂x∂y (x

∗, y∗).

Proof of Extended Young’s Theorem. Easy, and thus omitted. □

Using this theorem, we have that

sij(p,m) =
∂2E

∂qj∂qi
(p) =

∂2E

∂qi∂qj
(p) = sji(p,m),

and thus f is integrable.
Conversely, suppose that f is integrable. Define

g(p,m) = (f(p,m),−1).

Then, for the same reason as in the proof of Theorem 3.1, we have that g satisfies
extended Jacobi’s integrability condition. Fix (p,m) ∈ P . Then, by Frobenius’
Theorem II, there exists a local solution (u, λ) of (2.3) around (p,m), and for any
w ∈ R, u−1(w) is either the empty set or an n dimensional C1 manifold. Let U be
the domain of u and λ.

Recall the ODE (2.5):

ċ(t; q, h) = f((1− t)p+ tq, c(t; q, h)) · (q − p), c(0; q, h) = m+ h.

Choose a sufficiently small ε > 0 such that if |qi − pi| ≤ ε for every i ∈ {1, . . . , n}
and |h| ≤ ε, then c(t; q, h) exists and ((1 − t)p + tq, c(t; q, h)) ∈ U for all t ∈ [0, 1].
Define V =

∏n
i=1]pi− ε, pi+ ε[ and choose any q ∈ V and h ∈]− ε, ε[. We will show

that u((1− t)p+ tq, c(t; q, h)) = u(p,m+ h) for every t ∈ [0, 1].
Choose any q ∈ V . If q = p, then c(t; q,m + h) ≡ m + h, and thus our claim is

correct. Hence, we assume that q 6= p. We need a lemma.
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Lemma 5.3. Suppose that W ⊂ U and the Lebesgue measure of U \ W is zero.
Moreover, suppose that q ∈ V and qi∗ 6= pi∗ for i∗ ∈ {1, . . . , n}. For every (t, r̃, h) ⊂
Rn+1 such that t ∈ [0, 1], r ∈ V for

ri =


r̃i if i < i∗,

qi if i = i∗,

r̃i−1 if i > i∗,

and h ∈]− ε, ε[, define

(5.1) ξ(t, r̃, h) = ((1− t)p+ tr, c(t; r, h)).

Then, the Lebesgue measure of ξ−1(U \W ) is also zero.

Proof of Lemma 5.3. Without loss of generality, we assume that i∗ = n. Through-
out the proof of Lemma 5.3, we use the following notation. If r ∈ Rn, then
r̃ = (r1, . . . , rn−1) ∈ Rn−1. Conversely, if r̃ ∈ Rn−1, then r = (r1, . . . , rn−1, qn).

Let Ṽ = {r̃|r ∈ V }. We first show that ξ is one-to-one on the set ]0, 1]×Ṽ×]−ε, ε[.
Suppose that t1 6= 0 6= t2 and ξ(t1, r̃1, h1) = ξ(t2, r̃2, h2) = (v, c). Because vn =
(1 − t1)pn + t1qn = (1 − t2)pn + t2qn and pn 6= qn, we have t1 = t2. Because
vi = (1 − t1)pi + t1r1i = (1 − t1)pi + t1r2i and t1 6= 0, we have that r1i = r2i,
and thus r̃1 = r̃2. Therefore, it suffices to show that c(t; r, h) is increasing in h.
Suppose that h1 < h2 and c(t; r, h1) ≥ c(t; r, h2). Because c(0; r, h1) = m + h1 <
m+ h2 = c(0; r, h2), by the intermediate value theorem, there exists s ∈ [0, t] such
that c(s; r, h1) = c(s; r, h2). Then, by the Picard-Lindelöf uniqueness theorem, we
have m+ h1 = c(0; r, h1) = c(0; r, h2) = m+ h2, which is a contradiction.

Next, define

W ℓ = ξ([ℓ−1, 1[×Ṽ×]− ε, ε[).

We show that ξ−1 is Lipschitz on W ℓ. Define

t(v) =
vn − pn
qn − pn

,

r̃(v) =
1

t(v)
[(t(v)− 1)p̃+ ṽ].

Suppose that (v1, c1), (v2, c2) ∈ W ℓ and (vj , cj) = ξ(tj , r̃j , hj). Then, we have

tj = t(vj) and r̃j = r̃(vj). Clearly, the functions t(v) and r̃(v) are Lipschitz on W ℓ.
Next, consider the following ODE:

ḋ(s) = f((1− (s+ t− t2))p+ (s+ t− t2)r(v), d(s)) · (r(v)− p), d(t2) = c.

Let d(s; t, v, c) be the solution of the above ODE. Define V̂ as the closure of Ṽ .

If (v, c) = ξ(t, r̃, h) for some (t, r̃, h) ∈ [ℓ−1, 1] × V̂ × [−ε, ε], then d(s; t, v, c) =
c(s+ t− t2; r, h). Moreover, the set

{(t, v, c)|t ∈ [ℓ−1, 1], (v, c) = ξ(t, r̃, h) for some (r̃, h) ∈ V̂ × [−ε, ε]}
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is compact, and thus, we have that (t, v, c) 7→ d(t2 − t; t, v, c) is Lipschitz on this
set. Therefore,

|h1 − h2| = |d(t2 − t1; t1, v1, c1)− d(t2 − t2; t2, v2, c2)|
≤ L[|t1 − t2|+ ‖(v1, c1)− (v2, c2)‖]
= L[|t(v1)− t(v2)|+ ‖(v1, c1)− (v2, c2)‖]
≤ L(M + 1)‖(v1, c1)− (v2, c2)‖,

where L,M > 0 are some constants, and hence our claim is correct.
Now, recall that the Lebesgue measure of U \W is zero. Because ξ−1 is Lipschitz

on W ℓ, we have that the Lebesgue measure of

ξ−1(W ℓ ∩ (U \W ))

is zero. Therefore, the Lebesgue measure of

∪ℓξ
−1(W ℓ ∩ (U \W ))

is also zero. Clearly, the Lebesgue measure of

ξ−1(U \W ) \
(
∪ℓξ

−1(W ℓ ∩ (U \W ))
)

is zero, because this set is included in {(t, r̃, h)|t ∈ {0, 1}}. This completes the proof
of Lemma 5.3. □

By Rademacher’s Theorem and Lemma 5.3, there exists a sequence (qk, hk) such
that qk → q, hk → h as k → ∞, and for all k and almost all t ∈ [0, 1], u is
differentiable and Du = λg at ((1 − t)p + tqk, c(t; qk, hk)). Fix t ∈ [0, 1]. If t = 0,
then clearly u((1 − t)p + tq, c(t; q, h)) = u(p,m + h). If t > 0, then for almost all
s ∈ [0, t],

d

ds
u((1− s)p+ tqk, c(s; qk, hk)) =

n∑
i=1

(qki − pi)
∂u

∂qi
+

∂u

∂w
ċ

= λ

[
n∑

i=1

(qki − pi)gi −
n∑

i=1

(qki − pi)fi

]
= 0,

and thus u((1− t)p+ tqk, c(t; qk, hk)) = u(p,m+ hk). Taking k → ∞, we have that
u((1− t)p+ tq, c(t; q, h)) = u(p,m+ h), as desired.

Define Eh(q) = c(1; q, h) for every q ∈ V and h ∈] − ε, ε[. Suppose that u
is differentiable and Du = λg at (q, Eh(q)). We show that Eh is C1 around q
and DEh(q) = f(q, Eh(q)). To solve this, define Xh = u−1(u(p,m + h)). Then,
(p(t), c(t; q, h)) ∈ Xh. Define the function χ : Xh → Rn as

χ(r1, . . . , rn, w) = (r1, . . . , rn).

Then, Eh(r) is the n + 1-th coordinate of χ−1(r). Thus, by the inverse function
theorem, to prove that Eh is C1 around q, it suffices to show that dχ(q,Eh(q)) is

a surjective function from the tangent space T(q,Eh(q))(Xh) into Rn.11 Note that,

11In this part, we need some basic knowledges about differential manifolds. See sections 1.1-1.4
of Guillemin and Pollack (1976).
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because χ is the restriction of a linear mapping K(r1, . . . , rn, w) = (r1, . . . , rn) into
Xh, dχ(q,Eh(q)) is the restriction of the same linear mapping into T(q,Eh(q))(Xh).
Choose any x ∈ Rn, and define c = f(q, Eh(q)) · x. Then, (x, c) · g(q, Eh(q)) =
0. This implies that Du(q, Eh(q))(x, c) = 0, and thus (x, c) ∈ T(q,Eh(q))(Xh) and
dχ(q,Eh(q))(x, c) = x as desired. Moreover,

∂Eh

∂qi
(q) = −

∂u
∂qi

(q, Eh(q))

∂u
∂w (q, Eh(q))

= fi(q, Eh(q)).

Therefore, our claim is correct.
Now, choose any q ∈ V with qn 6= pn and i ∈ {1, . . . , n − 1}. Then, by Lemma

5.3, there exists δ > 0 and a sequence (qk, hk) such that qk → q, hk → 0 as k → ∞,
and for every k and almost every s ∈] − δ, δ[, u is differentiable and Du = λg at
(qk + sei, Ehk(qk + sei)), where ei is the i-th unit vector.12 Then, if 0 < |s| < δ,

Ehk(qk + sei)− Ehk(qk)

s
=

1

s

∫ s

0
fi(q

k + τei, Ehk(qk + τei))dτ.

By the dominated convergence theorem, we have that

E0(q + sei)− E0(q)

s
=

1

s

∫ s

0
fi(q + τei, E0(q + τei))dτ,

and thus,
∂E0

∂qi
(q) = fi(q, E0(q)).

Next, choose any q ∈ V and i ∈ {1, . . . , n − 1}. Let e = (1, 1, . . . , 1) ∈ Rn, and let
qk = q + k−1e. For sufficiently large k, qkn 6= pn, and thus there exists δ > 0 such
that if k is sufficiently large and 0 < |s| < δ, then

E0(q
k + sei)− E0(q

k)

s
=

1

s

∫ s

0
fi(q

k + τei, E0(q
k + τei))dτ.

Therefore, again by the dominated convergence theorem,

E0(q + sei)− E0(q)

s
=

1

s

∫ s

0
fi(q + τei, E0(q + τei))dτ,

which implies that
∂E0

∂qi
(q) = fi(q, E0(q))

for every q ∈ V and i ∈ {1, . . . , n − 1}. Changing n to 1 and repeating the above
arguments, we have that

DE0(q) = f(q, E0(q))

for all q ∈ V . Clearly, E0(p) = m, and thus we obtain a local solution E0 : V → R
of (2.1). This completes the proof. □

12Use Fubini’s theorem. Note that c(t; r, h) = c(1; (1 − t)p + tr, h) = Eh((1 − t)p + tr) by the
Picard-Lindelöf uniqueness theorem.
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Proof of Theorem ??. Suppose that Nikliborc’s Theorem II holds. Let g : U →
Rn \ {0}, U ⊂ Rn be open, and g be locally Lipschitz. Throughout this proof, we
use the following notation: if x = (x1, . . . , xn), then x̃ = (x1, . . . , xn−1).

First, suppose that for every x∗ ∈ U , there exists a local solution (u, λ) of TDE
(2.3) around x∗ such that for every w ∈ R, u−1(w) is either the empty set or an
n− 1 dimensional C1 manifold. Choose any x∗ ∈ U such that g is differentiable at
x∗, and choose a local solution (u, λ) of TDE (2.3) around x∗ such that for every
w ∈ R, u−1(w) is either the empty set or an n− 1 dimensional C1 manifold. Let V
be the domain of u and λ. Without loss of generality, we assume that gn(x

∗) 6= 0.

Define fi(x) = − gi(x)
gn(x)

for every x ∈ V with gn(x) 6= 0, and consider the following

ODE:

ċ(t; x̃, h) = f((1− t)x̃∗ + tx̃, c(t; x̃, h)) · (x̃− x̃∗), c(0; x̃, h) = x∗n + h.

Because t 7→ c(t; x̃∗, 0) ≡ x∗n is defined on R, we have that there exists an open
neighborhood W ⊂ V of x̃∗ and an open interval I including 0 such that c(t; x̃, h) is
defined on [0, 1]×W×I. Define Eh(x̃) = c(1; x̃, h). Then, as in the proof of Theorem
5.1, we can show that u(x̃, Eh(x̃)) = u(x̃∗, x∗n + h) and DE0(x̃) = f(x̃, E0(x̃)) for
every x̃ ∈ W . Therefore, by extended Young’s theorem, we have that

sij(x
∗) =

∂2E0

∂xj∂xi
(x̃∗) =

∂2E0

∂xi∂xj
(x̃∗) = sji(x

∗),

and thus, by the same arguments as in the proof of Theorem 3.2, we have that g
satisfies (2.4) at x∗. Hence, g satisfies extended Jacobi’s integrability condition.

Conversely, suppose that g satisfies the extended Jacobi integrability condition.
Choose any x∗ ∈ U . Without loss of generality, we assume that gn(x

∗) > 0. For

i ∈ {1, . . . , n − 1}, define fi(x) = − gi(x)
gn(x)

. Then, f(x) is defined and Lipschitz

on some open neighborhood W of x∗. Without loss of generality, we assume that
gn(x) > 0 on W .

If g is differentiable and (2.4) holds at x ∈ W , then by the same arguments as
in the proof of Theorem 3.2, we have that sij(x) = sji(x). This implies that f is
integrable. Consider the following PDE (3.1):

(5.2) DE(x̃) = f(x̃, E(x̃)).

By Nikliborc’s Theorem II and our arguments in subsection 2.4, there exists ε > 0
such that if |h| ≤ ε, then there exists a solution Eh :

∏n−1
i=1 ]x

∗
i − ε, x∗i + ε[→ R of

(5.2) that satisfies Eh(x̃
∗) = x∗n + h. Moreover, Eh is continuous and increasing in

h.
Choose a sufficiently small δ > 0 such that if x̃ ∈

∏n−1
i=1 [x

∗
i − δ, x∗i + δ], then

E−ε(x̃) < x∗n − δ and Eε(x̃) > x∗n + δ. Define V =
∏n

i=1]x
∗
i − δ, x∗i + δ[ and V̄

as the closure of V . Then, by the intermediate value theorem, for every x ∈ V̄ ,
there uniquely exists h ∈] − ε, ε[ such that xn = Eh(x̃). Define u(x) as such an h.
Consider the following ODE:

ċ(t; x̃, w) = f((1− t)x̃∗ + tx̃, c(t; x̃, w)) · (x̃− x̃∗), c(0; x̃, w) = w.

Note that this equation is equivalent to (2.5), and because f is locally Lipschitz,
c(t; x̃, w) is also locally Lipschitz. By our arguments in subsection 2.4, we have that
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Eh(x̃) = c(1; x̃, x∗n + h), and thus

u(x) = h ⇔ c(1; x̃, x∗n + h) = xn.

Define Ṽ =
∏n−1

i=1 [x
∗
i − δ, x∗i + δ]. For every (x̃, w) ∈ Ṽ×]x∗n − ε, x∗n + ε[, if |h| is

sufficiently small, then

c(1; x̃, w + h)− c(1; x̃, w) = h+

∫ 1

0
[f((1− t)x̃∗ + tx̃, c(t; x̃, w + h))

− f((1− t)x̃∗ + tx̃, c(t; x̃, w))] · (x̃− x̃∗)dt,

and

|[f((1−t)x̃∗+tx̃, c(t; x̃, w+h))−f((1−t)x̃∗+tx̃, c(t; x̃, w))] ·(x̃− x̃∗)| ≤ L‖x̃− x̃∗‖|h|
for every t ∈ [0, 1], where L > 0 is some constant independent of t, x̃, w, h. Therefore,
if ‖x̃ − x̃∗‖ < (2L)−1, then |c(1; x̃, w + h) − c(1; x̃, w)| ≥ 2−1|h|. This implies that
if δ > 0 is sufficiently small, then ∂c

∂w (1; x̃, w) ≥ 2−1 whenever the left-hand side is
defined. Because xn 7→ u(x̃, xn) is the inverse function of h 7→ c(1; x̃, x∗n + h), we
have that if δ > 0 is sufficiently small, then u is Lipschitz in xn on V̄ . Hence, we
hereafter assume that δ > 0 is sufficiently small and u is Lipschitz in xn on V̄ .

Next, choose any x ∈ V and suppose that u(x) = w. Then, Ew(x̃) = xn,
and the graph of Ew(ỹ) coincides with the set u−1(w). Thus, the latter set is
an n − 1 dimensional C1 manifold. Moreover, because DEw(x̃) = f(x), there
exists δ′ > 0 such that if |h| < δ′, then (x1, . . . , xi + h, . . . , xn) ∈ V̄ , and yn(h) =
Ew(x1, . . . , xi + h, . . . , xn−1) ∈ [xn − (|fi(x)| + 1)|h|, xn + (|fi(x)| + 1)|h|]. Define
y(h) = (x1, . . . , xi + h, . . . , xn−1, yn(h)). Then, we have that u(y(h)) = u(x) = w.
Because u is Lipschitz in xn on V̄ , there exists L′ > 0 independent of x, h such that

|u(x1, . . . , xi + h, . . . , xn)− u(x)| = |u(x1, . . . , xi + h, . . . , xn)− u(y(h))|
≤ L′(max

y∈V̄
‖f(y)‖+ 1)|h|,

which implies that u is locally Lipschitz on V . By Rademacher’s theorem, u is
differentiable at almost every point x ∈ V . If u is differentiable at x ∈ V , then for
h = u(x), Eh(x̃) = xn and the graph of Eh coincides with u−1(h). Thus, by the
chain rule,

∂u

∂xi
(x) +

∂u

∂xn
(x)fi(x) = 0,

which implies that either ∂u
∂xi

(x) = gi(x) = 0 or

∂u
∂xi

(x)

gi(x)
=

∂u
∂xn

(x)

gn(x)

for every i ∈ {1, . . . , n− 1}. Therefore, if we define

λ(x) =
∂u
∂xn

(x)

gn(x)
,

then
Du(x) = λ(x)g(x).

It suffices to show that λ(x) is positive for almost all x ∈ V . Now, xn 7→ u(x̃, xn)
is the inverse function of w → c(1; x̃, x∗n + w), and the latter function is increasing.
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Therefore, we have that u is increasing in xn. Because u is differentiable at almost all
points in V , for almost every x̃ such that |xi−x∗i | < δ for every i ∈ {1, . . . , n−1}, u
is differentiable at (x̃, xn) for almost all xn ∈]x∗n−δ, x∗n+δ[. Suppose that x̃ satisfies
such a requirement. Let ξ(xn) = u(x̃, xn). Then, ξ is Lipschitz on [x∗n − δ, x∗n + δ]
and ξ−1 : w 7→ c(1; x̃, x∗n + w) is Lipschitz on [ξ(x∗n − δ), ξ(x∗n + δ)]. Therefore, for
almost all xn ∈]x∗n − δ, x∗n + δ[, ξ is differentiable at xn and ξ−1 is differentiable at
ξ(xn). For such an xn, ξ

′(xn)(ξ
−1)′(ξ(xn)) = 1, and thus ∂u

∂xn
(x̃, xn) = ξ′(xn) > 0.

Because gn(x̃, xn) > 0, we have that λ(x) is positive for almost all x ∈ V . We can
define λ(x) = 1 if the original λ(x) = 0 or λ(x) is undefined, and the new λ(x) is
always positive on V . Thus, (u, λ) is a solution of TDE (2.3). This completes the
proof. □

Notes on Theorems 5.1 and 5.2. In PDE (2.1), if f is differentiable, then the
solution E must be twice differentiable. In this connection, we obtain a conjecture.
In TDE (2.3), if g is differentiable and locally Lipschitz, then for a solution (u, λ),
u should be differentiable. To prove this, however, we are confronted with a huge
problem: we cannot prove the differentiability of the solution function c(t; x̃, w)
under only the differentiability and locally Lipschitz condition of g. This breaks our
proof of Theorem 3.2, and thus this conjecture remains an open problem.

Meanwhile, suppose that f : P → Rn is locally Lipschitz on an open set P ⊂ Rn+1

and integrable. The proof of Theorem 5.1 implies that for every (p,m) ∈ P such
that f is differentiable at (p,m), sij(p,m) = sji(p,m). In this connection, suppose
that g : U → Rn is locally Lipschitz on an open set U ⊂ Rn and satisfies extended
Jacobi’s integrability condition. The proof of Theorem 5.2 implies that for every
x∗ ∈ U such that g is differentiable at x∗, (2.4) must hold at x∗. Note that these
are not obvious even when f, g are differentiable, because the derivative may be not
continuous.

Now, suppose that U ⊂ Rn is open and g : U → Rn is locally Lipschitz and
satisfies extended Jacobi’s integrability condition. Choose any x∗ ∈ U and suppose
that (u, λ) is a local solution of TDE (2.3) around x∗ such that X = u−1(u(x∗)) is
an n − 1 dimensional C1 manifold. Then, there is a conjecture: g(x∗) is a normal
vector of Tx∗(X). Actually, this conjecture can be verified. To show this, without

loss of generality, suppose that gn(x
∗) 6= 0, and define fi(x) = − gi(x)

gn(x)
(if it can be

defined). Let E0 be the function defined in the proof of Theorem 5.2. Then, E0 is
defined on some open and convex neighborhood of x̃∗, u(x̃, E0(x̃)) ≡ u(x∗), and E0

solves the PDE (5.2) with E0(x̃
∗) = x∗n. Therefore, φ : x̃ 7→ (x̃, E0(x̃)) is a local

parametrization of the manifold X around x∗, and thus Tx∗(X) coincides with the
range of Dφ(x̃∗). Choose any ṽ ∈ Rn−1 and define x̃(t) = x̃∗ + tṽ. Then,

Dφ(x∗)ṽ =
d

dt
φ(x̃(t))

∣∣∣∣
t=0

= (ṽ, DE0(x̃
∗)ṽ)

= (ṽ, f(x∗) · ṽ),
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and thus, for every v ∈ Tx∗(X),

g(x∗) · v = gn(x
∗)[−f(x∗) · ṽ + vn] = 0,

as desired.
However, this proof is heavily dependent on the proofs of Theorem 5.1 and 5.2,

and thus this fact cannot be used to prove Theorems 5.1 and 5.2. This makes the
proofs of these theorems difficult.

This result is valuable, because it implies the uniqueness of the leaf containing
x∗.

Finally, Lemma 5.3 itself is important. We can verify Nikliborc’s Theorem II
using Lemma 5.3 and the usual proof of Nikliborc’s Theorem.

Appendix A. Proofs of fact 4

First, we introduce a famous result.

Gronwall’s inequality. Suppose that u : [t0, t1] → R is continuous and satisfies
the following inequality for every t ∈ [t0, t1]:

u(t) ≤
∫ t

t0

(αu(τ) + β)dτ,

where α > 0 and β ≥ 0. Then,

u(t) ≤ β

α
(eα(t−t0) − 1).

Proof of Gronwall’s inequality. See Lemma 3 of Hosoya (2018). □

Suppose that h(t, x, y) is locally Lipschitz. Recall equation (2.7):

ẋ(t) = h(t, x(t), y), x(t∗) = z.

Actually, we can omit the value z. Fix x∗ ∈ Rn and define k(t, x, y, z) as

k(t, x, y, z) = h(t, x(t) + (z − x∗), y),

and consider the following differential equation:

ẋ(t) = k(t, x(t), y, z), x(t) = x∗.

Clearly, x : I → R is a solution of the above equation if and only if x(t)+(z−x∗) is a
solution of (2.7). Therefore, we omit z and simply consider the following differential
equation:

(A.1) ẋ(t) = h(t, x(t), y), x(t∗) = x∗.

Let x(t; y) be the solution function of (A.1). By Fact 3, the domain U of x(t; y)
is open and x(t; y) is continuous. Choose any (t̄, ȳ) ∈ U . Let I be the domain of
t 7→ x(t; ȳ), and choose any t0, t1 ∈ I such that t0 < t1 and t∗, t̄ ∈]t0, t1[. Because
x(t; y) is continuous, there exists a compact neighborhood V of ȳ such that 1) if
y ∈ V , then the domain of t 7→ x(t; y) includes [t0, t1], and 2) there exist L > 0
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and M > 0 such that if we define W = {x(t; y)|t ∈ [t0, t1], y ∈ V }, then for every
(t, x, y), (t′, x′, y′) ∈ [t0, t1]×W × V ,

‖h(t, x, y)‖ ≤ M,

‖h(t, x, y)− h(t′, x′, y′)‖ ≤ L[|t− t′|+ ‖x− x′‖+ ‖y − y′‖].
If t∗ ≤ t ≤ t1 and y1, y2 ∈ V , then

‖x(t; y1)− x(t; y2)‖ =

∥∥∥∥∫ t

t∗
(h(τ, x(τ ; y1), y1)− h(τ, x(τ ; y2), y2))dτ

∥∥∥∥
≤

∫ t

t∗
‖h(τ, x(τ ; y1), y1)− h(τ, x(τ ; y2), y2)‖dτ

≤
∫ t

t∗
[L‖x(τ ; y1)− x(τ ; y2)‖+ L‖y1 − y2‖]dτ,

and by Gronwall’s inequality, we have

‖x(t; y1)− x(t; y2)‖ ≤ ‖y1 − y2‖(eL(t−t∗) − 1) ≤ ‖y1 − y2‖(eL(t1−t0) − 1).

By the symmetrical arguments, we can show that

‖x(t; y1)− x(t; y2)‖ ≤ ‖y1 − y2‖(eL(t1−t0) − 1)

for all t ∈ [t0, t
∗] and y1, y2 ∈ V . Therefore, if (t, y), (t′, y′) ∈ [t0, t1]× V , then

‖x(t; y)− x(t′; y′)‖ ≤ M |t− t′|+ (eL(t1−t0) − 1)‖y − y′‖,
and thus the solution function x(t; y) is Lipschitz on [t0, t1] × V . Hence, x(t; y) is
locally Lipschitz. This completes the proof of Fact 4. □
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