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Actually, the fact that the elements of the predual of BMO(R) have a represen-
tation

h =

∞∑
j=1

λigi

∞∑
j=1

|λi| < ∞

with gi ∈ L2, supp gi ⊂ I,
∫
I gi = 0, ∥g∥L2(I) ≤ |I|−

1
2 was noted in [13]. Very

recently, in the paper [4], the function space JNp, p > 1, based on a condition,
introduced by John–Nirenberg (as a variant of BMO), on the supremum over col-
lections of cubes was studied.

It was proved that JNp is the dual space of a new “Hardy kind ”space HKp′(
1
p + 1

p′ = 1
)
which enjoys atomic decomposition. However, reflecting the difference

of a supremum over individual cubes in the definition of BMO(Q0), Q0 =]0, 1[n

∥f∥BMO = sup
Q⊂Q0

∫
Q
|f − fQ|

fQ =

∫
Q
f , and over collection of cubes in JNp, p > 1

∥f∥JNp = sup

{∑
i

|Qi|
(∫

Qi

|f − fQi |
)p

} 1
p

where the supremum is taken over all collections of pairwise disjoint cubes Qi ⊂ Q0,
the atoms of H1 are replaced here by more complicated structures called polymer
in the definition of HKp′ .

Similar preduality results in terms of atoms pertain to the Garsia-Rodemich
spaces, recently considered in [15], [1], [16] and introduced in [10] the space GaRop
whose norm is defined by

∥f∥GaRop = sup

∑
i

1
|Qi|

∫
Qi

∫
Qi

|f(x)− f(y)| dx dy

(
∑

i |Qi|)
1
p′

where the supremum is taken similarly as in JNp case.
The main result by M. Milman is that

GaRop =

{
Lp,∞ 1 < p < ∞
BMO p = ∞

and since Lp,∞ the Marcinkiewicz space is dual of Lq,1
(
1
p + 1

q = 1
)
which enjoys

atomic decomposition (see [5]) also GaRop are dual spaces with atomic decomposi-
tion (see also [14]).

Let us notice that atomic decomposition can be an effective tool to prove the
boundedness of operators such as the Hardy–Littlewood maximal operator, the
Hilbert transform, the multiplication, the composition operator acting on these
spaces. Actually, the boundedness of these operators is reduced to the boundedness
on characteristic functions.

Our aim in this paper is to consider the grand Lebesgue space L2) which is dual
of small Lebesgue space L(2 and show that L(2 enjoys atomic decomposition.



ATOMIC DECOMPOSITION IN A SMALL LEBESGUE SPACES 607

In all these examples the atomic decomposition of a non reflexive, separable
Banach space H of functions is related to other fundamental properties of the dual
H⋆ and of the predual H⋆ of H:

a) characterization of H⋆ norm by big–O condition
b) characterization of H⋆ by little–o condition
c) distance formula to L∞ in H⋆.

In [3], a formula for the distance to L∞(Q0), Q0 =]0, 1[n in the grand Lebesgue

space Lp)(Q0), 1 < p < ∞, introduced in [12] by Iwaniec-Sbordone was given. The

space E = Lp)(Q0) is naturally equipped with the “big-O”type norm

(1.1) ||u||Lp)(Q0)
= sup

0<ε<p−1
[u]ε

where

(1.2) [u]ε =

(
ε

∫
Q0

|u|p−εdx

) 1
p−ε

.

It turns out that L∞ is not dense in Lp); moreover in [3] the distance formula

(1.3) distLp)(u, L∞) = lim sup
ε→0

[u]ε

was established to characterize the closure E0 = L
p)
b of L∞ in Lp) with the “little-

o”type condition

(1.4) lim sup
ε→0

[u]ε = 0.

Let us recall some relations with Zygmund spaces (see [11]):

Lp ⊂ Lp

logL
⊂ Lp) ⊂

∩
r>1

Lp

(logL)r

and
Lp,∞ ⊂ Lp)

In [8], the small Lebesgue space L(p′(Q0) of g ∈ Lp′(Q0) such that

(1.5) ∥g∥L(p′ = inf
g=

∑∞
k=1 gk

{ ∞∑
k=1

inf
0<ε<p−1

ε
− 1

p−ε

(∫
Q0

|gk|(p−ε)′dx

) 1
(p−ε)′

}
< ∞

where r′ = r
r−1 , was introduced. Clearly, L

p′+η ⊂ L(p′ for η > 0.
Let us note that properties of the small and grand Lebesgue space, using the

interpolation-extrapolation theory of quasi-Banach spaces are deeply considered
in [9] Section 2.

In [2], it is proved that L
p)
b is M- ideal in

(
L
p)
b

)⋆⋆
, that is

(1.6)
(
L
p)
b

)⋆⋆⋆
≃

(
L
p)
b

)⋆
⊕

(
L
p)
b

)⊥
.

where ⊕ stands for the direct sum and E⊥ is the orthogonal space of E.
In [8], [2], it was proved that, for 1

p + 1
q = 1,

(1.7)
(
L(q

)⋆
= Lp)



608 L. D’ONOFRIO, C. SBORDONE, AND R. SCHIATTARELLA

and

(1.8)
(
L
p)
b

)⋆
≃ L(q.

Hence:

(1.9)
(
L
p)
b

)⋆⋆
≃ Lp).

Our aim here is to prove atomic decomposition of L(2(]0, 1[). This can be obtained
showing that the pair (E0, E) with:

(1.10) E = L2), E0 = L
2)
b

obeys the general framework of [6]. Indeed, as in [6], one can choose X = L2−δ,
0 < δ < 1 and Y = L2, and introduce a family Lε : X → Y of linear operators such
that

Lp) = {u ∈ X : sup
0<ε<1

||Lεu||Y < ∞}.

Then Theorem 3 of [6] (see Theorem 3.1 in Section 3) guarantees that if Q0 =]0, 1[

the elements φ of the predual L(2 of L2) decompose as

φ =
∞∑
j=1

λjgj

where
∑∞

j=1 |λj | < ∞, for suitable gj .

2. Preliminaries

For u ∈ L1(Q0) the distribution function of u is defined by

µu(λ) = |{x ∈ Q0 : |u(x)| > λ}|
(λ > 0). The non-increasing rearrangement u⋆ of u is defined on [0, 1] by

u⋆(t) = inf{λ > 0 : µu(λ) ≤ t}.
We say that u and v are equimeasurable if µu(λ) = µv(λ) for all λ ≥ 0. The

space Lp) is a rearrangement invariant space, indeed ||u||Lp) = ||v||Lp) if u and v are
equimeasurable (see (2.1), (2.3) below). We also define

u⋆⋆(t) =

∫ t

0
u⋆(s)ds,

and the fundamental function φ of E = Lp) by

φ(t) = φE(t) = ||χAt ||E
for any At such that |At| = t. It turns out that

φE(t) ≃ t
1
p

[
log

(
1

t

)]− 1
p

.

In [9] it was proved that the norm (1.1) is equivalent to another norm in which the
nonincreasing rearrangement of u appears:

(2.1) ||u||Lp) = sup
0<t<1

(1− log t)
− 1

p

(∫ 1

t
[u⋆(s)]pds

) 1
p
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The small Lebesgue space L(q(Q0) , defined by (1.5), is the predual of Lp)(Q0)
(see [7]) and can be equipped with the equivalent norm

(2.2) ||u||L(q =

∫ 1

0
(1− log t)

− 1
q

(∫ t
0 [u

⋆(s)]qds
) 1

q

t
dt

The following results hold (see [2]):

Proposition 2.1. The grand Lebesgue space Lp)(Q0), p > 1 is the dual space of

L(q(Q0)

(L(q(Q0))
⋆ = Lp)(Q0).

Both spaces are not reflexive and not separable.

Proposition 2.2. Every function u ∈ L(q(Q0) has absolutely continuous norm,
that is if Aj ⊂ Q0 with |Aj | → 0, then ||uχAj ||L(q(Q0)

→ 0.

Proposition 2.3. The space L∞(Q0) is dense in L(q(Q0).

As already observed Proposition 2.3 does not hold in the case of the grand
Lebesgue space.

In [3] the following distance formula was obtained.

Theorem 2.4. For u ∈ Lp)(Q0), we have

(2.3) distLp)(u, L∞) = lim sup
ε→0

(
ε

∫
Q0

|u|p−ε

) 1
p−ε

.

Moreover, the distance is attained: there exists v ∈ L
p)
b such that the left hand

side of (1.5) coincides with ∥u− v∥Lp) .
We conclude this Section by recalling a classical notion which will be useful in

the sequel.

Definition 2.1. Let E be a Banach space and M a vectorial subspace of E. The
orthogonal space M⊥ of M is

M⊥ = {f ∈ E⋆ : ⟨f, x⟩ = 0 ∀x ∈ M}

where ⟨·, ·⟩ is the duality inner product.

3. Atomic decomposition of L(2(]0, 1[)

Following [6], suppose that X is a reflexive Banach space and Y any Banach
space. Let (Lj)

∞
j=1 be a given sequence of operators Lj : X → Y . Define

E = {x ∈ X : sup
j

||Ljx||Y < ∞}.

We suppose that E is a Banach space and that E is continuosly contained in X,
and moreover, that E is dense in X in the X-norm. Note that we then have an
isometric embedding

V : E → l∞(Y ), V x(n) = Lnx.
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Theorem 3.1. E has a predual E⋆,

E⋆ = l1(Y ⋆)/E⊥

where E⊥ = V (E)⊥∩l1(Y ⋆). Every x ∈ E corresponds to a functional on l1(Y ⋆)/E⊥
given by

(3.1) x(yn) =

∞∑
n=1

yn(Lnx),

and conversely every bounded functional on l1(Y ⋆)/E⊥ is given by a unique x ∈ E
according to (3.1).

Let us consider the grand Lebesgue space L2)(]0, 1[) equipped with the norm
(2.1). Let 0 < δ < 1, and consider X = L2−δ(]0, 1[) and Y = L2(]0, 1[). In order

to achieve atomic decomposition of small Lebesgue space L(2(]0, 1[), which is the

predual of L2)(]0, 1[), we define a suitable family of linear operators

Lj : X → Y.

Namely, for u ∈ X = L2−δ(Q0), for j ∈ N, we set

(3.2) Lju(s) = χIj (s)
1

(1 + log j)
1
2

(u⋆(s)− (u⋆)Ij ), where Ij =

]
1

j
, 1

[
.

Using the Definition 2.1, and observing that∫
Ij

|u⋆(s)−
∫
Ij

u⋆|2ds ≤ 4

∫
Ij

(u⋆)2ds

and ∫
Ij

|u⋆ −
∫
Ij

u⋆|2ds < ∞ =⇒
∫
Ij

(u⋆)2ds < ∞,

we can identify

(3.3) L2)(]0, 1[) =

{
u ∈ L2−δ(]0, 1[) : sup

j
||Lju||L2 < ∞

}
and moreover,L2)(]0, 1[) is dense in L2−δ(]0, 1[). So we can apply Theorem 3.1 to
obtain the following result

Theorem 3.2. For every φ ∈ E⋆ = L(2(]0, 1[), there exist gj ∈ L2(]0, 1[), λj ∈ R ,
j ∈ N, such that

(3.4) φ =
∑
j

λjgj

with

(3.5) ||φ||L2) ⋍
∑
j

|λj |.

Moreover,

(3.6) supp gj ⊂ Ij
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(3.7)

∫
Ij

gj = 0

(3.8) ||gj ||L2 ≤ 2
1

|Ij |
1
2

Proof. For every φ ∈ E⋆ = L(2 = l1(L2)/(V E)⊥ ∩ l1(L2) there exists (yj)j ⊂ l1(L2)
such that

||φ||E⋆ ⋍
∑
j

||yj ||L2(]0,1[).

Since

Lj : L
2−δ(]0, 1[) → L2(]0, 1[)

and

L⋆
j : L

2(]0, 1[) → L
2−δ
1−δ (]0, 1[)

we observe that for all f ∈ L2(]0, 1[)

(3.9) L⋆
jf = Ljf.

We will prove that φ =
∑

λjgj , that is

⟨x, φ⟩ =
∑
j

⟨gj , x⟩.

where

(3.10) gj =
Ljyj
||yj ||L2

, λj = ||yj ||L2 .

In fact, by Theorem 3.1, (3.9) and (3.10) we have

⟨x, φ⟩ = ⟨x, (yj)j⟩

=
∑

j⟨yj , Ljx⟩

=
∑

j⟨L⋆
jyj , x⟩

=
∑

j ||yj ||L2⟨gj , x⟩

=
∑

j λj⟨gj , x⟩

Since gj =
Ljyj

||yj ||L2
, we see that conditions (3.6) and (3.7) follow immediately from

the definition of Lj .
To prove (3.8), we just need to observe that

||gj ||2L2 =
||Ljyj ||2L2

||yj ||2
L2

= 1
1+log j

∫
Ij
|y⋆j − (y⋆j )Ij |2 1

||yj ||2
L2

≤
≤ 4 1

1+log j

∫
Ij
(y⋆j )

2 1
||yj ||2

L2

≤ 4 1
|Ij | .

to conclude the proof. □
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