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In this note we describe the optimal pairs (X,Y ) of sequence spaces on Z+ for
the operator Hd. Also, we address the similar question for the Calderón operator
(the operator closely related to the Hilbert transform) and the triangular truncation
operator. We refer to [28] for a detailed discussion of these operators.

We would like to point out the interesting connection between our study and that
in [26], where the authors described the optimal range for Hardy type operators
such as Cesàro operator, its adjoint and the Calderón operator. The case of Hilbert
transform was not studied in [26], and the setting of that paper was concerned with
optimal domain for Cesàro operator in the special case of symmetric spaces with
Fatou norm. The methods employed in [26] are different from those we employ here.
In our present setting, we consider optimal range for the Calderón type operators
among the interpolation spaces which do not necessarily have the Fatou property.
Our techniques and approach also allow us to consider similar problems in the
setting of ideals of compact operators (in particular, a special type of triangular
truncation operator acting on such ideals). As an application of our methods we
obtain various Lipschitz and commutator estimates.

The main technical tool of the paper is an extrapolation result for symmetric se-
quence spaces proved in Theorem 3.2. In the special case of the Marcinkiewicz space
M1,∞, similar extrapolation estimates were proved in [8, Theorem 4.5]. Those results
were motivated by the problems of computability of Dixmier traces in the A. Connes
noncommutative geometry. More precisely, these estimates allowed the expression
of Dixmier traces in terms of the residues of the operator zeta-function. These
results were extended to the case of general Marcinkiewicz spaces Mψ (see (3.1))
in [10].

2. Preliminaries

2.1. Symmetric sequence spaces. By Z+ we denote the set of all positive in-
tegers. By ℓ∞(Z+) we denote the Banach space of all real bounded sequences
x = (x(1), x(2), . . .) with the usual partial order and equipped with the norm

‖x‖ℓ∞(Z+) = sup
n∈Z+

|x(n)|,

where Z+ is the set of positive integers.
For a strictly positive sequence {w(n)}n∈Z+ and a sequence space E on Z+ by

E(Z+, w(n)) (or simply by E(w) ) we denote the space of all real sequences equipped
with the norm

‖x‖E(Z+,w(n)) := ‖xw(·)‖E .

For example,

‖x‖ℓ∞(Z+,1/n) = sup
n∈Z+

|x(n)|
n

,

For any x ∈ ℓ∞(Z+) by µ(x) =
{
µ(n, x)

}
n∈Z+

we denote the non-increasing

rearrangement of a sequence |x| := (|x(1)|, |x(2)|, . . .). We will write µ(y) ≤ µ(x),
if µ(n, y) ≤ µ(n, x) for all n ∈ Z+.
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Definition 2.1. A Banach subspace (E, ‖ · ‖E) of ℓ∞(Z+) is called a symmetric
sequence space if, for every x ∈ E and every y ∈ ℓ∞(Z+) such that µ(y) ≤ µ(x) we
have y ∈ E and ‖y‖E ≤ ‖x‖E .

The classical examples of symmetric sequence spaces are ℓp(Z+), 1 ≤ p ≤ ∞.
The class of all symmetric spaces will be denoted by S.

We say that a sequence y is submajorized by a sequence x in the sense of Hardy-
Littlewood-Pólya (written y ≺≺ x) if

(2.1)

n∑
k=1

µ(k, y) ≤
n∑
k=1

µ(k, x), n ≥ 1.

(see [21]). Denote by I(X,Y ) the set of all interpolation spaces between Banach
spaces X and Y , and let I := I(ℓ1(Z+), ℓ∞(Z+)). For all unexplained terminology
from interpolation theory we refer to [4, 7, 19].

Throughout this paper, we shall use the symbol A ≲ B to indicate that there
exists a universal positive constant cabs, independent of all important parameters,
such that A ≤ cabsB. The notation A ≈ B means that A ≲ B and B ≲ A.

2.2. Optimal pairs. We explain here what we mean by the optimal pair.
A family of Banach spaces X = {Xα}α∈A is called compatible if there exists a

linear Hausdorff space T = T(X ) such that for each α ∈ A there is continuous
embedding Xα ⊂ T. For example, the class S is a compatible family. The ambient
space T(S) can be chosen to be the space S of all sequences with convergence in the
counting measure. Of course, the choice of ambient space is not unique. Indeed,
instead of S in the above example one can also choose the Banach space ℓ∞. The
situation is similar with the class I of all spaces which are interpolation with respect
to the Banach pair (ℓ1(Z+), ℓ∞(Z+)).

Suppose now that X and Y are two compatible families with ambient spaces T(X )
and T(Y). We will say that a linear operator T is admissible for the pair (X ,Y) if
it is correctly defined on the linear set L ⊂ T(X ), and for each x ∈ L the condition
Tx ∈ T(Y) is satisfied. In this case, we will write T ∈ [X,Y ], where X ∈ X and
Y ∈ Y , if T is bounded operator from X ⊂ L to Y .

For example, the operator P , defined in (1.1), is admissible for a pair of families
(S, S). Moreover, as L we can take the space S of all sequences. In the case T = P ′,
we can take L = ℓ1(Z+, 1/n).

Definition 2.2. Let X and Y be two compatible families (or classes), X ∈ X ,
Y ∈ Y and T ∈ [X,Y ].

(i) The space Y is said to be the optimal range for the operator T in the class Y
if the fact that T ∈ [X,Z], Z ∈ Y , implies the inclusion Y ⊂ Z;

(ii) The space X is said to be the optimal domain for the operator T in the class
X if the fact that T ∈ [Z, Y ], Z ∈ X , implies the inclusion Z ⊂ X;

(iii) The pair (X,Y ) is said to be the optimal pair for the operator T in the class
(X ,Y) if X is the optimal domain in the class X and Y is the optimal range in the
class Y.

2.3. Symmetric operator spaces. Let H denote a fixed separable Hilbert space
and let B(H) be the algebra of all bounded operators on H. Let us denote by K(H)
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the ideal of compact operators on H and µ(A) :=
{
µ(n,A)

}
n∈Z+

is the sequence of

singular values of a compact operator A (see [11, Chapter II]).

Definition 2.3. Let X be a linear subset in K(H) equipped with a complete norm
‖ · ‖X . We say that X is a symmetric operator space (in K(H)) if for A ∈ X and
for every B ∈ K(H) with µ(B) ≤ µ(A), we have B ∈ X and ‖B‖X ≤ ‖A‖X .

Recall the construction of a symmetric Banach operator space (or non-commutative
symmetric Banach space, or symmetric Banach ideal) E(H). Let E be a symmetric
Banach sequence space on Z+. Set

E(H) =
{
A ∈ K(H) : µ(A) ∈ E(Z+)

}
.

We equip E(H) with a natural quasi-norm

‖A‖E(H) = ‖µ(A)‖E(Z+), A ∈ E(H).

The following fundamental theorem was proved in [16] (see also [21, Question 2.5.5,
p. 58]). It shows that the quasi-norm introduced above is, in fact, a norm.

Theorem 2.4. Let E be a symmetric sequence space on Z+. Set

E(H) =
{
A ∈ K(H) : µ(A) ∈ E(Z+)

}
.

So defined (E(H), ‖ · ‖E(H)) is a symmetric operator space.

An extensive discussion of the various properties of such spaces can be found
in [16,21]. If E = ℓp(Z+), 1 ≤ p <∞, then we obtain

Lp(H) := ℓp(H) =
{
A ∈ K(H) : µ(A) ∈ ℓp(Z+)

}
,

which is so called Schatten-von Neumann class of all compact operators A : H → H
with finite norm

‖A‖Lp(H) :=
( ∞∑
k=1

µ(k,A)p
)1/p

.

When p = 2 the space L2(H) (usually it is called Hilbert-Schmidt class) becomes
Hilbert space with the inner product

< A,B >:= τ(B∗A), A,B ∈ L2(H),

where B∗ is adjoint operator of B and τ is the canonical trace. Moreover, the space
K(H) will be considered with the uniform norm, i.e. ‖A‖K(H) := ‖A‖H→H for
A ∈ K(H).

We will also need one subclass of the class of symmetric operator spaces.

Definition 2.5. Let X be a linear subset in K(H) equipped with a complete norm
‖ ·‖X . We say that X is a fully symmetric operator space if for A ∈ X and for every
B ∈ K(H) with µ(B) ≺≺ µ(A), we have B ∈ X and ‖B‖X ≤ ‖A‖X .

Using well-known inequality on the one hand
n∑
k=1

µ(k,A0 +A1) ≤
n∑
k=1

µ(k,A0) +
n∑
k=1

µ(k,A1), n ∈ Z+,
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and selecting the appropriate optimal representation A = A0 + A1 on the other,
it is easy to get the following formula for the K-functional in the Banach pair
(L1(H),K(H)):

K(n,A;L1(H),K(H)) := inf
A=A0+A1

{‖A0‖L1(H) + n‖A1‖K(H)} =

n∑
k=1

µ(k,A)

(see also [23, formula (5.5), page 68] or [18, the proof of the Proposition 2.c.6]).
Therefore, in view of the K-divisibility property [7], for each fully symmetric oper-
ator space X there is a Banach lattice F such that

‖A‖X =

∥∥∥∥∥
{ n∑
k=1

µ(k,A)

}∞

n=1

∥∥∥∥∥
F

.

Hence, without loss of generality, we can immediately assume that the norm in a
fully symmetric operator space is given by the right side of the previous relation.
Moreover, we can assume that F ∈ I(ℓ∞(Z+), ℓ∞(Z+, 1/n)).

The class of all fully symmetric operator spaces will be denoted by FS(H).

2.4. Lorentz spaces. Let a function φ : N → R+ be nondecreasing, and let the
sequence {φ(n + 1) − φ(n)} of its differences be nonincreasing. Then the Lorentz
sequence space Λφ(Z+) is defined as follows:

(2.2) Λφ(Z+) :=

{
a ∈ c0 : ‖a‖Λφ(Z+) =

∞∑
n=1

µ(n, a)(φ(n+ 1)− φ(n)) <∞

}
,

where c0 is the space of sequences converging to zero. These spaces are examples
of symmetric Banach sequence spaces. For more details on Lorentz spaces, we refer
the reader to [4, Chapter II.5] and [19, Chapter II.5].

The Lorentz (or Schatten-Lorentz) ideal Λφ(H) (see [21, Example 1.2.7, p. 25])
is defined as follows:

Λφ(H) :=

{
A ∈ K(H) : ‖A‖Λφ(H) =

∞∑
n=1

µ(n,A)(φ(n+ 1)− φ(n)) <∞

}
.

2.5. Weak-L1 and M1,∞ spaces. The weak-ℓ1 sequence space ℓ1,∞ on Z+ is de-
fined as

ℓ1,∞(Z+) := {a ∈ c0 : µ(n, a) = O (1/n)} .
Define corresponding weak-L1 ideal of compact operators on H as follows:

L1,∞(H) :=
{
A ∈ K(H) : {µ(n,A)}n∈Z+ ∈ ℓ1,∞(Z+)

}
,

with the quasi-norm

‖A‖L1,∞(H) := sup
n∈Z+

n · µ(n,A)

(see [21, Example 1.2.6, p. 24]). It is well-known (see e.g. [16, Section 7] or [27])
that the space (L1,∞(H), ‖ · ‖L1,∞(H)) is quasi-Banach.

The non-commutative Marcinkiewicz space M1,∞(H) is defined by setting
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M1,∞(H) :=

{
A ∈ K(H) : ‖A‖M1,∞(H) := sup

n∈Z+

1

log(en)

n∑
k=0

µ(k,A) <∞

}
.

This space is the dual of the Macaev ideal on a separable Hilbert space H.
It is easy to see that the following inclusion

L1,∞(H) ⊂M1,∞(H)

holds and is strict (see [21, Lemma 1.2.8 and Example 1.2.9, pp. 25-26]).

2.6. Calderón operator and a triangular truncation operator. Define the
discrete Calderón operator Sd formally as follows

(2.3) (Sdx)(n) :=
1

n

n−1∑
k=1

x(k) +

+∞∑
k=n

x(k)

k
, x ∈ E(Z+).

It is obvious that Sd is a linear operator. If x is nonnegative, it follows from the
definition that (Sdx)(n) is decreasing in n ≥ 1. The operator Sd is often applied to
the decreasing rearrangement µ(x) of a function x defined on some other measure
space. Since Sdµ(x) is itself decreasing, it is easy to see that µ(Sdµ(x)) = Sdµ(x).
For more information about this operator, we refer to [4, Chapter III] and [19,
Chapter II].

The next proposition gives the exact domain of the operator Sd.

Proposition 2.6. Let Sd be the operator defined in (2.3). If φ0(n) = log(en), then
the Lorentz sequence space Λφ0(Z+) is the largest among all symmetric sequence
spaces {E(Z+)} such that

Sd : E(Z+) → ℓ∞(Z+).

Proof. Since for each n ≥ 1, the kernel kn(m) := 1
m · min

{
1, mn

}
is a decreasing

sequence of m > 0, it follows from [4, Chapter II, Theorem 2.2, p. 44] that

|(Sdx)(n)| (2.3)=
∣∣∣ ∞∑
k=1

x(k)min
{
1,
k

n

}1
k

∣∣∣
≤

∞∑
k=1

|x(k)|min
{
1,
k

n

}1
k
≤

∞∑
k=1

µ(k, x)min
{
1,
k

n

}1
k

(2.3)
= (Sdµ(x))(n), ∀n ∈ Z+.

Therefore, to prove the theorem, we can restrict ourselves to the case x = µ(x).
Let E(Z+) be a symmetric sequence space such that Sd : E(Z+) → ℓ∞(Z+). If

we have that

(2.4) ‖Sdµ(x)‖ℓ∞(Z+) ≈ ‖x‖Λφ0 (Z+),

then, for any x ∈ E(Z+), we have

‖x‖Λφ0 (Z+) ≲ ‖Sdµ(x)‖ℓ∞(Z+) ≲ ‖x‖E(Z+).
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This shows that E(Z+) ⊂ Λφ0(Z+). Therefore, it is sufficient to show (2.4). Take

x ∈ Λφ0(Z+). Since
(
Sdµ(x)

)
(n) ≤

(
Sdµ(x)

)
(1) for any n ∈ Z+, it follows that

‖Sdµ(x)‖ℓ∞(Z+) = sup
n∈Z+

|(Sdµ(x))(n)| =
(
Sdµ(x)

)
(1)

(2.3)
=

∞∑
k=1

µ(k, x)

k
.

Using the fact that log(1 + 1
k ) ≈

1
k as k → +∞, we obtain

‖Sdµ(x)‖ℓ∞(Z+) =

∞∑
k=1

µ(k, x)

k
≈

∞∑
k=1

µ(k, x) log
(k + 1

k

)
= ‖x‖Λφ0 (Z+).

This completes the proof. □

Our primary example is a triangular truncation operator on the Hilbert space
H = L2(R). More precisely, let K be a fixed measurable function on R× R. Let us
consider an operator V with the integral kernel K on L2(R) defined by setting

(2.5) (V x)(t) =

∫
R
K(t, s)x(s)ds, x ∈ L2(R).

Then for any V ∈ E(H), we define the triangular truncation operator T (V ) as
follows (see [11,12] for more details):

(2.6) (T (V )x)(t) =

∫
R
K(t, s)sgn(t− s)x(s)ds, x ∈ L2(R).

It was proved in [28, Theorem 11] that T : L1(H) → L1,∞(H) is bounded, i.e. T
is a weak type (1,1) operator.

Remark 2.7. Since T is a weak type (1, 1) operator, it follows from [28, Theorem
14 (ii)] that T is dominated by the operator Sd in the following sense:

µ(T (A)) ≲ Sdµ(A), ∀A ∈ Λφ0(H),

where φ0 is defined as in Proposition 2.6. Since the maximal domain of Sd is
Lorentz space Λφ0(Z+) (see Proposition 2.6), it follows that T is defined on the
Schatten-Lorentz ideal Λφ0(H).

2.7. Double operator integrals. Let A be a self-adjoint operator in B(H) and
ξ be a bounded Borel function on R2. Symbolically, a double operator integral is
defined by the formula

(2.7) TA,Aξ (V ) =

∫
R2

ξ(λ, µ)dEA(λ)V EA(µ), V ∈ L2(H),

where EA(λ) and EA(µ) spectral measures on R with values in the orthogonal
projections in B(H). For a more rigorous definition, consider projection valued
measures on R acting on the Hilbert space L2(H) by the formulae X → EA(B)X
and X → XEA(B). These spectral measures commute and, hence (see Theorem
V.2.6 in [5]), there exists a countably additive (in the strong operator topology)
projection-valued measure ν on R2 acting on the Hilbert space L2(H) by the formula

ν(B1 ⊗ B2) : X → EA(B1)XEA(B2), X ∈ L2(H).
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Integrating a bounded Borel function ξ on R2 with respect to the measure ν produces
a bounded operator acting on the Hilbert space L2(H). In what follows, we denote

the latter operator by TA,Aξ (see also [24, Remark 3.1]).

We are mostly interested in the case ξ = f [1] for a Lipschitz function f on R.
Here,

(2.8) f [1](λ, µ) =

{
f(λ)−f(µ)

λ−µ , λ 6= µ

0, λ = µ.

3. Commutative case

The following definition introduces a special class of Banach lattices of sequences
on Z+.

Definition 3.1. We say that a Banach lattice F of sequences on Z+ belongs to the
class S if the operator

S : {f(n)}∞n=1 → {f(n2)}∞n=1

is bounded in F.

As an example of an element from S one can take a lattice Fψ (with ψ being a
positive function on (0,∞) such that ψ(n2) ≲ ψ(n)), equipped with the following
norm:

‖f‖Fψ := sup
n∈Z+

|f(n)|
ψ(n)

.

For an arbitrary Banach lattice of sequences F by XF we denote a space of all
sequences x = {x(n)}∞n=1, for which the norm

‖x‖XF :=

∥∥∥∥∥
{ n∑
k=1

µ(k, x)

}∞

n=1

∥∥∥∥∥
F

is finite.
For example, XFψ is the Marcinkiewicz space (see e.g. [4,19]) with the following

norm:

(3.1) sup
n∈Z+

∑n
k=1 µ(k, x)

ψ(n)
.

Note that any X ∈ I (I = I(ℓ1(Z+), ℓ∞(Z+))) can be written in the form XF for
some lattice F (see discussion at the beginning of Section 6 in [3]). Moreover, for
each space X ∈ I there is a space F ∈ I(ℓ∞(Z+), ℓ∞(Z+, 1/n)) such that X = XF [7,
Corollaries 2.6.10 and 3.3.6].

If F ∈ I(ℓ∞(Z+), ℓ∞(Z+, 1/n)), then the operator

f̃(n) := sup
k∈Z+

min{1, n/k}|f(k)|

is bounded in F [7, Remark 3.3.8].

Note that f̃(n) ≥ |f(n)| for every n ∈ Z+ and f̃ is a non-negative, non-decreasing,
concave sequence. Thus, one can find a non-negative, non-increasing sequence y
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such that

f̃(n) =
n∑
k=1

y(k).

We shall use these simple facts in the proof of Theorem 3.6 below.
The following result is proved in [3] as a consequence of a more general theorem.

The direct proof is given in [22]. In special cases F = ℓ∞(Z+, w) and F = ℓp(Z+, w),
this result can be obtained from earlier papers [13,14,23] and [17], respectively.

Theorem 3.2. If F ∈ S, then

‖x‖XF ≈

∥∥∥∥∥
{
‖x‖ℓp(n)

}∞

n=1

∥∥∥∥∥
F

,

where p(n) = 2 log(en)
2 log(en)−1 .

Note that for n ∈ Z+ values p(n) from Theorem 3.2 belong to the interval (1, 2].
By F (log−1) we denote the space of all sequences f with finite norm

‖f‖F (log−1) :=

∥∥∥∥∥
{

f(n)

log(en)

}∞

n=1

∥∥∥∥∥
F

.

Note that if F ∈ S, then F (log−1) ∈ S as well. Indeed, if f ∈ F (log−1), then
{f(n)/ log(en)} ∈ F . Since F ∈ S, it follows that {f(n2)/ log(en2)} ∈ F , as well.
Since

|f(n2)|/ log(en) ≤ 2|f(n2)|/ log(en2),

it follows that {f(n2)/ log(en)} ∈ F and, so {f(n2)} ∈ F (log−1). In particular, if
F ∈ S, then it follows from Theorem 3.2 that

‖x‖XF (log−1)
≈

∥∥∥∥∥
{‖x‖ℓp(n)
log(en)

}∞

n=1

∥∥∥∥∥
F

,

where p(n) = 2 log(en)
2 log(en)−1 .

Theorem 3.3. Let F ∈ S, an operator T is bounded from ℓp(Z+) to ℓp(Z+) for
some p ∈ (1, 2] and

‖T‖ℓp(Z+)→ℓp(Z+) ≲
1

p− 1
.

Then T is bounded as an operator from XF to XF (log−1).

Proof. For every n ∈ Z+ and p(n) = 2 log(en)
2 log(en)−1 we have

(p(n)− 1) log(en) =
log(en)

2 log(en)− 1
∈ (1/2; 1].
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Hence,

‖Tx‖F (log−1) ≲
∥∥∥∥∥
{‖Tx‖ℓp(n)

log(en)

}∞

n=1

∥∥∥∥∥
F

≲
∥∥∥∥∥
{ ‖x‖ℓp(n)
(p(n)− 1) log(en)

}∞

n=1

∥∥∥∥∥
F

≲
∥∥∥∥∥
{
‖x‖ℓp(n)

}∞

n=1

∥∥∥∥∥
F

≲ ‖x‖XF .

□

Remark 3.4. Conditions of Theorem 3.3 are satisfied by a wide class of operators.
In particular, this is the case for operators of weak type (1, 1) and strong type (2, 2).
This follows from the estimates on the norm of an operator, which are obtained in
the standard proof of the Marcinkiewicz interpolation theorem.

It is easy to show that the operator P defined in (1.1) is of weak type (1, 1) and
strong type (2, 2) and thus, satisfies the conditions of Theorem 3.3. This is also the
case for the discrete Hilbert transform Hd [15].

Example 3.5. Consider the Lorentz space defined in (2.2) and denote by {d(n)}∞n=1

is nonincreasing nonnegative sequence d(n) := φ(n+ 1)− φ(n), n ≥ 1. If d(n) → 0
then

‖x‖Λφ(Z+) =

∞∑
n=1

µ(n, x)d(n) =

∞∑
k=1

w(k)

k∑
n=1

µ(n, x),

where w(k) = d(k)− d(k + 1) ≥ 0, and, hence,

∞∑
k=n

w(k) = d(n).

Consider the space ℓ̃1(Z+, w(n)) with norm

‖f‖ℓ̃1(Z+,w(n))
:=

∞∑
n=1

f̃(n)w(n),

where f̃(n) = supk∈Z+
min{1, n/k}|f(k)|. Since for a concave function f(n) one has

f̃(n) = f(n),

it follows that

‖x‖Λφ(Z+) =

∥∥∥∥{ n∑
j=1

µ(j, x)
}∞
n=1

∥∥∥∥
ℓ̃1(Z+,w(n))

(we cannot use the space ℓ1(Z+, w(n)) without tilde, since w(n) may be zero for some

n, and thus ℓ1(Z+, w(n)) may not be a Banach space). Since f̃ is the K-functional

of f in the pair (ℓ∞(Z+), ℓ∞(Z+, 1/n)), it follows that the space ℓ̃1(Z+, w(n)) is
interpolation space with respect to the pair (ℓ∞(Z+), ℓ∞(Z+, 1/n)).

Let α > 0 and

(3.2) w(n) =

{
2−αk if n = 22

k
, k ∈ Z+

0 otherwise.
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We shall prove that the operator S : {f(n)} → {f(n2)} is bounded in the space

ℓ̃1(Z+, w(n)). Since f̃ ≥ |f |, and the operator S is monotone, it suffices to consider

the case f = f̃ . Let f = f̃ be such that ‖f‖ℓ̃1(Z+,w(n))
= 1. Then

∞∑
n=1

f(n)w(n) = 1,

and therefore
f(22

k
) ≤ 1/w(22

k
) ≤ 2αk.

So,

‖Sf‖ℓ̃1(Z+,w(n))
=

∞∑
n=1

sup
k∈Z+

(min{1, n/k}f(k2))w(n)

=
∞∑
l=1

sup
k∈Z+

(min{1, 22l/k}f(k2))w(22l)

=
∞∑
l=1

max{f(22l+1
), sup
k≥22l

22
l
f(k2)/k}2−αl

≤
∞∑
l=1

f(22
l+1

)2−αl +
∞∑
l=1

sup
m≥l

[
max

22m≤k<22m+1
22
l
f(k2)/k

]
2−αl

≤ 2α
∞∑
l=1

f(22
l+1

)2−α(l+1) +
∞∑
l=1

sup
m≥l

(
22
l−2mf(22

m+2
)
)
2−αl

≤ 2α +
∞∑
l=1

f(22
l+2

)2−αl +
∞∑
l=1

sup
m≥l+1

(
22
l−2m2α(m+2)

)
2−αl

≤ 2α + 22α + C1,

where

C1 =
∞∑
l=1

sup
m≥l+1

(
22
l−2m2α(m+2)

)
2−αl <∞,

since 2l− 2m+α(m+2) < −2l−1 for all m ≥ l+1 and l > l0 for some large enough
l0.

If w(n) is given by (3.2), then one can take l0 to be dlog2(log2 n)e and

d(n) =

∞∑
k=n

w(k) =

∞∑
l: 22l≥n

2−αl =
2−αl0

1− 2−α
≈ log−α(en).

Hence,

‖x‖Λφ(Z+) ≈
∞∑
n=1

µ(n, x) log−α(en).

Denote by Λαlog the space with the norm

‖x‖Λαlog =

∞∑
n=1

µ(n, x) log−α(en).
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Further, if w(n) is given by (3.2) and F = ℓ̃1(Z+, w(n)), then F (log−1) is the

space ℓ̃1(Z+, w1(n)) with

w1(n) =

{
2−αk/ log(en), n = 22

k
, k ∈ Z+

0 otherwise

≈

{
2−(α+1)k, n = 22

k
, k ∈ Z+

0 otherwise,

and the corresponding Lorentz space Λφ1(Z+) is the space Λα+1
log .

Theorem 3.6. If F ∈ S
⋂
I(ℓ∞(Z+), ℓ∞(Z+, 1/n)), then (XF , XF (log−1)) is optimal

pair in the class (S, I) for the operator P , defined in (1.1).

Proof. Denote, for brevity X := XF , X1 := XF (log−1). It follows from Theorem 3.3

and Remark 3.4 that P acts boundedly from X to X1. To show that the space X1

is the optimal range for P , it is sufficient to prove that for every x ∈ X1 there exists
z ∈ X such that for some C > 0 one has

n∑
k=1

µ(k, x) ≤ C
n∑
k=1

µ(k, Pz), ∀n ∈ Z+.

Let x ∈ X1. It follows from the definition of the space F and F (log−1) that the
sequence

g(n) :=

∑n
k=1 µ(k, x)

log(en)
, n ≥ 1.

belongs to F . Since the operator g 7→ g̃ is bounded in F (see the notation and
discussion before Theorem 3.2), it follows that g̃ ∈ F . Hence,

g̃(n) =
n∑
k=1

µ(k, y),

where y ∈ X. Without loss of generality, we can assume that µ(y) = y. Set

f(n) :=

n2∑
k=1

y(k), n ≥ 1.

Since F ∈ S, f(n) = g̃(n2) and g̃ ∈ F , it follows that f ∈ F and, so, f̃ ∈ F . Thus,

f̃(n) =
n∑
k=1

µ(k, z),
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where z ∈ X. Again we can assume that µ(z) = z. We have

n∑
k=1

µ(k, Pz) =
n∑
k=1

1

k

k∑
l=1

z(l) =
n∑
k=1

1

k
f̃(k) ≥

n∑
k=1

1

k
f(k) =

n∑
k=1

1

k

k2∑
l=1

y(l)

=

n2∑
l=1

y(l)

n∑
k=⌈

√
l⌉

1

k
≥

n∑
l=1

y(l)

n∑
k=⌈

√
l⌉

1

k
≥

n∑
l=1

y(l)

n∑
k=⌈

√
n⌉

1

k

≥ c log(en)

n∑
l=1

y(l) = c log(en)g̃(n) ≥ c log(en)g(n)

= c log(en)

∑n
k=1 µ(k, x)

log(en)
= c

n∑
k=1

µ(k, x).

This means that every element x ∈ X1 is majorised (in the Hardy-Littlewood-
Pólya sense (2.1)) by an element Pz for some z ∈ X. Hence, every space Y ∈ I,
containing the image P (X), must contain the space X1 = XF (log−1) as well.

To show that the space X is the optimal domain for P supposing P ∈ [Z,X1].
Take x ∈ Z, x = µ(x). Then Px ∈ XF (log−1), and, since F (log

−1) ∈ S (see reasoning

before Theorem 3.3), ∑n2

k=1 µ(k, Px)

log(en)
∈ F.

But

n2∑
k=1

µ(k, Px) =
n2∑
k=1

1

k

k∑
l=1

x(l) =
n2∑
l=1

x(l)
n2∑
k=l

1

k

≥
n∑
l=1

x(l)
n2∑
k=n

1

k
≥ c log(en)

n∑
k=1

x(k).

Hence
n∑
k=1

x(k) ∈ F, x ∈ X, and Z ⊂ X.

This shows that the pair (X,X1) is optimal. □

Example 3.7. We conclude from Example 3.5 that (Λαlog,Λ
α+1
log ) is the optimal pair

for the operator P . The same is also true for the pair (Mα
1,∞,M

α+1
1,∞ ), where Mα

1,∞
is the Marcinkiewicz space with norm

‖x‖Mα
1,∞

= sup
n∈Z+

∑n
k=1 µ(k, x)

logα(en)
.

Note that for α = 0 the space Mα
1,∞ coincides with the space ℓ1. Thus, the pair

(ℓ1,M1,∞) is optimal for operator P .
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Theorems 3.3 and 3.6 can be generalised to the case of operators T with the
following norm estimate:

‖T‖ℓp(Z+)→ℓp(Z+) ≲
1

(p− 1)α
.

This should be compared to [2, Theorem 5.7].
The following result follows from Theorems 3.3, 3.6 and Remark 3.4.

Corollary 3.8. If F ∈ S, then a pair (XF , XF (log−1)) is optimal for the operator

Hd in the class (S, I).

The following result describes the optimal pair for the operator P ′.

Theorem 3.9. If F ∈ S, then the pair (XF , XF ) is optimal for the operator P ′,
defined in (1.1), in the class (S, I).

Proof. Denote, for brevity X := XF . We first prove that P ′ is bounded in X. For
x ∈ X we have

‖P ′x‖ℓ1 =
∞∑
n=1

|(P ′x)(n)| ≤
∞∑
n=1

∞∑
k=n

|x(k)|
k

=
∞∑
k=1

|x(k)|
k

k∑
n=1

1 = ‖x‖ℓ1 ,

and

‖P ′x‖2ℓ2 =
∞∑
n=1

( ∞∑
k=n

x(k)

k1/4
· 1

k3/4

)2

≤
∞∑
n=1

( ∞∑
k=n

(x(k))2

k1/2
·

∞∑
k=n

1

k3/2

)

≲
∞∑
n=1

( ∞∑
k=n

(x(k))2

k1/2
· 1

n1/2

)
≲

∞∑
k=1

(x(k))2

k1/2
·

k∑
n=1

1

n1/2

≲
∞∑
k=1

(x(k))2

k1/2
· k1/2 =

∞∑
k=1

(x(k))2 = ‖x‖2ℓ2 .

Hence, P ′ is bounded in ℓ1 and in ℓ2, and, by the real version of Riesz-Thorin
theorem, P ′ is uniformly bounded in ℓp for all p ∈ [1, 2]. Then, by Theorem 3.2 we
obtain

‖P ′x‖X ≲
∥∥∥∥∥
{
‖P ′x‖ℓp(n)

}∞

n=1

∥∥∥∥∥
F

≲
∥∥∥∥∥
{
‖x‖ℓp(n)

}∞

n=1

∥∥∥∥∥
F

≲ ‖x‖X .

To prove optimality we note that if µ(x) = x, then

n∑
k=1

µ(k, P ′x) =

n∑
k=1

∞∑
l=k

µ(l, x)

l
≥

n∑
k=1

µ(k, x).

Hence, P ′x majorises x in the sense of Hardy-Littlewood-Pólya. Thus, the facts
that P ′ acts boundedly from X to Y and Y ∈ I imply that X ⊂ Y . Similarly,
the facts that P ′ acts boundedly from Z to X imply that

∑n
k=1 µ(k, P

′x) ∈ F for
x ∈ Z. Hence

∑n
k=1 µ(k, x) ∈ F , x ∈ X and Z ⊂ X.

□
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Remark 3.10. Since
∞∑
n=1

(Px)(n)y(n) =

∞∑
n=1

1

n

n∑
k=1

x(k) y(n)

=

∞∑
k=1

x(k)

∞∑
n=k

y(n)

n
=

∞∑
k=1

x(k)(P ′y)(k),

then P ′ is conjugate operator to P , and

‖P ′‖ℓp→ℓp
= ‖P‖ℓp′→ℓp′

, where p′ =
p

p− 1
, p > 1.

As it was noted in Remark 3.4, the operator P is bounded in ℓ2. Thus, the bound-
edness of the operator P ′ could also be obtained from Remark 3.4. Conversely, since
we have proved that the operator P ′ is bounded in ℓ2, it follows that the operator
P is bounded, too.

The following theorem shows that the pair (XF , XF (log−1)) is optimal in the class

of interpolation spaces (and even in a slightly wider class (S, I)) for the discrete
Calderón operator Sd.

Theorem 3.11. If Banach lattice F ∈ S ∩ I(ℓ∞(Z+), ℓ∞(Z+, 1/n)), then the pair
(XF , XF (log−1)) is optimal in the class (S, I) for the operator Sd defined in (2.3).

Proof. Let F ∈ S. Since Sd is bounded from ℓp(Z+) into ℓp(Z+) for p ∈ (1, 2] by
the Hardy’s inequality (3.18) and (3.19) in [4, Lemma 3.9, p. 124], i.e.

‖Sd‖ℓp(Z+)→ℓp(Z+) ≲
1

p− 1
, p ∈ (1, 2],

it follows from Theorem 3.3 that the operator Sd acts boundedly from XF into
XF (log−1). Therefore, similar proof as Theorem 3.6 one shows that the pair (XF , XF (log−1))

is optimal in the class (S, I) for the operator Sd. □

4. Non-commutative case

Let F denote the symmetric operator space

(4.1) F :=
{
A ∈ K(H) : ‖A‖F := ‖µ(A)‖XF <∞

}
,

where XF is defined in Section 3. Note that each fully symmetric operator space
admits such a representation, i.e. if Y ∈ FS(H) then there is a Banach lattice Y
such that ‖A‖Y = ‖µ(A)‖XY , where

‖x‖XY :=

∥∥∥∥∥
{ n∑
k=1

µ(k, x)

}∞

n=1

∥∥∥∥∥
Y

.

In addition, it is clear that XY ∈ I (recall that I = I(ℓ1(Z+), ℓ∞(Z+))).
It was proved in [3, Theorem 10] (see also [22, Theorem 2]) that if F ∈ S, then

(4.2) ‖A‖F ≈
∥∥{‖A‖Lp(n)(H)

}
n∈Z+

∥∥
F
,
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where p(n) = 2 log(en)
2 log(en)−1 . In the particular case of F = ℓ∞(log−1(en)), this relation

was considered earlier in [14, Section 7] and [23, Section 5.5.2]. Define F(log−1) to
be the class of all A ∈ K(H) such that

‖A‖F(log−1) :=
∥∥µ(A)∥∥

XF (log−1)
<∞,

where XF (log−1) is also defined in Section 3. Moreover, if F ∈ S, then, as shown in

Section 3, F (log−1) ∈ S. Therefore, applying [3, Theorem 10] (see also [22, Theorem
2]) again, we obtain

(4.3) ‖A‖F(log−1) ≈
∥∥{ 1

log(en)
‖A‖Lp(n)(H)

}
n∈Z+

∥∥
F
<∞.

Similar to the proof of [3, Theorem 11] (see also [22, Theorem 3]), we obtain the
following result for the triangular truncation operator T defined in (2.6).

Theorem 4.1. Let T be the triangular truncation operator defined in (2.6). If
F ∈ S, then T is bounded from F into F(log−1).

Proof. First, since T is a weak type (1, 1) operator by [28, Theorem 11], we have
the following estimate for p ∈ (1, 2]

(4.4) ‖T ‖Lp(H)→Lp(H) ≲
1

p− 1

(see also [28, Theorem 14 (ii)]). Let p(n) = 2 log(en)
2 log(en)−1 , n ∈ Z+, and A ∈ F. Since

(4.5) p(n) ∈ (1, 2] and (p(n)− 1) log(en) =
log(en)

2 log(en)− 1
∈ (

1

2
, 1]

for n ∈ Z+, for every A ∈ F one has the following estimates:

‖T (A)‖F(log−1)

(4.3)

≲
∥∥{ 1

log(en)
‖T (A)‖Lp(n)(H)

}
n∈Z+

∥∥
F

(4.4)

≲
∥∥{ 1

(p(n)− 1) log(en)
‖A‖Lp(n)(H)

}
n∈Z+

∥∥
F

(4.5)

≲
∥∥{‖A‖Lp(n)(H)

}
n∈Z+

∥∥
F

(4.2)

≲ ‖A‖F.

(4.6)

Since A is arbitrary, this concludes the proof. □

Theorem 4.2. If F ∈ S ∩ I(ℓ∞(Z+), ℓ∞(Z+, 1/n)), then (F,F(log−1)) is optimal
pair in the class (FS(H),FS(H)) for the operator T defined in (2.6), i.e. if Y,Z
are fully symmetric operator spaces and

T : F → Y and T : Z → F(log−1))

then F(log−1) ⊂ Y and Z ⊂ F.
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Proof. If F ∈ S ∩ I(ℓ∞(Z+), ℓ∞(Z+, 1/n)), then boundedness of the operator T
from F into F(log−1)) follows from the Theorem 4.1. Let us show that the pair
(F,F(log−1)) is optimal in the class of interpolation spaces for the operator T .

Suppose that Y := {A ∈ K(H) : µ(A) ∈ XY } is an symmetric operator space
such that T : F → Y is bounded. We shall show that F(log−1) ⊂ Y. If a ∈ XF ,
then by [28, Theorem 21] there exists an operator A such that µ(a) = µ(A) and

Sdµ(a) = Sdµ(A) ≲ µ(T (A)).

Since T (A) ∈ Y by assumption, i.e. µ(T (A)) ∈ XY , it follows that Sdµ(a) ∈ XY ,
it means Sd : XF → XY is bounded. But, Theorem 3.11 states that the pair
(XF , XF (log−1)) is optimal in the class of interpolation spaces for the operator Sd.

Therefore, we have XF (log−1) ⊂ XY , i.e. F(log−1) ⊂ Y. Embedding Z ⊂ F, under

condition T : Z → F(log−1)), is proved in a similar way. □

Theorem 4.3. Let F and F(log−1) be as in Theorem 4.2. The following assertions
hold:

(i) If A = A∗ is a self-adjoint operator in B(H), then the double operator integral

(associated with the function f [1] defined in (2.8)) TA,A
f [1]

: F → F(log−1) is

bounded and

‖TA,A
f [1]

‖F→F(log−1) ≤ cF‖f ′‖L∞(R),

where cF is the constant depending on F only.
(ii) For all self-adjoint operators A,B ∈ B(H) such that [A,B] ∈ F and for every

Lipschitz function f : R → C, we have

‖[f(A), B]‖F(log−1) ≲ ‖f ′‖L∞(R)‖[A,B]‖F,

where [A,B] := AB − BA. For all self-adjoint operators X,Y ∈ B(H) such
that X − Y ∈ F and for every Lipschitz function f : R → C, we have

‖f(X)− f(Y )‖F(log−1) ≲ ‖f ′‖L∞(R)‖X − Y ‖F.

Proof. (i). By Theorem 1.2 in [9], we have

‖TA,A
f [1]

(V )‖L1,∞(H) ≲ ‖f ′‖L∞(R)‖V ‖L1(H), V ∈ L1(H).

Thus, the operator TA,A
f [1]

(see Subsection 2.7) satisfies conditions of [28, Theorem

14 (ii)], and

µ(TA,A
f [1]

(V )) ≲ ‖f ′‖L∞(R)S
dµ(V ), V ∈ Λφ0(H),

where φ0 is defined as in Proposition 2.6.
By Theorem 3.11, the operator Sd acts boundedly from XF into XF (log−1). Thus

‖TA,A
f [1]

(V )‖F(log−1) = ‖µ
(
TA,A
f [1]

(V )
)
‖XF (log−1)

≲ ‖f ′‖L∞(R)‖Sdµ(V )‖XF (log−1)

≲ ‖f ′‖L∞(R)‖µ(V )‖XF = cF‖f ′‖L∞(R)‖V ‖F, V ∈ F.

In other words, TA,A
f [1]

: F → F(log−1) is bounded.

(ii). The double operator integral TA,A
f [1]

([A,B]) is equal to [f(A), B] for the op-

erators A,B ∈ B(H) such that [A,B] ∈ F (see [25, Proposition 2.6]). Therefore,
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the commutator estimate follows from part (i). Finally, applying the commutator
estimate to the operators

A =

(
X 0
0 Y

)
, B =

(
0 1
1 0

)
,

we obtain Lipschitz estimate. □
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