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applications to mathematical economics, optimization, numerical integration, com-
binatorics, computer science, and more.

2. The setting

Convexification estimates are established in the literature for, typically, compact
sets. With only a bit of effort it can be shown that most of the results are valid for
general sets, even unbounded. Since sets that may not be closed will arise in the
infinite dimensional considerations below, we revisit the entire theory for general
sets (and point in parenthesis the effort that can be saved if the sets in question are
closed or compact).

Let X be a normed space with norm ∥ · ∥. The distance d(x,A) between a point
x ∈ X and a subset A of X is defined by inf{∥x − a∥ : a ∈ A}. The Hausdorff
distance between two susets A1 and A2 of X is denoted haus(A1, A2), and defined
as max(sup{d(a1, A2) : a1 ∈ A1}, sup{d(a2, A1) : a2 ∈ A2}). The Hausdorff distance
does not distinguish between sets that share the same closure. It satisfies the triangle
inequality.

The convex hull of a subset A of X, denoted coA, is the smallest closed con-
vex set in X that contains A. In a finite dimensional space, say N -dimensional,
Carathéodory Theorem implies that the set of points that are convex combinations
of N + 1 points in A, is convex (notice that for unbounded sets this set may not
be closed even if A is). The closure of this collection is the convex hull of the set.
Since we later work in infinite dimensional spaces, we prefer to define the convex
hull as a closed set.

The Hausdorff distance between A and coA is a natural measure of non-convexity
of A. We use the indefinite article “a” since the literature offers, examines and com-
pares, alternative measures of non-convexity, see [5]. In this paper we concentrate
on the Hausdorff distance.

A useful parameter for subsets of a normed space is the inner radius of the set,
as follows. Let A be a set in the space. The inner radius ir(A) of A is the smallest
non-negative number r, such that for every a ∈ coA and every ε > 0, the point a
is in the convex hull of the intersection of A with the ball of radius r + ε centered
in a. (In finite dimensions, if A is closed there is no need to employ the ε, namely,
ε = 0 will do.)

Remark 2.1. Clearly, haus(A, coA) is less than or equal to ir(A) which, in turn, is
less than or equal to the diameter of A. The latter two may coincide. For instance,
when A = {0, 1} in the real line, then coA = [0, 1] and ir(A) = 1. The inner radius
ir(A) may be very large, even equal to ∞, while haus(A, coA) being small. For
instance, take A in the two-dimensional plane (ξ, η), to be the set determined by

η ≥ he−|ξ|. Then ir(A) = ∞ while haus(A, coA) < h. A similar phenomenon,
namely, inner radius being orders of magnitude bigger than the Hausdorff distance,
may occur also for compact sets.

Let A1, . . . , Ak be sets in X. The Minkowski sum A1 + · · · + Ak of the k sets is
the set {a1 + · · · + ak : ai ∈ Ai, i = 1, . . . , k}. Let ρ > 0 be a real number, then
ρA = {ρa : a ∈ A}. The Minkowski average of the k sets A1, . . . , Ak is the set
1
k (A1 + · · ·+Ak). The convex hull operation on subsets of X is not linear, namely,
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co(A1 + A2) may not be equal to coA1 + coA2, since the latter may not be closed
(e.g., in the (ξ, η) plane, take A1 = {(ξ, η) : ξ > 0, η ≥ 1

ξ} and A2 = {(ξ, η) : ξ <

0, η ≥ −1
ξ }); its closure, however, is equal to the former.

3. The finite dimensional case

The convexification estimates alluded to in the introduction, are related to the
distance (Hausdorff distance in our case) between the Minkowski average and its
convex hull. Since the finite dimensional case will play a prime role in infinite
dimensions, we revisit it. We start by stating a key observation in the theory,
namely, the Shapley-Folkman Lemma.

Lemma 3.1. Let A1, . . . , Ak be subsets of an N -dimensional Banach space X. Let
the vector a be a convex combination of points in A1 + · · · + Ak. Then a can be
written as a1 + · · · + ak where for at least k −N indices i the points ai are in Ai,
and for the rest of the indices (at most N) the point ai is a convex combination of
points in Ai.

Proof. Proofs in case the sets Ai are compact can be found, e.g., in Starr [10, Lemma
2 in Appendix 2], Arrow and Hahn [1], Artstein [2, Theorem 5.1], Zhou [12], Fradelizi
et al. [5, Lemma 2.3]. The general case can be reduced to the compact one by
considering the finite (at most N +1 elements in each) sets in Ai whose Minkowski
sum gives rise to the convex combination that yields a. □

In what follows, throughout the paper, we assume that k ≥ N .
The following result is well known and was documented in many publications (it

is verified in [5, Corollary 7.8] for spaces with asymmetric norms). The proof is
simple, and it is displayed here for further reference.

Theorem 3.2. Let A1, . . . , Ak be sets in the N -dimensional Banach space X. Let
h = max{haus(Ai, coAi) : i = 1, . . . , k}. Then the Hausdorff distance between the
Minkowski average 1

k (A1 + · · · + Ak) of the sets and its convex hull is less than or

equal to hN
k .

Proof. The estimate follows easily from the Shapley-Folkman Lemma 3.1. Indeed,
let a = a1 + · · · + ak be in the associated Minkowski sum where for at most N
indices the term ai is not in Ai. For every ε > 0, these terms can be replaced by bi
with bi ∈ Ai, with ∥ai − bi∥ ≤ h+ ε. Since ε is arbitrarily small the result follows.
(Had all the sets been closed, invoking ε would not be needed.) □

As Example 4.1 below shows, the estimate hN
k is tight for general normed spaces

of finite dimensions. Further information on the norm may yield alternative esti-
mates. Here is an estimate (also known as the Shapley-Folkman-Starr Theorem) for
Euclidean spaces. Example 4.3 below shows that the estimate is tight for Euclidean

spaces. Recall that the Euclidean norm of a vector (ξ1, . . . , ξN ) is (
∑N

i=1 ξ
2
i )

1
2 .

Theorem 3.3. Let A1, . . . , Ak be sets in the N -dimensional Euclidean space EN .
Let r = max{ir(Ai) : i = 1, . . . , k}. Then the Hausdorff distance between the
Minkowski average 1

k (A1 + · · ·+ Ak) of the sets and its convex hull, is less than of

equal to r
√
N
k .
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Proof. A proof in case the sets are compact can be found in Starr [11]. It is easy to
make the necessary changes to include general sets. (In the next section we provide
a proof in the infinite dimensional case, that covers the present case.) □
Remark 3.4. At times the parameters h or r that appear in the preceding results
are not available. If only a bound on the diameters of the sets is available, say D,
then h and r can be replaced, respectively, by D

2 and D. If it is only known that
the sets in question are included in a ball of radius β, then h and r can be replaced,
respectively, by β and 2β. Many publications choose to state the theorems while
referring to these parameters. Notice, however, that our statements apply also for
unbounded sets.

Remark 3.5. At first look, the estimate in the Euclidean case seems better than the
general one, since it employs

√
N rather than N . However, the coefficient r in the

Euclidean estimate is larger, and may be much larger, than the Hausdorff distance h
used in the general case. See Remark 2.1. Hence, in some cases the general estimate
may provide an estimate better than the one specific to the Euclidean norm.

4. The infinite dimensional case

We examine here the convexification phenomenon of the Minkowski averages of
general sets in an infinite dimensional space. We start with some examples.

Example 4.1. Consider the space l1 of summable sequences x = (ξ1, ξ2, . . . ) of
real numbers with the l1-norm, namely ∥x∥ =

∑∞
i=1 |ξi|. Consider the sequence of

sets in this space given by Ai = {0, ei}, where 0 is the origin, and ei is the unit
vector with the entry 1 in the i − th coordinate and 0 otherwise. It is a bounded
set, and haus(Ai, coAi) =

1
2 for all i. The Minkowski average of A1, . . . , Ak is the

set of sequences with entries being either 0 or 1
k in the first k coordinates, and 0

otherwise. The convex hull of the Minkowski average contains the vector whose
first k entries are equal to 1

2k , and 0 otherwise. Clearly, the Hausdorff distance

between the Minkowski average and its convex hull is 1
2 for all k, namely, there is

no convexification effect as k → ∞. (Taking a finite number of summations shows
that the estimate in Theorem 3.2 is tight.)

A similar lack of convexification may occur even when the sequence of sets is
constant.

Example 4.2. Consider again the space l1 as in the previous example. Let A =
{0, e1, e2, . . . }. The convex hull of the set consists of all the summable sequences
(ξ1, ξ2, . . . ) with 0 ≤ ξi ≤ 1, and sum (i.e. norm) less than or equal to 1. Then
haus(A, coA) = 1. Indeed, the closest point in A to the vector in the convex hull
whose first m entries are equal to 1

m , is the origin, and the distance between the
two is 1, and this is the largest possible such distance. Any vector in the Minkowski
average of k sets, all equal to A, has coordinates either equal to 0 or equal to mi

k ,
with mi integers with sum less than or equal to k. The vector with 2k coordinates
being equal to 1

2k is in the convex hull. The closest vector to it in the Minkowski
average, is the zero vector, and the distance between the two is 1. In particular,
the Hausdorff distance between the Minkowski average and its convex hull does not
converge to zero as k → ∞.
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Notice that the set A in the previous example is not compact, neither do the
sets in Example 4.1 belong to one compact set. In the next section we show that
the Minkowski averages of sets within one compact set, exhibit the convexifiation
phenomenon. In a Hilbert space the situation is known to be different, as shown in
the following two examples.

Example 4.3. Consider the sequence of sets as in Example 4.1, this time, how-
ever, interpreted as square summable sequences with the l2-norm. The Minkowski
averages are the same as in Example 4.1. The Hausdorff distance between the
Minkowski average of A1, . . . , Ak and its convex hull is given by the estimate for

the finite k-dimensional space, namely
√
k
k (notice that the inner radius of Ai is 1).

There is a convexification effect as k → ∞, but the rate of convergence in not of
order big oh of 1

k as in the finite dimensional case, but, rather, it is big oh of 1√
k
.

(Taking a finite number of summations shows that the estimate in Theorem 3.3 is
tight.)

The same rate of convergence may also occur in a Hilbert space when the sequence
Ai is constant, as follows.

Example 4.4. Consider the set A as in Example 4.2, this time interpreted as a
bounded set (not compact though) in the Hilbert space l2. The linear structure
determines the Minkowski averages, as described in Example 4.2. Since the coordi-
nates of the vectors involved are less than 1, the convex hull (here it is the closure of
all the Minkowski averages) in l2 is identical to the convex hull in l1. In particular,
the Hausdorff distance between the convex hull of A and the Minkowski average of
k replicas of A, is attained at the vector in the convex hull that has 2k coordinates
with value 1

2k . The distance from the nearest element in the Minkowski average is

then 1√
2k
. The convexification holds, with convergence rate of big oh of 1√

k
.

We state now the general results, to which the former examples correspond. The
first one relates to a general Banach space. It does not guarantee convexification,
as Examples 4.1 and 4.2 demonstrate.

Theorem 4.5. Let A1, . . . , Ak be sets in a normed space X. Let h be the maxi-
mum of haus(Ai, coAi) for i = 1, . . . , k. Then the Hausdorff distance between the
Minkowski average 1

k (A1 + · · · + Ak) of the sets and its convex hull is less than of
equal to h.

Proof. For a = a1+ · · ·+ak where ai ∈ coAi, and a given ε > 0, we can find bi ∈ Ai

such that ∥ai− bi∥ ≤ h+ε. Then 1
k (b1+ · · ·+ bk) is in the Minkowski average of the

sets, with distance from a being less than or equal to h + ε. Since ε is arbitrarily
small the result follows. □

The next result establishes the convexification of the Minkowski averages in
a Hilbert space, analogous to Theorem 3.3. The convexification property in a
Hilbert space was established in Cassels [4] for an equivalent measure of non-
convexity. Using arguments similar to [4], Puri and Ralescu [9] established the
convexification property for compact sets in spaces of p-type with p > 1 (a Ba-
nach space X is of p-type if there exists a constant K > 0 such that for every
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sequence f1, f2, . . . , fn, of independent X-valued random variables with mean zero
the inequality E∥

∑n
j=1 fi∥p ≤ K

∑n
j=1E∥fi∥p holds, where E denotes expectation,

see [9]). Our approach considers general sets (as demonstrated by Examples 4.3 and
4.4). The convexification issue for unbounded sets and for sets in normed spaces
was also examined by Khan [6] and [7], using non-standard analysis arguments. The
proof here is an adaptation of the arguments in Starr [11] to the infinite dimensional
case.

Theorem 4.6. Let A1, . . . , Ak be sets in a Hilbert space H, with inner product
< ·, · >. Let r = max{ir(Ai) : i = 1, . . . , k}. Then the Hausdorff distance between
the Minkowski average 1

k (A1 + · · ·+Ak) of the sets and its convex hull, is less than

or equal to r
√
k
k .

Proof. We shall prove an equivalent claim, namely, that the Hausdorff distance
between A1+ · · ·+Ak and its convex hull is less than or equal to r

√
k. We proceed

by induction on k. For k = 1 the result is obvious. Suppose it holds for k and
consider a ∈ (coA1 + · · · + coAk+1) (the latter is convex, hence it is dense in its
convex hull, i.e, its closure). Then a = a1+ · · ·+ak+1 with ai ∈ coAi. The induction
hypothesis implies that for every ε > 0 there exist bi ∈ Ai for i = 1, . . . , k, such that
∥(a1 + · · · + ak) − (b1 + · · · + bk)∥ ≤ r

√
k + kε. The definition of the inner radius

implies that for every ε > 0 the point ak+1 is in the convex hull of the intersection
of Ak+1 and the ball of radius r + ε centered in ak+1. Denote this set by T . Then
for every vector v in the space, sup{< v, c − ak+1 >: c ∈ T} is greater than or
equal to 0 (otherwise ak+1 can be strictly separated from the convex hull of T ). For
v = b1 + · · · + bk choose bk+1 ∈ T such that < v, bk+1 − ak+1 > is greater or equal
to −ε. Then

∥(b1 + · · ·+ bk + bk+1)− (a1 + · · ·+ ak + ak+1)∥2

≤ ∥(b1 + · · ·+ bk)− (a1 + · · ·+ ak)∥2 + ∥bk+1 − ak+1∥2 − 2 < bk+1, ak+1 >

≤ (r
√
k + kε)2 + (r + ε)2 + 2ε.

(4.1)

Since ε is arbitrarily small, the result follows. □

The previous results lead to some interesting problems. We may say that a
Banach space has the convexification property if the Hausdorff distance between
the Minkowski average of a sequence A1, . . . , Ak, all contained in the unit ball,
and its convex hull, converges to 0 as k → ∞. We may say that the Banach
space has the weak convexification property if for any bounded set A in the space,
the Minkowski average of k replicas of A, converges, in the Hausdorff distance,
to the convex hull of A. The previous result establishes that a Hilbert space has
the convexification property (likewise for spaces of p-type with p > 1, as follows
from [9]). It is not clear to me if every space that has the weak convexification
property has also the convexification property. It seems that uniformly convex
spaces have the convexification property, but I am not aware of a proof. Just strict
convexity, namely, no intervals on the boundary of the unit ball, does not guarantee
even the weak convexification property, as the following example shows.
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Example 4.7. Consider the space X of sequences (x1, x2, . . . ), where xk belongs to
the finite dimensional space Rk

p , namely, the k-dimensional space with the lp-norm,

∥(ξ1, . . . , ξk)∥p = (
∑k

i=1 |ξi|p)
1
p . Furthermore, let p = p(k) depend on k and be

equal to 1 + 1
k . Let the norm in X of a sequence be the l2-norm of the sequence

∥xk∥p(k). The square summable sequences form a Banach space which is strictly
convex (but not uniformly convex). For a given k define Ak,1, . . . , Ak,k in the space
by Ak,j = {0, ek,j}, where ek,j is the vector whose entry in the k-th coordinate of the

sequence is the unit vector in Rk
p(k) with 1 in the j-th coordinate. The Minkowski

average of Ak,1, . . . , Ak,k employs only the k-th coordinate of the Banach space, and
within this coordinate the linear structure is as examined in Example 4.1 above.
In particular, the vector ( 1

2k , . . . ,
1
2k ) is in the convex hull of the average, but not

in the average itself. Its distance from the average is 1
2k

−1
k+1 . The latter is also

the Hausdorff distance between the Minkowski average of the k sets and its convex
hull. For large k this distance tends to 1

2 , namely, the space does not have the
convexification property.

The subset of X which consists of the union of all the sets Ak,j for all k and all
j = 1, . . . , k, validates that the space does not posses also the weak convexification
property.

5. Compact sets in infinite dimensions

The lack of convexification, demonstrated in the first two examples of the previ-
ous section, does not occur when all the sets participating in the Minkowski averages
belong to one compact set. The existence of convexification within a compact set
can be deduced from Artstein and Hansen [3, Lemma]. The existence and con-
vexification estimates can be derived employing the Kolmogorov widths of the set.
The resulting estimates of convexification may also improve the rates established
for Hilbert spaces. We start with the relevant definition.

Let X be a Banach space and let C be a set in X. For an N -dimensional linear
subspace V of X we denote κN (C, V ) = sup{d(x, V ) : x ∈ C}. The Kolomogorov
N -width of C in X is the infimum of κN (C, V ) over all N -dimensional subspaces V
of X. We denote the Kolomogorov N -width of C by κN (C).

The notion of N -width was introduced by Kolmogorov in 1936, and has become
a cornerstone in many areas of applied mathematics and approximation theory.
See Pinkus [8]. Extensive research, including looking for estimates and for rates of
convergence as N → ∞, is still going on, as a simple literature search would show.

An underlying observation is documented here for completeness, as follows.

Lemma 5.1. Let X be a Banach space and let C be a compact subset of X. Then
κN (C) converge to 0 as N → ∞.

Proof. The claim follows from the existence, for every ε > 0, of a finite cover of C
with balls of radius ε. □

A converse of the previous observation also holds, namely, if C is bounded and
closed in X and κN (C) → 0 as N → ∞, then C is compact. This also follows from
the possibility to find finite ε-covers. There may exist, however, unbounded, say
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closed, sets where κN (C) → 0 as N → ∞. The intersection of such a set with a
closed bounded set in X, is compact.

In view of the previous analysis we provide two results, one for a general Banach
space and one for a Hilbert space.

Theorem 5.2. Let C be a subset of a Banach space X such that κN (C) → 0 as
N → ∞ (for instance, C being compact). Given h ≥ 0, for each k define

(5.1) e(k) = min{(h+ 2κN (C))
N

k
+ 2κN (C) : N = 1, 2, . . . , k}.

Then e(k) → 0 as k → ∞. Let A1, . . . , Ak be subsets of C, and let h =
max{haus(Ai, coAi) : i = 1, . . . , k}. The Hausdorff distance between the Minkowski
average 1

k (A1+ · · ·+Ak) of the sets and its convex hull, is less than of equal to e(k),
in particular it tends to 0 as k → ∞.

Proof. Since κN (C) decreases to 0 as k → ∞, we can first choose N that makes
κN (C) small, then choose k that makes hN

k small. This shows that e(k) → 0 as
k → ∞.

Now, given ε > 0 and a natural number N , let VN be an N -dimensional linear
subspace of X such that for every x ∈ C the distance d(x, VN ) ≤ κN (C)+ε. Such a
linear subspace exists by the definition of the N -width. For each a ∈ C let b(a) ∈ VN

be such that ∥a − b(a)∥ = d(a, VN ) (such a nearest vector exists since VN is finite
dimensional). Let Bi = {b(a) : a ∈ Ai}. Clearly, haus(Ai, Bi) ≤ κN (C)+ ε for each
i. A simple triangle inequality of distances in X implies then that haus(Bi, coBi) ≤
h+ 2(κN (C) + ε).

Let A and B be the Minkowski averages of A1, . . . , Ak and of B1, . . . , Bk respec-
tively. Then, clearly,

(5.2) haus(A,B) ≤ κN (C) + ε.

The convex hull operation does not increase the Hausdorff distance, hence

(5.3) haus(coA, coB) ≤ κN (C) + ε.

Finally, the finite dimensional estimate exhibited in Theorem 3.2 implies that

(5.4) haus(B, coB) ≤ (h+ 2(κN (C) + ε))
N

k
.

Applying now the triangle inequality of the Hausdorff distance, along with the
former inequalities, reveals that

haus(A, coA) ≤haus(A,B) + haus(B, coB) + haus(coB, coA)

≤ 2(κN (C) + ε) + (h+ 2(κN (C) + ε))
N

k
.

(5.5)

Since ε is arbitrarily small the desires inequality haus(A, coA) ≤ e(k) follows from
(5.1). This completes the proof. □

Similar arguments can be applied to the Hilbert space case, as follows.
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Theorem 5.3. Let C be a subset of a Hilbert space H such that κN (C) → 0 as
N → ∞ (e.g., C being compact). Given r ≥ 0, for each k define

(5.6) e2(k) = min{r
√
N

k
+ 2κN (C) : N = 1, 2, . . . , k}.

Then e2(k) → 0 as k → ∞. Let A1, . . . , Ak be subsets of C, and let r = max{ir(Ai) :
i = 1, . . . , k}. The Hausdorff distance between the Minkowski average 1

k (A1 + · · ·+
Ak) of the sets and its convex hull, is less than or equal to e2(k), in particular it
tends to 0 as k → ∞.

Proof. The convergence of e2(k) → 0 as k → ∞, is justified as in the proof of the
previous result.

Given ε > 0 and a natural number N , let VN be an N -dimensional linear subspace
of X such that for every x ∈ C the distance d(x, VN ) ≤ κN (C) + ε. For each
a ∈ C let b(a) be the projection of a on VN . Let Bi = {b(a) : a ∈ Ai}. Clearly,
haus(Ai, Bi) ≤ κN (C) + ε for each i. Since the projection is a non-expansive linear
operation it follows that haus(Bi, coBi) ≤ h.

Let A and B be the Minkowski averages of A1, . . . , Ak and of B1, . . . , Bk respec-
tively. Then, clearly the inequalities (5.2) and (5.3) hold.

The linearity of the projection also implies that ir(Bi) ≤ ir(Ai), hence, by the
finite dimensional estimate exhibited in Theorem 3.3, we get

(5.7) haus(B, coB) ≤ r

√
N

k
.

Applying now the triangle inequality of the Hausdorff distance, along with the
former inequalities, reveals that

haus(A, coA) ≤ haus(A,B) + haus(B, coB) + haus(coB, coA)

≤ 2(κN (C) + ε) + r

√
N

k
.

(5.8)

Since ε is arbitrarily small, the desired inequality, haus(A, coA) ≤ e2(k), follows
from (5.6). This completes the proof. □

We wish to point out that the arguments in Remark 3.5 apply also to the infinite
dimensional case, namely, e(k) of (5.1) may be much smaller than e2(k) of (5.2).

We conclude with an example.

Example 5.4. Consider the space l1, of summable sequences x = (ξ1, ξ2, . . . ) of
real numbers, with the l1 norm. Let f(i) be a fixed sequence in the space, with
positive coordinates, say, f(i) = β2−i for some constant β. Then ∥f∥ = β. Let
C = {x : |ξi| ≤ f(i)}. Then C is a compact subset of l1. Given N , consider
the finite dimensional subspace of l1 determined by ξk = 0 for k > N . It is clear
then that the N -width of C is less than or equal to β2−N . Any point in C is
included in the ball of radius β. Hence, haus(A, coA) ≤ β for any subset A of
C. Let now Ai, i = 1, 2, . . . , be subsets of C. Recalling (5.1), given k, we get
e(k) ≤ β((1+21−N )Nk +21−N ), for any N ≤ k. Choosing, for instance, N = log2(k)

(or rather, the nearby integer) we get e(k) ≤ β(1 + 2
k )

log2(k)+2
k as an estimate for
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the convexification. Recall that in l1 the convexification for a non-compact set is
not guaranteed.

When the same example is examined in l2, it is easy to see that the l2-norm of

f(·) is β
√

2
3 . Likewise, κN (C) ≤ β2−N

√
2
3 . Clearly, the inner radius ir(A) of any

subset of C is less than or equal to 2β
√

2
3 . We get then from (5.6) and the choice

N = log2(k), the estimate e2(k) ≤ 2β
√

2
3

√
log2(k)+1

k . It is a much better estimate

than the one deduced from the general case.
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