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2. Preliminary Information

Let {Bi} be a sequence of Banach spaces such that each of them is continuously
embedded into a complete topological separable space V . Such a sequence is called
a V -sequence. If the sequence of positive numbers {γi} is additionally given, then,
as usual, by ΣγiBi we denote a new Banach space, the norm of which is given by

∥b|ΣγiBi∥ = inf{Σγi∥bi|Bi∥ : b = Σbi the series converges in V },
Now suppose that, instead of sequence, a collection of Banach spaces {Bβ}, (β ∈

(β, β), −∞ ≤ β < β ≤ ∞), continuously embedded in a complete topological
separable space V is given. Analogously, we refer to such a collection as a V -
collection.

For a V -collection of Banach spaces {Bβ}, (β ∈ (β, β)) and a measurable the

function {ξ : (β, β) → R+} we denote a new space
∑

{ξ,Bβ} by norm

∥b|
∑

{ξ,Bβ}∥ = inf{∥b|
∑

ξ(βi)Bβi∥ :

β < ... < β−i < β−i+1... < β0 < β1 < ... < βi < ... < β}.
The main properties of the space

∑
{ξ,Bβ} are given in the following lemma.

Lemma 2.1 ( [4]). The space
∑

{ξ,Bβ} is a Banach space. If a linear subset
U ⊆

⋂
Bβ is dense in each Bβ, then U is dense in

∑
{ξ,Bβ}.

Analogously, by
⋂
{ξ,Bβ} we denote a new Banach space, the norm of which is

given by ∥b|
⋂
{ξ,Bβ∥ = supβ∈(β,β) ξ(β)∥b|Bβ∥.

Let S(Z) be the space of number sequences a = {ai}∞−∞ with coordinate-wise

convergence, {ei}∞−∞ is a standard basis in S(Z). A Banach space l ⊂ S(Z) is

called ideal [14], if x =
∑∞

−∞ eixi ∈ l, y =
∑∞

−∞ eiyi ∈ S(Z) and for all i ∈ Z the
inequality |yi| ≤ |xi| implies that y ∈ l and ∥y|l∥ ≤ ∥x|l∥ (by ∥x|l∥ we denote the
norm of element x in the space l). Operator τ is the right-shift operator acting on
a sequence a =

∑∞
−∞ eiai as

τ(
∞∑
−∞

eiai) =
∞∑
−∞

eiai−1.

If the sequence a is such that for any i ∈ Z the inequality
∑∞

j=i |aj | < ∞ holds,
then we define the operator Λ by the formula

(2.1) Λa =

∞∑
−∞

ei(

∞∑
j=i+1

aj).

Let l be a Banach ideal sequence space in S(Z). In what follows, we will consider
only those l that satisfy the following condition:

(2.2) if
∞∑
−∞

aie
i ∈ l, then lim

i→∞
ai = 0.

Lemma 2.2. If for each β ∈ (β, β) space lβ is ideal, then the space
∑

{ξ, lβ} is

also an ideal. If for each β ∈ (β, β) space lβ satisfies condition (2.2), then the space
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{ξ, lβ} also satisfies condition (2.2), if for each β ∈ (β, β) in lβ the operator τ is

bounded and satisfies the condition

(2.3) sup{∥τ |lβ → lβ∥ : β ∈ (β, β)} = c0 <∞,

then in the space
∑

{ξ, lβ} is also bounded the operator τ and its norm does not

exceed c0. If for each β ∈ (β, β) in the space lβ the operator Λ is bounded and

(2.4) sup{∥Λ|lβ → lβ∥ : β ∈ (β, β)} = c1 <∞,

then in the space
∑

{ξ, lβ} the operator Λ is also bounded and the inequality
∥Λ|

∑
{ξ, lβ} →

∑
{ξ, lβ}∥ ≤ c1 holds.

Proof. Let V = S(Z). Then, the collection of ideal spaces lβ is a V -collection and
the space

∑
{ξ, lβ} is well defined. We check the implication (2.2). The remaining

statements of this lemma can be readily verified.
Let a ∈

∑
{ξ, lβ} with ∥a|

∑
{ξ, lβ}∥ = 1. This means that there are {βi} such

that β < ... < β−i < β−i+1... < β0 < β1 < ... < βi < ... < β and bj =
∑
bj,ie

i such
that

a =
∑

bj ;
∑

ξ(βi)∥bi|lβi∥ < 2.

Fix ε > 0. We first choose n so that the inequality holds

∞∑
i=n+1

ξ(βi)∥bi|Bβi∥+
−∞∑

i=−n−1

ξ(βi)∥bi|Bβi∥ <
ε

2
,

and, then for each i = −n,−n+ 1, ..., n− 1, n for bi choose ni ∈ N so that

sup
i≥nj

|bj,i| <
ε

2n
,

Define the number nε = max{nj : j = −n,−n + 1, ..., n − 1, n}. Then, for any
i ≥ nε inequality |ai| ≤ ε holds, whence it follows that for

∑
{ξ, lβ} the implication

(2.2) is satisfied. □

The main objects considered in this article are the approximation spaces. Roughly
speaking, an approximation space is a functional class whose elements are com-
pletely determined by the behavior of its best approximations. As a typical exam-
ple, we indicate the space Lipβ, (0 < β < 1), of periodic functions of smoothness
β, which, according to the classical approximation theory (see [1, 7]), is isomorphic
to the approximation space generated by the sequence en(x) of the best approxi-
mations of the function x by trigonometric polynomials of degree at most 2n in the
uniform norm. Links to other examples and the calculation of interpolation functors
on pairs of approximation spaces can be found in [3].

Recall the definition of an approximation space. Let an ideal sequence space l be
given, a separable topological space B in which the normalizing function α : B →
[0,∞] is given (i.e. α satisfies all the conditions for the norm, but can take values
of ∞) for which B is complete space. Suppose that in B a sequence of subspaces
A = {Ai}∞−∞ is given and

(2.5)
⋂
i∈Z

Ai = 0; ∀i ∈ Z ⇒ Ai ⊂ Ai+1.
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For each u ∈ B, we define the best approximations of u, using the subspace Ai, by

αi(u) = inf{α(u− vi) : vi ∈ Ai}.
The approximation space E(l;α,A,B) consists of such u ∈ B for which the norm
is finite

∥u|E(l;α,A,B)∥ = ∥
∞∑
−∞

αi(u)e
i|l∥.

The relation (2.5) implies that for each u ∈ B the inequalities αi(u) ≥ αi+1(u)
hold. If

⋃
i∈Z Ai is dense in B, then for each u ∈ B, the equality limi→∞ αi(u) = 0

is true.
Along with the class of approximation spaces E(l;α,A,B) we introduce another

class of approximation spaces E0(l;α,A,B). The space E0(l;α,A,B) consists of
those u ∈ B, for which the norm is finite

∥u|E(l;α,A,B)∥ = inf{∥
∞∑
−∞

α(vi)e
i|l∥ : u =

∞∑
−∞

vi, series converges in B}.

The spaces E(l;α,A,B) are generated by the direct approximation theorems,
and the spaces E0(l;α,A,B) are closely connected with the inverse approximation
theorems. Note that, in applications, for all i ≤ i0, the relation Ai = 0 is often
fulfilled. It will be exactly the same when describing the Lipschitz space Lip β,
(0 < β < 1), as approximation. Therefore, in what follows, we assume that Ai = 0
for all i ≤ 0.

It is known [3] that the space E(l;α,A,B) is continuously embedded in the space
E0(l;α,A,B) with a embedding constant 2∥τ |l → l∥. If the operator Λ is bounded
in the space l, then the space E0(l;α,A,B) is continuously embedded in the space
E(l;α,A,B) with a embedding constant ∥Λ|l → l∥.

We illustrate our definitions with an example.
Example 1. Let B = C[0, 2π] be the space of continuous periodic functions with

uniform norm. For each x ∈ C[0, 2π], the modulus of continuity of the function x
is defined by

υ(x, δ) = sup
τ,s:|τ−s|≤δ

|x(τ)− x(s)|.

Let the modulus of continuity ν be given. Without loss of generality, we can assume
that ν(1) = 1. Let Lip(ν) denote the space of functions for which the norm is finite

∥x|Lip(ν)∥ = max{∥x|C[0, 2π]∥, sup
δ

υ(x, δ)

ν(δ)
}.

Let Ai = 0 (i = 0,−1,−2, ...) and Ai = Ti is the space of trigonometric poly-
nomials of degree at most 2i (i ∈ N). In this case, the operator Λ defined by the
equation (2.1) has the form

(2.6) Λ(
∞∑
0

aie
i) =

∞∑
0

ei(
∞∑

j=i+1

aj).

Now, let the normalizing function α : B → R+ be given by α(x) = max{|x(s)| :
s ∈ [0, 2π]}. Moreover, for each x ∈ C[0, 2π] the formula ei(x) = infti∈Ti α(x(.) −
ti(.)) defines the best approximations by polynomials of degree at most 2i. As an
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ideal sequence space l we will consider spaces lpω, (1 ≤ p ≤ ∞), with the following
norm

∥Σ∞
i=0aie

i|lpω∥ =

{
Σ∞
i=0(|ai|ω(i))p}1/p, if 1 ≤ p <∞

supi |ai|ω(i), if p = ∞.

For the modulus of continuity ν we define the weight function ων(.) by the formula
ων(i) = 1/ν(2−i), (i = 0, 1, 2, ...).

From the direct theorems of the theory of approximation of periodic functions
by trigonometric polynomials (see [1, 7]), for all n follows the inequality en(x) ≤
c2υ(x, 2

−i), (c2 does not depend on i and x ∈ C[0, 2π]). Therefore, the embedding
constant

Lip(ν) ⊆ E(l∞ων
;α,A,B)

does not exceed c2.
The inverse theorems of the theory of approximation of periodic functions by

trigonometric polynomials (see [1,7]) for all i imply the inequality

(2.7) υ(x, δ) ≤ c3 inf
i
{δ

i∑
0

2jej(x) +

∞∑
i

ej(x)},

where c3 does not depend on i and x ∈ C[0, 2π].
Suppose additionally that the modulus of continuity ν or that, in any case, the

weight ων for all i = 0, 1, ... satisfies the conditions

(2.8) Σij=02
jν(2−j) ≤ c42

iν(2−i), Σ∞
j=iν(2

−j) ≤ c5ν(2
−i),

where c4 and c5 do not depend on i.
Then, for each function x ∈ C[0, 2π] from (2.7) - (2.8) that

υ(x, 2−i) ≤ c3(c4 + c5)
1

ων(i)
, i = 0, 1, 2, ...

Therefore, the embedding constant

E0(l
∞
ων
;α,A,B) ⊆ Lip(ν)

does not exceed c3(c4 + c5).
Conditions (2.8) imply the inequalities

∥τ |l∞ων
→ l∞ων

∥ = sup
i

ν(2−i)

ν(2−i−1)
≤ 2c4;

∥Λ|l∞ων
→ l∞ων

∥ = sup
i

1

ν(2−i)
{Σ∞

j=iν(2
−j)} ≤ c5.

Therefore, up to equivalent norms, the following equalities hold

E(l∞ων
;α,A,B) = E0(l

∞
ων
;α,A,B) = Lip(ν).

In particular, for any β ∈ (0, 1), the approximation spaces are Lip β.
If we replace the uniform norm by the norm in the space Lp, (1 ≤ p < ∞),

then, by a similar scheme, it can be shown that the Lipschitz spaces defined by the
modulus of continuity calculated in the norm of Lp are also approximation space.
Details and generalizations can be found in [1,7].
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3. Main results

The following result is the main one.

Theorem 3.1. Fix a separable topological space B that is complete with respect
to the normalizing function α and a sequence of subspaces {Ai}∞−∞, satisfying the

conditions (2.5). Let a collection of ideal sequence spaces {lβ}, (β ∈ (β, β)) and

a measurable function ξ : (β, β) → R+ are given. For each {lβ} we construct an

approximation space Yβ = E0(lβ ;α,A,B), (β ∈ (β, β)). Set l =
∑

{ξ, lα}.
Then,

(3.1)
∑

{ξ, E0(lβ ;α,A,B)} = E0(l;α,A,B),

and the norms in these spaces coincide.

Proof. It follows from the lemma 2.2 that the space l is well-defined and can be a
parameter for the approximation space.

We now show that the space
∑

{ξ, E0(lβ ;α,A,B)} is well-defined. Indeed, if we
take B as a complete topological separable space V , then the collection of {Yβ}
spaces will be a B-collection. Therefore, the space Y =

∑
{ξ, Yβ} is well-defined.

First we show that the embedding is satisfied

(3.2)
∑

{ξ, Yβ} ⊂ E0(l;α,A,B),

with a embedding constant unit.
We note that if β ∈ (β, β) is fixed, then the inequality holds

(3.3) ξ(β)∥
∞∑
−∞

aie
i|lβ∥ ≥ ∥

∞∑
1

aie
i|l∥.

Fix ε > 0 and set positive numbers {εj}∞j=1, such that
∑

j εj < ε. Let b ∈∑
{ξ, Yβ} be a sequence of numbers βi ∈ (β, β) and the sequence of elements bi ∈

E0(lβi ;α,A,B), such that b =
∑

i bi ( the series converges in B). For each bi ∈
E0(lβi ;α,A,B) we consider the representation bi =

∑∞
j=1 ui,j , where ui,j ∈ Aj ,

(j ∈ N) and the series converges in B, such that at all i are executed inequalities

(3.4) ξ(βi)∥bi|E0(lβi ;α,A,B)∥ > ξ(βi)∥
∞∑
j=1

α(ui,j)e
j |lβi∥ − εi.

From (3.3) - (3.4) we obtain∑
i

ξ(βi)∥bi|E0(lβi ;α,A,B)∥ >
∑
i

(ξ(βi)∥
∞∑
j=1

α(ui,j)e
j |lβi∥ − εi) ≥

∑
i

ξ(βi)∥
∞∑
j=1

α(ui,j)e
j |lβi∥ − ε ≥

∑
i

∥
∞∑
j=1

α(ui,j)e
j |l∥ − ε ≥

∥
∑
i

(
∞∑
j=1

α(ui,j)e
j)|l∥ − ε = ∥

∞∑
j=1

(
∑
i

α(ui,j))e
j)|l∥ − ε ≥
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∥
∞∑
j=1

(α(
∑
i

ui,j))e
j)|l∥ − ε ≥ ∥(

∑
i

bi)|E0(l;α,A,B)∥ − ε =

∥b|E0(l;α,A,B)∥ − ε,

from which it follows (3.2).
We now show that the converse to (3.2) embedding is also satisfied

(3.5) E0(l;α,A,B) ⊂
∑

{ξ, Yβ},

with a embedding constant unit.
Fix ε > 0. Let u ∈ E0(l;α,A,B):

u =

∞∑
1

un, un ∈ An, (∀n ∈ N), x =
∞∑
1

α(un)e
n, ∥x|l∥ ≤ ∥u|E0(l;α,A,B)∥+ε.

Choose a sequence {βi}, βi ∈ (β, β), so that the relations are satisfied

x ≡
∑
i

yi, where yi =
∞∑
j=1

yi,je
j ∈ lβi , and

∑
i

ξ(βi)∥yi|lβi∥ ≤ ∥x|l∥+ ε.

For each i define

(3.6) wi,n ≡ un
α(un)

yi,n, wi =
∞∑
n=1

wi,n.

Then, directly from (3.6), it follows that the following relations are true

u =
∑
i

wi,

∞∑
n=1

α(wi,n)e
n ≡ yi.

Therefore

∥u|
∑

{ξ, Yβ}∥ ≤
∑
i

ξ(βi)∥wi|E0(lβi ;α,A,B)∥ ≤
∑
i

ξ(βi)∥
∞∑
n=1

α(wi,n)e
n|lβi∥ =

∑
i

ξ(βi)∥yi|lβi∥ ≤ ∥x|l∥+ ε ≤ ∥u|E0(l;α,A,B)∥+ 2ε.

The last relation implies (3.5), and the embedding constant does not exceed one.
Combining (3.2) and (3.5), we obtain (3.1) with the equality of norms. □

From lemma 2.2 and theorem 3.1, we obtain the following.

Theorem 3.2. Fix a separable topological space B that is complete with respect to
the normalizing function α, a sequence of subspaces {Ai}∞−∞, satisfying the condi-

tions (2.5), a collection of ideal sequence spaces {lβ}, (β ∈ (β, β)), each of which

satisfies the condition (2.2), and a measurable function ξ : (β, β) → R+. Let the
operators τ and Λ satisfy conditions (2.3) and (2.4). For each {lβ} we construct an

approximation space Yβ = E(lβ ;α,A,B), (β ∈ (β, β)).
Then, up to equivalent norms,∑

{ξ, E(lβ ;α,A,B)} = E(l;α,A,B).
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The dual fact to theorem 3.1 is as follows.

Theorem 3.3. Fix a separable topological space B that is complete with respect
to the normalizing function α and a sequence of subspaces {Ai}∞−∞, satisfying the

conditions (2.5). Let a collection of ideal sequence spaces {lβ}, (β ∈ (β, β)) and

a measurable function ξ : (β, β) → R+ are given. For each {lβ} we construct an

approximation space Yβ = E0(lβ ;α,A,B), (β ∈ (β, β)). Set l =
⋂
β{ξ, lα}.

Then

(3.7)
⋂
β

{ξ, E(lβ ;α,A,B)} = E(l;α,A,B),

and the norms in these spaces coincide.

Proof. The proof (3.7) is contained in the equality

∥u|ξ(β)E(lβ ;α,A,B)∥ = ∥u|E(ξ(β)lβ ;α,A,B)∥.
□

From lemma 2.2 and theorem 3.3 we get the following.

Theorem 3.4. Fix a separable topological space B that is complete with respect to
the normalizing function α, a sequence of subspaces {Ai}∞−∞, satisfying the condi-

tions (2.5), a collection of ideal sequence spaces {lβ}, (β ∈ (β, β)), each of which

satisfies the condition (2.2), and a measurable function ξ : (β, β) → R+. Let the
operators τ and Λ satisfy conditions (2.3) and (2.4). For each {lβ} we construct an

approximation space Yβ = E(lβ ;α,A,B), (β ∈ (β, β)).
Then, the following equality holds⋂

β

{ξ, E0(lβ ;α,A,B)} = E0(l;α,A,B),

and the norms in these spaces are equivalent.

The classical formulation of the problems of extrapolation theory is of the form.
Problem 1.
Let {Aβ} be a V -collection of Banach spaces, X a Banach space, T : Aβ → X

a quasilinear operator, and ξ(β) = ∥T |Aβ → X∥, (β ∈ (β, β)). It is necessary to
construct from the collection {Aβ} taking into account the behavior of the function

ξ(β) ”maximal” space A, such that T : A→ X and ∥T |A→ X∥ <∞.
Problem 2. Let {Aβ} be a V -collection of Banach spaces {Aβ}, X a Banach

space, S : X → Aβ a quasilinear operator, and ξ(β) = ∥S|X → Aβ∥, (β ∈ (β, β)). It
is necessary to construct from the collection {Aβ} taking into account the behavior
of the function ξ(β) ”minimal” space A, such that S : X → A and ∥S|X → A∥ <∞.

Let b ∈ Σ{ξ, Aβ} and∑
bi = b;

∑
ξ(βi)∥bi|Aβi∥ < 1.

From inequality

∥Tb|Y ∥ = ∥T
∑

bi|Y ∥ ≤
∑

∥Tbi|Y ∥ ≤
∑

ξ(βi)∥bi|Y ∥
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it follows that Σ{ξ, Aβ} can act as A.
Let b ∈ X and ∥b|X∥ ≤ 1.
From inequality

∥Sb|Aβ∥ ≤ ξ(βi)∥b|X∥
it follows that the space

⋂
{ξ,Aβ} can act as A.

For definiteness, it is usually assumed that limβ→β−0 ξ(β) = ∞, or limβ→β+0 ξ(β) =

∞, or it is assumed that a combination of singularities at the boundaries of the in-
terval (β, β). That is why the spaces A and A are defined.

Therefore, from the theorems 3.1 and 3.3 we obtain the following extrapolation
theorems for approximation spaces.

Theorem 3.5. Let some Banach space Y be given, and let T : E(lβ ;α,A,B) → Y

be some linear operator whose norms for all β ∈ (β, β) are admissible

∥T |E0(lβ ;α,A,B) → Y ∥ ≤ ξ(β).

Set l = Σ{ξ, lβ}. Then, T is bounded as an operator from E0(l;α,A,B) to Y and
its norm does not exceed 1.

Theorem 3.6. Let some Banach space Y be given, and let S : X → E(lβ ;α,A,B)

be some linear operator whose norms for all β ∈ (β, β) are admissible

∥S|X → E(lβ ;α,A,B)∥ ≤ ξ(β).

Set l =
⋂
β{ξ, lβ}. Then, S is bounded as an operator from X to E(l;α,A,B) and

its norm does not exceed 1.

We illustrate the theorems obtained for calculating concrete spaces.
Let W be the set of increasing sequences {ψk}∞0 , each of which satisfies the

conditions: ψ(0) = 0 and, for any k ∈ N , the inequality holds 2ψk ≥ ψk+1 + ψk−1.
For every ψ ∈W , Lorentz space λ(ψ) (Marcinkiewicz space m(ψ)) consists of those
{xk}∞0 , each of which has finite norm

∥Σxkek|λ(ψ)∥ = Σ∞
i=1x

∗
i (ψi − ψi−1), (∥x|m(ψ)∥ = sup

k

ψ(k)

k
Σki=1x

∗
i ).

Here, the sequence {x∗k} is a permutation of the sequence {|xk|} in non-increasing
order.

If ψk = kα, (α ∈ (0, 1)), then the Lorentz space λ(ψα) (Marcinkevich space
m(ψα)) is denoted by λα (mα). For uniformity, the Lebesgue space lp will also be
denoted by lα, setting p = 1/α (1/0 = ∞).

Lorentz and Marcinkiewicz spaces, along with Lebesgue spaces, are classical ex-
amples of Banach symmetric spaces. For more information on symmetric spaces
and permutations, see [6, 14].

As in the case of a continuous measure ( [2, 4]), the following theorem can be
proved.

Theorem 3.7. Fix a pair of numbers 0 ≤ β < β ≤ 1, a measurable function

ξ : (β, β) → R+, a collection of Lorentz spaces λβ and a collection of Marcinkiewicz

spaces mβ, (β ∈ (β, β)).
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For each i ∈ N , we define a function

(3.8) ψξ(i) = inf
β∈(β,β)

ξ(β) · iβ , ψ
ξ
(i) = sup

β∈(β,β)
ξ(β) · iβ .

Then, the equalities hold

Σ{ξ, λβ} = λ(ψξ),
⋂

{ξ,mβ} = m(ψ
ξ
),

and the norms on these pairs spaces coincide.

Therefore, from the theorems 3.5 - 3.7 we obtain the following theorem.

Theorem 3.8. Fix a pair of numbers 0 ≤ β < β ≤ 1, a separable topological
space B that is complete with respect to the normalizing function α and a sequence
of subspaces {Ai}∞−∞, satisfying the conditions (2.5). Let a collection of Lorentz

spaces λβ, a collection of Marcinkiewicz spaces mβ, (β ∈ (β, β)) and a measurable

function ξ : (β, β) → R+ are given. For each {lβ} we construct an approximation

space E0(λ
β ;α,A,B) and E(mβ ;α,A,B).

For each i ∈ N , we define the functions ψξ(i) and ψξ(i) by the equation (3.8).

Then, the equalities hold

(3.9) Σ{ξ, E0(λ
β ;α,A,B)} = E0(λ(ψξ));α,A,B),

(3.10)
⋂

{ξ, E(mβ ;α,A,B)} = E(m(ψ
ξ
);α,A,B),

and the norms on pairs of spaces in (3.9) and (3.10) coincide.

We show how the extrapolation theorem for classical Lipschitz spaces Lip β.
The problem of extrapolation of Lipschitz spaces has been considered several times
before (see [10, 16]). We demonstrate a new approach that allows us to consider
arbitrary growth of the operator norms. In a similar way, one can obtain theorems
of extrapolation for other approximation spaces, for example, for Besov spaces.

Theorem 3.9. Fix 0 < β < β < 1. Now, let Y be some Banach space and

T : Lip β → Y some linear operator for all β ∈ (β, β) the following relations hold

∥T |Lip β → Y ∥ ≤ ξ(β),

lim
β→β+0

ξ(β) = ∞.

We define the weight function ων(β,.) by the formula ων(β,.)(n) = 2nβ, (n =

0, 1, 2, ...), and the function ψξ(i) by

(3.11) ψξ(i) = inf{ξ(β)2βi : β ∈ (β, β)}

for every i ∈ N .
Moreover, we define the space

λ̃(ψξ) = {a =
∞∑
k=1

aie
i :

∞∑
i=1

(a∗i − a∗i+1)ψξ(i) <∞}.



EXACT CALCULATION OF THE SUM AND INTERSECTION 561

Finally, let α,A,B be parameters for constructing approximation spaces defined as
in Example 1. We employ these parameters to construct an approximation space

E(λ̃(ψξ);α,A,B).

Then, T is bounded as an operator from E(λ̃(ψξ);α,A,B) to Y .

Proof. Fix β ∈ (β, β), the modulus of continuity ν(β, δ) = δβ and Lip β. By
analogy with example 1, we construct approximation spaces E(l∞ων(β,.)

;α,A,B) and

E0(l
∞
ων(β,.)

;α,A,B). Since the modulus of continuity is ν(β, δ) satisfies the conditions

(2.8) with

c4 =
1

1− 2−β
, c5 =

1

21−β − 1
,

for any β ∈ (β, β) the equalities hold

E(l∞ων(β,.)
;α,A,B) = E0(l

∞
ων(β,.)

;α,A,B) = Lip β.

The restrictions on β, the lemma 2.2 and the theorem 3.1 imply

E0(Σ{ξ, l∞ων(β,.)
};α,A,B) = E(Σ{ξ, l∞ων(β,.)

};α,A,B).

For each k ∈ N , we define the vectors dk by dk = Σki=1e
i. We prove that for any

k ∈ N

(3.12) ∥dk|Σ{ξ, l∞ωβ
}∥ = ∥dk|l∞

ψξ
}∥ = ψξ(k).

For any β ∈ (β, β), from (3.11) follows the embedding

ξ(β)l∞ωβ
⊆ l∞

ψξ

with a the embedding constant 1. Therefore, follows the embedding∑
{ξ, l∞ωβ

} ⊆ l∞
ψξ

with a the embedding constant 1. From this relation it follows that

∥dk|l∞
ψξ
}∥ ≤ ∥dk|Σ{ξ, l∞ωβ

}∥.

To prove the inverse inequality, we define b1 = dk; bi = 0, i = 2, 3, 4..... Then,
the inequality holds

∥dk|Σξ(βi)l∞ωβi
}∥ ≤ ξ(β1)∥d1|l∞ωβ1

∥ = ξ(β1)ωβ1(k).

This inequality holds for any β1 ∈ (β, β). Therefore,

∥dk|Σ{ξ, l∞ωβ
}∥ ≤ inf{ξ(β)ωβ(k) : β ∈ (β, β)} = ψξ(k).

The last formula implies

∥dk|Σ{ξ, l∞ωβ
}∥ ≤ ∥dk|l∞

ψξ
}∥.

Thus, (3.12) is proved.
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Let a =
∑∞

i=1 aie
i, ai ≥ 0, ai ↓ be given and

∑∞
i=1(ai − ai+1)ψξ(i) < ∞. Then,

a =
∑∞

k=1(ak − ak+1)d
k and

∥a|Σ{ξ, l∞ωβ
}∥ ≤

∞∑
k=1

(ak − ak+1)∥dk|Σ{ξ, l∞ωβ
}∥ =

(3.13)

∞∑
k=1

(ak − ak+1)∥dk|l∞ψξ
∥ =

∞∑
k=1

(ak − ak+1)ψξ(k).

From the inequality (3.13) follows the embedding

(3.14) λ̃(ψξ) ⊆ Σ{ξ, l∞ων(β,.)
}

with a the embedding constant 1. From the theorem 3.5 it follows that T is bounded
as an operator from E0(Σ{ξ, l∞ων(β,.)

};α,A,B) to Y and from E(Σ{ξ, l∞ων(β,.)
};α,A,B)

to Y . From the embedding (3.14) we obtain that T is bounded as an operator from

E0(λ̃(ψξ);α,A,B) to Y and from E(λ̃(ψξ);α,A,B) to Y . □

Theorem 3.10. Fix 0 < β < β < 1. Let X be some Banach space, and S : X →
Lip β some linear operator for all β ∈ (β, β) the following relations hold

∥S|X → Lip β∥ ≤ ξ(β),

lim
β→β−0

ξ(β) = ∞.

We define the weight function ων(β,.) by ων(β,.)(n) = 2nβ, n = 0, 1, 2, ..., and the
function ψ

ξ
(i) by

ψ
ξ
(i) = sup{ξ(β)2βi : β ∈ (β, β)},

for every i ∈ N . Moreover, we define the space

m̃(ψ
ξ
) = {a =

∞∑
i=1

aie
i : sup

i
a∗iψξ(i) <∞}.

Finally, let α,A,B be parameters for constructing approximation spaces defined as
in theorem 3.9. We construct an approximation space E(m̃(ψ

ξ
);α,A,B).

Then, S is bounded as an operator from X to E(m̃(ψ
ξ
);α,A,B).

Proof. The proof is similar to one of theorem 3.9, if for a =
∑∞

i=1 aie
i, ai ≥ 0, ai ↓

use the equality

∥
∞∑
k=1

aie
i|

⋂
β∈(β,β)

ξ(β)l∞ων(β,.)
∥ = sup

β∈(β,β)
{ξ(β) sup

i
ai2

iβ} =

sup
i
{ai sup

β∈(β,β)
ξ(β)2iβ} = sup

i
aiψξ(i).

□

Examples of calculating the functions ψξ, ψξ can be found in ( [2–4]).
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