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where A,B > 0 are absolute constants. Observe that the aforementioned result of
Zygmund can be regarded as a consequence of Riesz’s theorem, via Yano’s extrap-
olation theorem. Notice that, as H is translation-invariant, it follows from T. Tao’s
converse extrapolation theorem [53] that (1.2) also implies (1.1). Furthermore, in
view of the L2(T)-boundedness of H and Marcinkiewicz-type interpolation, both
the above-mentioned results of Riesz and Zygmund can actually be regarded as
consequences of the fact that H is of weak-type (1, 1), a result due to A. N. Kol-
mogorov [29]. We remark at this point that the exact behaviour of the Lp − Lp

operator norm of H was obtained in [37] by S. K. Pichorides, who showed that
‖H‖Lp(T)→Lp(T) = tan(π/2p) for 1 < p ≤ 2 and ‖H‖Lp(T)→Lp(T) = cot(π/2p) for
2 ≤ p < ∞; see [37, Theorem 3.7]. It was also shown in [37] that the constant A in
(1.2) has to satisfy A > 2/π; see [37, Theorem 3.4].

Another example illustrating Yano’s extrapolation theorem can be obtained by
considering the work of J. Bourgain [11] on the mapping properties of the classical
Littlewood-Paley operator and the work of Tao and J. Wright [54] on Marcinkiewicz
multiplier operators. To be more specific, recall that the Littlewood-Paley square
function ST(f) of a trigonometric polynomial f on T is given by

ST(f) :=

(∑
n∈Z

|∆n(f)|2
)1/2

,

where the Littlewood-Paley projections (∆n)n∈Z are defined as follows. If n = 0,

then one sets ∆0(f)(x) := f̂(0), x ∈ T and if n ∈ N, then one defines

∆n(f)(x) :=

2n−1∑
k=2n−1

f̂(k)eikx and ∆−n(f)(x) :=

−2n−1∑
k=−2n+1

f̂(k)eikx, x ∈ T.

The Littlewood-Paley operator ST can be extended as a sublinear Lp(T)-bounded
operator for all 1 < p < ∞; see e.g. Chapter XV in [59]. In [11], Bourgain showed
that

(1.3) ‖ST‖Lp(T)→Lp(T) ∼ (p− 1)−3/2 (1 < p ≤ 2)

and hence, by Yano’s extrapolation theorem, one deduces that

(1.4) ‖ST(f)‖L1(T) ≲ ‖f‖L log3/2 L(T).

We remark that the last estimate (1.4) is also a consequence of the work of Tao and
Wright on endpoint mapping properties of Marcinkiewicz multiplier operators [54];
see [1]. In fact, as observed in [1], an alternative proof of (1.3) can be obtained
by combining the work of Tao and Wright [54] with Tao’s converse extrapolation
theorem [53]. In [32], A. K. Lerner established sharp weighted estimates for the
Littlewood-Paley operator and as a consequence, he obtained yet another proof of
(1.3).

The mapping properties of ST can be improved when we restrict ourselves to the
classical Hardy spaces. To be more precise, in [38], Pichorides proved that when
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restricted to Hp(T) the exponent r = 3/2 in (1.3) can be improved to r = 1, namely

(1.5) sup
f∈Hp(T):
∥f∥Lp(T)=1

‖ST(f)‖Lp(T) ∼ (p− 1)−1 (1 < p ≤ 2).

Similarly, the exponent r = 3/2 in (1.4) can be improved to r = 1 when we restrict
ourselves to H1(T), as a classical result of Zygmund [58, Theorem 8] asserts that
ST(f) ∈ L1(T) if we assume f ∈ H1(T) ∩ L logL(T), namely

(1.6) ‖ST(f)‖L1(T) ≲ ‖f‖L logL(T) (f ∈ H1(T)).

The aforementioned results of Pichorides (1.5) and Zygmund (1.6) are in fact con-
nected via a variant of Yano’s extrapolation theorem for Hardy spaces on the torus.
Such versions of Yano’s theorem can be obtained as consequences of the abstract ex-
trapolation theories for compatible couples of Banach spaces developed by Jawerth
and Milman [19] (see also Jawerth and Milman [20] and Milman [35]) and by M.
J. Carro and J. Mart́ın [15] combined with available results concerning real inter-
polation between Hardy spaces. However, a direct approach that combines Yano’s
original argument with techniques due to S. V. Kislyakov [24] (see also Kislyakov
and Q. Xu [27,28]) was presented in [3] for the one-dimensional periodic case. The
main purpose of this survey paper is to present some variants of Yano’s theorem for
Hardy spaces and explain how they can be deduced by using already existing results
on real interpolation between Hardy spaces. Some new applications are obtained
as applications of the extrapolation results presented here. More specifically, we
establish a variant of Zygmund’s inequality (1.6) for functions defined on the real
line as well as a two-parameter extension of a classical result due to Y. Meyer [34]
concerning ‘thin’ spectral sets of integers.

The paper is organised as follows. For the convenience of the reader, in Section
2 we provide some notation and background and in Section 3, a brief overview of
some classical results on real interpolation between Hardy spaces is given and then
it is shown how those results can be used to establish extrapolation theorems for
operators acting on Hardy spaces. In the last section of this paper we obtain some
applications of the results presented in Section 3.

2. Notation and preliminaries

2.1. Notation. If X,Y > 0 and X ≤ CY , we write X ≲ Y . If X ≲ Y and Y ≲ X,
we write X ∼ Y .

The set of integers, the set of non-negative integers, and the set of natural num-
bers are denoted by Z, N0, and N, respectively.

If t ≥ 0, then we use the notation log+ t := max{log t, 0}.
If G is a locally compact abelian group, equipped with a Haar measure mG, then

the Fourier coefficient f̂(γ) of a function f ∈ L1(G) at γ ∈ Ĝ (Ĝ being the dual
group of G) is given by

f̂(γ) :=

∫
G
f(x)γ(x)dmG(x).
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If G is compact then, following [47], we say that f is a trigonometric polynomial
on G whenever f is of the form

f(x) =

N∑
i=1

aiγi(x) (x ∈ G),

where ai are complex scalars and γi ∈ Ĝ, i = 1, · · · , N . If f is a trigonometric

polynomial on Td and supp(f̂) ⊆ Nd
0, then f is said to be an analytic trigonometric

polynomial on Td. Also, in the case where G is compact, we take the normalised
Haar measure mG, i.e. mG(G) = 1.

If f is a measurable function defined over some measure space (S, E , µ), then its
non-increasing rearrangement f∗ is defined by

f∗(t) := inf{λ > 0 : µ({x ∈ S : |f(x)| > λ}) ≤ t}
for t ≥ 0, with the convention that inf ∅ = ∞.

Let (X,µ) and (Y, ν) be two measure spaces and let T be an operator that maps
measurable functions in (X,µ) to measurable functions in (Y, ν). We say that T
is sublinear if, and only if, for all measurable functions f, g on X and for every
constant c ∈ C one has |T (cf)| = |c||T (f)|, |T (f + g)| ≤ |T (f)| + |T (g)|, and
|T (f)− T (g)| ≤ |T (f − g)|.

2.2. Real interpolation. Let X = (X1, X2) be a couple of compatible Banach
spaces (Xi, ‖ · ‖i) (i = 1, 2), that is, there exists a topological vector space X0 such
that Xi ⊆ X0 continuously, i = 1, 2, and so X1 +X2, X1 ∩X2 6= ∅ are well-defined.
For t > 0, the K-functional of x ∈ X1 +X2 is given by

K(x, t;X1, X2) := inf
{
‖x1‖1 + t‖x2‖2 : x = x1 + x2, xi ∈ Xi (i = 1, 2)

}
.

For any given x ∈ X1 +X2, the non-negative function t 7→ K(x, t;X1, X2) is con-
cave on (0,∞) and hence, there exists a non-negative decreasing function t 7→
k(x, t;X1, X2) such that

K(x, t;X1, X2) = K(x, 0+;X1, X2) +

∫ t

0
k(x, s;X1, X2)ds for t > 0.

The intermediate space Xθ,q = (X1, X2)θ,q is defined to be the class of all x ∈
X1 +X2 such that ‖x‖Xθ,q

< ∞, where

‖x‖Xθ,q
:=

{( ∫∞
0 [t−θK(x, t;X1, X2)]

qdt/t
)1/q

if 0 < θ < 1, 1 ≤ q < ∞,

supt>0

{
t−θK(x, t;X1, X2)

}
if 0 ≤ θ ≤ 1, q = ∞.

For basic notions and results related to abstract interpolation, we refer the reader
to the books of C. Bennett and R. Sharpley [6], J. Bergh and J. Löfström [7], and
Y. A. Brudny̆ı and N. Y. Krugljak [14].

Following G. Pisier [41], if X = (X1, X2) and Y = (Y1, Y2) are couples of compat-
ible Banach spaces such that Yi ⊆ Xi continuously, i = 1, 2, the couple Y = (Y1, Y2)
is said to be K-closed in X = (X1, X2) if there exists a constant C0 > 0 such that

K(x, t;Y1, Y2) ≤ C0K(x, t;X1, X2)

for every x ∈ Y1 + Y2 and for all t > 0.



EXTRAPOLATION ON HARDY SPACES 535

2.3. Function spaces. Let (S, E , µ) be a given σ-finite measure space.
Following [5], for 0 < p, q ≤ ∞ and r ∈ Z, define the Lorentz-Zygmund space

Lp,q logr L(S) to be the class of all measurable functions f on (S, E , µ) satisfying
‖f‖Lp,q logr L(S) < ∞, where

‖f‖Lp,q logr L(S) :=

{( ∫∞
0 [t1/p(1 + | log t|)rf∗(t)]qdt/t

)1/q
if q < ∞,

supt>0

{
t1/p(1 + | log t|)rf∗(t)

}
if q = ∞.

For p, q ∈ (0,∞] and r = 0, we write Lp,q log0 L(S) = Lp,q(S) and if p = q, we have
Lp,p(S) = Lp(S). When p = q = 1 and r ∈ Z, we write L1,1 logr L(S) = L logr L(S).

For r > 0, consider the Orlicz function Φr(t) := t([1+ log(1+ t)]r − 1), t ≥ 0 and
define Φr(S) to be the space of all measurable functions f on (S, E , µ) such that∫

S
Φr(|f(x)|)dµ(x) < ∞.

If we equip Φr(S) with the Luxemburg-type norm

‖f‖Φr(S) := inf
{
λ > 0 :

∫
S
Φr(λ

−1|f(x)|)dµ(x) ≤ 1
}
,

then (Φr(S), ‖ · ‖Φr(S)) becomes a Banach space. It is well-known that in the case
where µ(S) < ∞, the Orlicz space (Φr(S), ‖ · ‖Φr(S)) can be identified with the
Lorentz-Zygmund space (L logr L(S), ‖ · ‖L logr L(S)); see [5, Lemma 10.1].

For more details on Orlicz spaces, we refer the reader to the books of M. A.
Krasnosel’skĭı and Ja. B. Rutickĭı [30] and M. M. Rao and Z. D. Ren [44]. For
more details on Lorentz-Zygmund spaces and their connections with Orlicz spaces,
see Bennett and K. Rudnick [5].

2.4. Hardy spaces. Let d ∈ N. Given a 0 < p < ∞, the Hardy space Hp(Td)
consists of all functions f on Td such that f is the boundary value of a holomorphic
function F on the polydisk Dd := {(z1, · · · , zd) ∈ Cd : |z1| < 1, · · · , |zd| < 1}
satisfying

sup
0≤r1,··· ,rd<1

∫ 2π

0
|F (r1e

ix1 , · · · , rdeixd)|pdx1 · · · dxd < ∞.

For p = ∞, H∞(Td) is the space of all functions on Td that are boundary values of
bounded holomorphic functions on Dd.

Similarly, for 1 ≤ p < ∞, f ∈ Hp(Rd) if, and only if, f is the boundary value of
a holomorphic function F on (R2

+)
d := {(z1, · · · , zd) ∈ Cd : Im(z1), · · · , Im(zd) > 0}

such that

sup
y1,··· ,yd>0

∫
Rd

|F (x1 + iy1, · · · , xd + iyd)|pdx1 · · · dxd < ∞

and, for p = ∞, H∞(Rd) consists of all functions on Rd that are boundary values
of bounded holomorphic functions on (R2

+)
d.

It is well-known that for 1 ≤ p ≤ ∞, one has

Hp(Td) = {f ∈ Lp(Td) : supp(f̂) ⊆ Nd
0}

and that the spaces (Hp(Td), ‖ · ‖Lp(Td)) and (Hp(Rd), ‖ · ‖Lp(Rd)) are Banach.
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For more details on one-dimensional Hardy spaces we refer the reader to P. L.
Duren’s book [17] and for higher-dimensional Hardy spaces, see, e.g., Chapter 3 in
W. Rudin’s book [48] and Sections 4 and 5 in Chapter XVII in Zygmund’s book [59].

2.5. Λ(p) sets. In this subsection we briefly present some definitions and facts on
‘thin’ spectral sets in harmonic analysis. We remark that the notions and results
mentioned here will only be used in Subsection 4.2 in which an extension of a
classical result due to Meyer [34] is obtained.

Let G be a compact abelian group. Given a p ∈ (2,∞), a set Λ ⊆ Ĝ is said to be
Λ(p) if there exists a constant CΛ,p > 0 such that

(2.1) ‖f‖Lp(G) ≤ CΛ,p‖f‖L2(G)

for every trigonometric polynomial f on G with supp(f̂) ⊆ Λ. If Λ is a Λ(p) set for
some p ∈ (2,∞), then the best constant CΛ,p in (2.1) is called the Λ(p) constant of
Λ and is denoted by A(Λ, p).

A set Λ ⊆ Ĝ is called Sidon if there exists a constant SΛ > 0 such that

(2.2)
∑
γ∈Ĝ

|f̂(γ)| ≤ SΛ‖f‖L∞(G)

for every trigonometric polynomial f on G with supp(f̂) ⊆ Λ. Thanks to a clas-

sical result of S. Sidon [49], typical examples of Sidon sets in Z ∼= T̂ are lacunary
sequences. For instance, Λ = (3k)k∈N0 is a Sidon set.

In [46, 47], Rudin proved that Sidon sets are Λ(p) sets with A(Λ, p) ≤ A(Λ)p1/2

for all p > 2 and, in [39], Pisier proved that the converse also holds true; if Λ ⊆ Ĝ

is a Λ(p) set with A(Λ, p) ≤ A(Λ)p1/2 for all p > 2, then it is necessarily a Sidon
set. See also Chapter VI in the book of M. B. Marcus and Pisier [33]. For another
proof of Pisier’s theorem, see Bourgain [10] and for further proofs and extensions of
Pisier’s theorem, see Bourgain and M. Lewko [13] and Pisier [43]. For more details
on Λ(p) sets and related topics, we refer the reader to the book of C. C. Graham
and K. E. Hare [18].

Remark 2.1. If Λ ⊆ Ĝ is a Λ(p) set for some p > 2, then it follows from [46, (1.4.1)]
that there exists a constant BΛ,p > 0 such that

‖f‖L2(G) ≤ BΛ,p‖f‖L1(G)

for every trigonometric polynomial f on G with supp(f̂) ⊆ Λ.

3. Yano-type extrapolation theorems on Hardy spaces

This is the main section of the present paper and it is organised as follows. In
Subsection 3.1, we give a brief overview of some classical results on real interpo-
lation between Hardy spaces. In subsections 3.2 and 3.3 it is explained how the
interpolation results presented in Subsection 3.1 can be used to establish Yano-type
extrapolation theorems for various Hardy spaces.
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3.1. A brief overview of Real Interpolation between Hardy spaces. Let
(X,µ) and (Y, µ) be two σ-finite measure spaces. The Marcinkiewicz interpolation
theorem, in its simplest form, asserts that if T is a sublinear operator that is defined
on Lr(X) + Lq(X) for 1 ≤ r < q ≤ ∞ and such that T is bounded from Lr(X)
to Lr,∞(Y ) and bounded from Lq(X) to Lq,∞(Y ), then T is Lp-bounded for all
p ∈ (r, q); see e.g. Section 4 in Chapter I of E. M. Stein’s book [52] or Section 4 in
Chapter XII in Zygmund’s book [59].

In the classical approach for proving the aforementioned version of Marcinkiewicz
interpolation theorem, say for q < ∞, one takes an f ∈ Lp(X) and writes

‖T (f)‖pLp(Y ) = p

∫ ∞

0
λp−1ν({y ∈ Y : |T (f)(y)| > λ})dλ.

For λ > 0, one then decomposes f as f = fλ + Fλ, where fλ is such that |fλ(x)| ≤
min{|f(x)|, λ} for a.e. x ∈ X and Fλ satisfies

‖Fλ‖rLr(X) ≤
∫
{|f |>λ}

|f(x)|rdµ(x).

Hence, by using the sublinearity of T and the subadditivity of ν, one has

‖T (f)‖pLp(Y ) ≤ p

∫ ∞

0
λp−1ν({y ∈ Y : |T (fλ)(y)| > λ/2})dλ

+ p

∫ ∞

0
λp−1ν({y ∈ Y : |T (Fλ)(y)| > λ/2})dλ

and then one applies the Lq(X) to Lq,∞(Y ) boundedness of T to the first integral
involving fλ and the Lr(X) to Lr,∞(Y ) boundedness of T to the second integral
involving Fλ. To obtain such a decomposition, one can simply take fλ := fχ{|f |≤λ}
and Fλ := fχ{|f |>λ}.

The situation becomes more difficult when one works with operators acting on
Hardy spaces. To see this, consider for instance the one-dimensional periodic case
and notice that for any given non-zero f ∈ Hp(T), for some 0 < p ≤ ∞, and each
measurable set A ⊆ T, the function fχA does not belong to any Hardy space on
T unless χA = 0 a.e. on T or χA = 1 a.e. on T, as the zero set of f must be of
measure zero; see Chapter 2 in [17]. Therefore, the simple decomposition mentioned
above does not give in general functions fλ, Fλ that belong to appropriate Hardy
spaces and so, the problem of real interpolation between Hardy spaces is much more
delicate.

The first Marcinkiewicz-type decomposition for functions in Hardy spaces was
obtained by P. W. Jones in [21]. More specifically, by constructing explicit solutions
of the ∂-problem on the upper half-plane with Carleson measure data [21, Theorem
1], Jones obtained a Marcinkiewicz-type decomposition for functions belonging to
Hardy spaces over the upper-half plane; see [21, Theorem 2]. In particular, when
p = 1, it follows from [21, Theorem 2] and its proof that there exist an absolute
constant C0 > 0 such that for every f ∈ H1(R) and λ > 0 one can find fλ ∈ H∞(R)
and Fλ ∈ H1(R) satisfying the properties

(3.1) f = fλ + Fλ,

(3.2) ‖fλ‖L∞(R) ≤ C0λ,
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and

(3.3) ‖Fλ‖L1(R) ≤ C0

∫
{N(f)>λ}

N(f)(x)dx,

where N(f) denotes the non-tangential maximal function of f given by N(f)(x) :=
sup|x−x′|<y |f ∗ Py(x

′)| with Py(x) := y[π(x2 + y2)]−1 (x ∈ R, y > 0) being the one-

dimensional Poisson kernel. See also [22] as well as Sections 9 and 10 in Chapter 5
of [6]. A consequence of the work of Jones [21,22] is that the couple (H1(R),H∞(R))
is K-closed in (L1(R), L∞(R)), that is, there exists a constant C > 0 such that

(3.4) K(f, t;H1(R),H∞(R)) ≤ CK(f, t;L1(R), L∞(R))
for every f ∈ H1(R) +H∞(R) and for all t > 0.

In 1984, in [9], Bourgain obtained a Marcinkiewicz-type decomposition for func-
tions in Hp(T) and more specifically, he proved that for every 0 < p < ∞ there
exists a constant Cp > 0 such that for every f ∈ Hp(T) and λ > 0 one can find
fλ ∈ H∞(T) and Fλ ∈ Hp(T) satisfying the following properties

(3.5) f = fλ + Fλ,

(3.6) |fλ(x)| ≤ Cpmin{|f(x)|, λ} for a.e. x ∈ T,
and

(3.7) ‖Fλ‖pLp(T) ≤ Cp

∫
{|f |>λ}

|f(x)|pdx.

A remarkable aspect of Bourgain’s approach is that it only uses the L2(T)-bounded-
ness of the periodic Hilbert transform. In 1996, Kislyakov and Xu presented in [28]
yet another method for decomposing any given function f ∈ Hp(T) at ‘height’ λ
as f = fλ + Fλ with fλ ∈ H∞(T) satisfying (3.6) and Fλ ∈ Hp(T) satisfying (3.7);
see [28, Lemma 5]. The Marcinkiewicz decomposition obtained in [28] by Kislyakov
and Xu was based on their earlier works (see, e.g, Kislyakov [24], Xu [55], and
Kislyakov and Xu [27]) and their approach is also elementary in the sense that, as
the above-mentioned method of Bourgain, it only uses the fact that the periodic
Hilbert transform is L2(T)-bounded. Let us also mention that in 1992, in [55], Xu,
by using appropriate variants of techniques from [24], obtained different proofs and
extensions of the interpolation theorems of Jones [21,22]. In particular, in [55], Xu
gave an alternative proof of (3.4) in the periodic setting that is, he proved that
there exists a constant C0 > 0 such that

(3.8) K(f, t;H1(T),H∞(T)) ≤ C0K(f, t;L1(T), L∞(T))
for every f ∈ H1(T) and for all t > 0. Furthermore, Kislyakov and Xu in their
aforementioned 1996 paper [28] generalised (3.4) and (3.8) to Hardy spaces of
homogeneous-type (see [28, Theorem 1]) and proved that (Hp(T2),H∞(T2)) is K-
closed in (Lp(T2), L∞(T2)) for all 0 < p < ∞ (see [28, Theorem 3]), extending
earlier works of Bourgain [12] and Kislyakov [25], respectively. See also Kislyakov’s
papers [24,26].

For alternative approaches to real interpolation between Hardy spaces and vari-
ants of the interpolation results of Jones obtained in [21,22], see also Pisier [41,42]
as well P. F. X. Müller [36].
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At this point, it is worth noting that, to the best of our knowledge, no results
on real interpolation are known for Hardy spaces Hp(Td) for d ≥ 3. In particular,
the K-closedness of (H1(Td),H∞(Td)) in (L1(Td), L∞(Td)) is not yet available for
d ≥ 3.

3.2. A direct approach. In [3], the following Yano-type theorem for Hp(T) spaces
was obtained.

Theorem 3.1 ( [3]). Let T be a sublinear operator acting on functions defined over
the torus. Suppose that there exist constants C0, r > 0 such that

(3.9) sup
f∈Hp(T):
∥f∥Lp(T)=1

‖T (f)‖Lp(T) ≤ C0(p− 1)−r for all p ∈ (1, 2].

Then, there exists a constant D > 0, depending only on C0 and r, such that

(3.10) ‖T (f)‖L1(T) ≤ D‖f‖L logr L(T) for all f ∈ H1(T).

In [3], an elementary proof of Theorem 3.1 was presented, based on Yano’s original
approach [56] combined with arguments of Kislyakov and Xu [24, 27, 28]. A direct
proof of Theorem 3.1 can also be given by using the method of Bourgain [9] concern-
ing Marcinkiewicz-type decompositions of functions in H1(T). In fact, Theorem 3.1
can be obtained by using a modification of Yano’s original argument combined with
any method that gives appropriate Marcinkiewicz-type decompositions for Hardy
spaces on the torus.

To be more precise, suppose that T is a sublinear operator satisfying (3.9) and
fix an arbitrary analytic trigonometric polynomial f on the torus. Let N ∈ N be
such that 2N−1 < ‖f‖L∞(T) ≤ 2N in the case where ‖f‖L∞(T) > 1, or, otherwise,

set N := 0. Consider a finite collection of pairs {(f2n , F2n)}Nn=0 such that for n ∈
{0, · · · , N} the pair (f2n , F2n) is a Marcinkiewicz-type decomposition of f ∈ H1(T)
at ‘height’ λ = 2n with associated constant C > 0, namely

(3.11) f = f2n + F2n with f2n ∈ H∞(T), F2n ∈ H1(T),

(3.12) |f2n(x)| ≤ Cmin{|f(x)|, 2n} for a.e. x ∈ T,

and

(3.13) ‖F2n‖L1(T) ≤ C

∫
{|f |>2n}

|f(x)|dx.

We remark that the precise construction of {(f2n , F2n)}Nn=0 for n = 0, · · · , N plays
no rôle in the proof of Theorem 3.1 that we present here. For instance, it can be con-
structed either by using the method of Bourgain [9] or the method of Kislyakov and
Xu [28]. In any case, having fixed such a collection {(f2n , F2n)}Nn=0 of Marcinkiewicz-
type decompositions associated to f , write

(3.14) f =

N∑
n=0

f̃n,
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where

f̃n :=

{
f1, if n = 0,

f2n − f2n−1 , if n ≥ 1.

To prove (3.10), note that, as in [56], by using (3.14), the sublinearity of T , and
Hölder’s inequality, one gets

(3.15) ‖T (f)‖L1(T) ≤ C0

N∑
n=0

(n+ 1)r‖f̃n‖L(n+2)/(n+1)(T).

Since by (3.12) one has |f̃n| ≲ 2n for all n ∈ N0, by using, as in [3], the elementary

inequality t(n+1)/(n+2) ≤ er+2t+(n+1)−(r+2), which is valid for all t ≥ 0 and n ∈ N,
one can easily deduce that

(3.16) ‖T (f)‖L1(T) ≲ 1 +
N∑

n=1

(n+ 1)r‖f̃n‖L1(T),

where the implied constant depends only on C0, r and it is independent of f . To
handle the right-hand side of (3.16), observe that since F2n = f−f2n , (3.13) implies
that

∫
T
|f̃n(x)|dx =

∫
T
|F2n−1(x)− F2n(x)|dx

≤
∫
T
|F2n−1(x)|dx+

∫
T
|F2n(x)|dx

≤ C

∫
{|f |>2n−1}

|f(x)|dx+ C

∫
{|f |>2n}

|f(x)|dx

≤ 2C

∫
{|f |>2n−1}

|f(x)|dx.

Therefore, (3.16) becomes

‖T (f)‖L1(T) ≲ 1 +

N∑
n=1

(n+ 1)r
∫
{|f |>2n−1}

|f(x)|dx

and so, an application of Fubini’s theorem yields

(3.17) ‖T (f)‖L1(T) ≲ 1 +

∫
T
|f(x)| logr(e+ |f(x)|)dx,

where the implied constant depends only on C0 and r. Since (3.17) holds for all an-
alytic trigonometric polynomials, (3.10) can easily be obtained by using the scaling
invariance of T , followed by a simple density argument involving [31, Proposition
3.4] and finally, using the fact that the Orlicz space (Φr(T), ‖ · ‖Φr(T)) can be iden-
tified with the Lorentz-Zygmund space (L logr L(T), ‖ · ‖L logr L(T)); see [3].
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3.3. Some further remarks and extensions. As mentioned above, Theorem 3.1
can also be obtained by combining the K-closedness of the couple (H1(T),H∞(T))
in (L1(T), L∞(T)) with abstract extrapolation results that can be extracted either
from the theory of Jawerth and Milman [19] or from the theory of Carro and Mart́ın
[15].

Let us now briefly outline how Theorem 3.1 can be deduced from the work of
Carro and Mart́ın [15] and (3.8), see also Remark 3.3 below. The abstract extrap-
olation theory of [15] was presented for linear operators, but as remarked in [15],
if the ‘target’ spaces are lattices, then the extrapolation theory developed there
can also be extended to include sublinear operators. In particular, if for a σ-finite
measure space (S, E , µ) one takes Y = (L1(µ), L∞(µ)) and T is a sublinear operator

taking values in Y , then K(Tf, t;L1(µ), L∞(µ)) =
∫ t
0 (Tf)

∗(s)ds for all t > 0 and
so, the following version of [15, Theorem 3.1] holds true.

Theorem 3.2 ( [15]). Let X = (X1, X2) be a compatible couple of Banach spaces
such that K(x, 0+;X1, X2) = 0 for all x ∈ X1 + X2 and let Y = (L1(µ), L∞(µ)),
where (S, E , µ) is a σ-finite measure space.

Given a θ0 ∈ (0, 1), suppose that T is a sublinear operator satisfying

(3.18) ‖T‖Xθ,1→Y θ,∞
≤ Aθ−r for all 0 < θ ≤ θ0 < 1

for some constants A, r > 0. Then, there exists a constant C > 0 such that

(3.19) sup
t>0

{∫ t
0 (Tx)

∗(s)ds

(1 + log+ t)r

}
≤ C

∫ ∞

0
k(x, s;X1, X2)

[
1 + log+(1/s)

]r
ds.

To prove Theorem 3.1 by using the previous theorem and (3.8), suppose that T
is a sublinear operator satisfying (3.9) and take X = (H1(T),H∞(T)) and Y =
(L1(T), L∞(T)). Then, T satisfies (3.18) for θ0 = 1/2. Indeed to see this, for any
given θ ∈ (0, 1/2], take a p ∈ (1, 2] such that θ = (p− 1)/p and notice that one has

‖T (f)‖Y θ,∞
≲ ‖T (f)‖Lp(T) ≲ (p− 1)−r‖f‖Lp(T) ≲ (p− 1)−r‖f‖Lp,1(T)

≲ θ−r‖f‖Xθ,1

for every analytic trigonometric polynomial f on T. By using a simple density
argument, one can then extend T to the whole of Xθ,1 such that (3.18) holds.
Hence, Theorem 3.2 yields

‖T (f)‖L1(T) =

∫ 1

0
(Tf)∗(s)ds

= sup
0<t≤1

{∫ t
0 (Tf)

∗(s)ds

(1 + log+ t)r

}

≲
∫ 1

0
k(f, s;H1(T),H∞(T))

[
1 + log+(1/s)

]r
ds.
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By using (3.8), one has∫ t

0
k(f, s;H1(T),H∞(T))ds = K(f, t;H1(T),H∞(T))

≲ K(f, t;L1(T), L∞(T)) =
∫ t

0
f∗(s)ds

for all f ∈ H1(T) and t > 0. Hence, it follows from ‘Hardy’s lemma’ (see Proposition
3.6 in Chapter 2 of [6]) that∫ 1

0
k(f, s;H1(T),H∞(T))

[
1 + log+(1/s)

]r
ds

≲
∫ 1

0
f∗(s)

[
1 + log+(1/s)

]r
ds ∼ ‖f‖L logr L(T)

and this completes the proof of Theorem 3.1.

Remark 3.3. As discussed in Section 5 of [15], in certain classical real cases the
extrapolation theories of Jawerth and Milman [19] and Carro and Mart́ın [15] co-
incide and in particular, one can show that a version of Theorem 3.2 for the case
where µ(S) < ∞ can also be deduced from [19]. See also G. E. Karadzhov and
Milman [23].

Remark 3.4. Notice that, in fact, as a consequence of Theorem 3.2 one obtains a
stronger version of Theorem 3.1 in the sense that the same conclusion (3.10) holds
under the assumption

sup
0<t≤1

{
t1/p−1K(T (f), t;L1(T), L∞(T))

}
≲

(p− 1)−r

∫ 1

0
t1/p−1K(f, t;H1(T),H∞(T))dt/t,

which is weaker than (3.9).

Similarly, by using Theorem 3.2 and (3.4) one obtains the following variant of
Yano’s theorem for Hardy spaces on the real line.

Theorem 3.5. Let T be a sublinear operator acting on functions defined over the
real line. Suppose that there exist constants C0, r > 0 such that

sup
f∈Hp(R):
∥f∥Lp(R)=1

‖T (f)‖Lp(R) ≤ C0(p− 1)−r for all p ∈ (1, 2].

Then, there exists a constant C > 0, depending only on C0 and r, such that

sup
t>0

{∫ t
0

(
T (f)

)∗
(s)ds

(1 + log+ t)r

}
≤ C

∫ ∞

0
f∗(s)

[
1 + log+(1/s)

]r
ds (f ∈ H1(R)).

Remark 3.6. By combining Theorem 3.2 with [28, Theorem 1] of Kislyakov and
Xu, one can extend Theorems 3.1 and 3.5 to sublinear operators defined over Hardy
spaces of homogeneous-type.
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We end this section with a version of Yano’s theorem for two-parameter Hardy
spaces.

Theorem 3.7. Let T be a sublinear operator acting on functions defined over T2.
Suppose that there exist constants C0, r > 0 such that

sup
f∈Hp(T2):
∥f∥Lp(T2)=1

‖T (f)‖Lp(T2) ≤ C0(p− 1)−r for all p ∈ (1, 2].

Then, there exists a constant B > 0, depending only on C0 and r, such that

‖T (f)‖L1(T2) ≤ B‖f‖L logr L(T2) for all f ∈ H1(T2).

The proof of Theorem 3.7 is obtained by combining Theorem 3.2 with [28, The-
orem 3] of Kislyakov and Xu, which asserts that (H1(T2),H∞(T2)) is K-closed in
(L1(T2), L∞(T2)).

Remark 3.8. As mentioned in Subsection 3.1, the K-closedness of the couple
(H1(Td),H∞(Td)) with respect to (L1(Td), L∞(Td)) is still an open problem when
d ≥ 3. Notice that an affirmative answer to this question would automatically imply
a d-dimensional extension of Theorem 3.7 for d ≥ 3 via the theories of abstract
extrapolation mentioned above.

4. Applications

As mentioned in [3], typical applications of Theorem 3.1 are that Pichorides’s the-
orem (1.5) implies Zygmund’s inequality (1.6) and that Théorème 1 (a) in Chapter
IV of Meyer’s paper [34] implies Théorème 1 (c) in Chapter IV of the same paper,
namely that

(4.1)

( ∑
k,l∈N0:
l<k

|f̂(3k − 3l)|2
)1/2

≲ 1

(p− 1)1/2
‖f‖Lp(T) (f ∈ Hp(T))

implies

(4.2)

( ∑
k,l∈N0:
l<k

|f̂(3k − 3l)|2
)1/2

≲ ‖f‖L log1/2 L(T) for all f ∈ H1(T).

Notice that if we remove the analyticity assumptions, then the exponents r = 1/2

in (p− 1)−1/2 in (4.1) and r = 1/2 in L log1/2 L in (4.2) must be replaced by r = 1;
see [8, Corollaire 4].

In this section we obtain some new variants of the aforementioned results based
on the extrapolation results presented in the previous section. To be more specific,
in Subsection 4.1 we present a version of Zygmund’s inequality (1.6) for functions
defined over the real line and in Subsection 4.2 we extend the above-mentioned
results of Meyer to the product setting.
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4.1. A Euclidean variant of an inequality due to Zygmund. For n ∈ Z,
define the ‘rough’ Littlewood-Paley projection Pn to be the multiplier operator
with symbol χ(−2n+1,−2n]∪[2n,2n+1), that is, one has

(Pn(f))
̂(ξ) = χ(−2n+1,−2n]∪[2n,2n+1)(ξ) · f̂(ξ) (ξ ∈ R)

for all f belonging to the Schwartz class S(R) on R. The corresponding Littlewood-
Paley operator is given by

SR(f) :=

(∑
n∈Z

|Pn(f)|2
)1/2

and is initially defined for f ∈ S(R). It is well-known that SR can be extended as an
Lp(R)-bounded sublinear operator for all 1 < p < ∞; see e.g. Chapter IV in [52].
Furthermore, it was shown in [4] that, when restricted to Hardy spaces Hp(R) for
p ‘close’ to 1+, one has

(4.3) sup
f∈Hp(R):
∥f∥Lp(R)=1

‖SR(f)‖Lp(R) ∼ (p− 1)−1 (p → 1+),

which is a real-line version of Pichorides’s theorem (1.5). By using (4.3) and Theo-
rem 3.5, we get the following Euclidean analogue of Zygmund’s inequality (1.6).

Theorem 4.1. There exists an absolute constant C > 0 such that

sup
t>0

{∫ t
0

(
SR(f)

)∗
(s)ds

1 + log+ t

}
≤ C

∫ ∞

0
f∗(s)

[
1 + log+(1/s)

]
ds (f ∈ H1(R)).

4.2. An extension of a theorem of Meyer to the product setting. This
subsection focuses on the following extension of Meyer’s inequality (4.2) to the
two-parameter setting.

Theorem 4.2. If Λ := {3k − 3l : k, l ∈ N0, 0 ≤ l < k}, then there exists an absolute
constant C0 > 0 such that

(4.4)

( ∑
(m,n)∈Λ×Λ

|f̂(m,n)|2
)1/2

≤ C0‖f‖L logL(T2) for all f ∈ H1(T2).

Remark 4.3. By arguing as in [3], one shows that (4.4) is sharp in the sense that
the exponent r = 1 in the L logL-norm of f ∈ H1(T2) cannot be improved.

Remark 4.4. If we remove the analyticity assumption in Theorem 4.2, then the
L logL-norm in the right-hand side of (4.4) must be replaced by the L log2 L-norm;
see [2, Proposition 14].

The proof of Theorem 4.2 will be obtained as a consequence of Theorem 3.7
combined with the following extension of (4.1) to the two-torus.

Proposition 4.5. If Λ := {3k − 3l : k, l ∈ N0, 0 ≤ l < k}, then there exists an
absolute constant A0 > 0 such that

(4.5)

( ∑
(m,n)∈Λ×Λ

|f̂(m,n)|2
)1/2

≤ A0

p− 1
‖f‖Lp(T2) (f ∈ Hp(T2))
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for all 1 < p ≤ 2.

The proof of Proposition 4.5 is obtained by adapting the argument of Meyer
establishing [34, Théorème 1 (a)] to the two-parameter setting and it does not
involve any methods and concepts related to the topics discussed in Section 3. For
this reason, we first present the proof of Theorem 4.2 under the assumption that
Proposition 4.5 holds true and then we proceed to the proof of Proposition 4.5 in a
separate subsection.

Remark 4.6. Notice that, in view of [53, Lemma 2.2], (4.2) also implies (4.1) and
(4.4) also implies (4.5).

4.2.1. Proof of Theorem 4.2 assuming that Proposition 4.5 holds. For N ∈ N, let
ΛN := {3k − 3l : k, l ∈ N0, 0 ≤ l < k ≤ N}. For fixed N1, N2 ∈ N, consider the
multiplier operator TΛN1

×ΛN2
with symbol χΛN1

×ΛN2
, that is for every trigonometric

polynomial g on T2 one has

TΛN1
×ΛN2

(g)(x, y) =
∑

(m,n)∈ΛN1
×ΛN2

ĝ(m,n)ei(mx+ny) for (x, y) ∈ T2.

Observe that it follows from Parseval’s identity, Hölder’s inequality and Propo-
sition 4.5 that TΛN1

×ΛN2
is bounded on Hp(T2) with corresponding operator norm

growing like (p− 1)−1 as p → 1+. We thus conclude from Theorem 3.7 that

(4.6) ‖TΛN1
×ΛN2

(f)‖L1(T2) ≤ B‖f‖L logL(T2) (f ∈ H1(T2)),

where B > 0 is independent of f and N1, N2. Since ‖ · ‖L1(T2) ≤ ‖ · ‖L2(T2), at first
glance, (4.6) seems to be weaker than the desired estimate (4.5). However, as Λ×Λ
is a Λ(p) set for all p > 2; see [2, Proposition 14] and ΛN1 ×ΛN2 ⊆ Λ×Λ, it follows
from Parseval’s identity, the definition of TΛN1

×ΛN2
and Remark 2.1 that( ∑

(m,n)∈ΛN1
×ΛN2

|f̂(m,n)|2
)1/2

= ‖TΛN1
×ΛN2

(f)‖L2(T2)

≤ C‖TΛN1
×ΛN2

(f)‖L1(T2),

where C > 0 is a constant independent of f and N1, N2. Therefore, the proof of
Theorem 4.2 is complete, in view of (4.6) and the last estimate, by taking N1, N2 →
∞.

4.2.2. Proof of Proposition 4.5. To prove Proposition 4.5, we shall adapt the corre-
sponding argument of Meyer [34] to the product setting and for this, we need the
following two lemmas.

Lemma 4.7. Let G be a compact abelian group and let p > 2 be given. If Λ ⊆ Ĝ

is a Λ(p) set, then for every γ0 ∈ Ĝ the set Λγ0 := {γ0 − γ′ : γ′ ∈ Λ} is also a Λ(p)
set with A(Λγ0 , p) = A(Λ, p).

Proof. The lemma is a direct consequence of the definition of Λ(p) sets. Indeed, for a

fixed γ0 ∈ Ĝ, take an arbitrary trigonometric polynomial f on G with supp(f̂) ⊆ Λγ0
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and observe that g(x) := γ0(x)f(x), x ∈ G, is a trigonometric polynomial on G with
supp(ĝ) ⊆ Λ and

‖f‖Lp(G) = ‖g‖Lp(G) ≤ A(Λ, p)‖g‖L2(G) = A(Λ, p)‖f‖L2(G).

Hence, Λγ0 is a Λ(p) set with A(Λγ0 , p) ≤ A(Λ, p). Having established that Λγ0 is a
Λ(p) set, one then deduces that A(Λ, p) ≤ A(Λγ0 , p) similarly. □
Lemma 4.8. Let ϕ ∈ C∞

c (R) be such that supp(ϕ) ⊆ [1/9, 9] and ϕ|[1/3,3] ≡ 1. For
j ∈ N0, consider the multiplier operator Tj satisfying

T̂j(g)(n) = ϕ(3−jn)ĝ(n) (n ∈ Z)
for every trigonometric polynomial g on T.

Then, there exists an absolute constant D0 > 0 such that for every k1, k2 ∈ N one
has

(4.7)

( ∑
0≤l1<k1

∑
0≤l2<k2

|f̂(3k1 − 3l1 , 3k2 − 3l2)|2
)1/2

≤

D0

p− 1

∥∥Tk1 ⊗ Tk2(f)
∥∥
Lp(T2)

for all 1 < p ≤ 2.

Proof. We argue as in [34]. For k ∈ N, we write Λ̃k := (3l)k−1
l=0 and Λ′

k := {3k − 3l :

l ∈ N0, 0 ≤ l < k}. Observe that since Λ̃ := (3l)l∈N0 is Sidon, Λ̃ × Λ̃ is a Λ(p)

set for all p > 2 whose Λ(p) constant A(Λ̃ × Λ̃, p) grows like p as p → ∞; see
e.g. [40, Remarque, p. 24]. Hence, it follows that for every fixed k1, k2 ∈ N, one
has A(Λ̃k1 × Λ̃k2 , p) ≤ A(Λ̃ × Λ̃, p) ≤ Cp for all p > 2, where C > 0 is an absolute
constant. We thus deduce from Lemma 4.7 that

(4.8) ‖g‖Lp(T2) ≤ Cp‖g‖L2(T2) (p > 2)

for every trigonometric polynomial g on T2 such that supp(ĝ) ⊆ Λ′
k1

× Λ′
k2
.

Hence, for any given 1 < p ≤ 2 and h ∈ Lp(T2), it follows from duality, Hölder’s
inequality, and (4.8) that( ∑

(m,n)∈Λ′
k1

×Λ′
k2

|ĥ(m,n)|2
)1/2

= sup
supp(ĝ)⊆Λ′

k1
×Λ′

k2
:

∥g∥L2(T2)=1

∣∣∣∣∣
∫
T2

h(x, y)g(x, y)dxdy

∣∣∣∣∣
≤ ‖h‖Lp(T2)

(
sup

supp(ĝ)⊆Λ′
k1

×Λ′
k2

:

∥g∥L2(T2)=1

‖g‖Lp′ (T2)

)

≤ Cp′‖h‖Lp(T2)

= C
p

p− 1
‖h‖Lp(T2).

Therefore, (4.7) is obtained from the last step by choosing h := Tk1 ⊗ Tk2(f), since

f̂(3k1 − 3l1 , 3k2 − 3l2) = ĥ(3k1 − 3l1 , 3k2 − 3l2)
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for all l1, l2 ∈ N0 with 0 ≤ l1 < k1, 0 ≤ l2 < k2. □
Let ϕ and Tj be as in the statement of Lemma 4.8. Notice that (4.7) gives

(4.9)

( ∑
(m,n)∈Λ×Λ

|f̂(m,n)|2
)1/2

≤

D0

p− 1

( ∑
(k1,k2)∈N2

∥∥Tk1 ⊗ Tk2(f)
∥∥2
Lp(T2)

)1/2

.

Observe that by using (4.9) and Minkowski’s inequality, one gets( ∑
(m,n)∈Λ×Λ

|f̂(m,n)|2
)1/2

≤ D0

p− 1

∥∥∥∥∥
( ∑

(k1,k2)∈N2

|Tk1 ⊗ Tk2(f)|2
)1/2∥∥∥∥∥

Lp(T2)

and so, to complete the proof of Proposition 4.5, it suffices to show that

(4.10)

∥∥∥∥∥
( ∑

(k1,k2)∈N2

|Tk1 ⊗ Tk2(f)|2
)1/2∥∥∥∥∥

Lp(T2)

≲ ‖f‖Lp(T2) (f ∈ Hp(T2)),

where the implied constant is independent of p ∈ (1, 2] and f ∈ Hp(T2). But
the last estimate is a well-known Littlewood-Paley inequality; it follows, e.g., by
iterating Stein’s classical multiplier theorem [50,51]. Indeed, to establish (4.10), let
(rk)k∈N be a given sequence of Rademacher functions over some probability space
(Ω,A,P), i.e. (rk)k∈N is a sequence of independent random variables such that
P({rk = 1}) = P({rk = −1}) = 1/2 for all k ∈ N. Then, consider the family of
multiplier operators (Tω)ω∈Ω given by

Tω =
∑
k∈N

rk(ω)Tk (ω ∈ Ω)

and note that by employing Stein’s multiplier theorem [50,51] one deduces that Tω is
bounded on (H1(T), ‖ · ‖L1(T)) with corresponding operator norm that is controlled
by a constant depending only on ϕ and not on the choice of ω ∈ Ω (see also
[16, Theorem 1.20]). Since, by Parseval’s theorem, Tω is bounded on H2(T) with
corresponding operator norm that is majorised by a constant depending only on ϕ
and not on ω ∈ Ω, it follows from Theorem 3.9 in Chapter XII of [59] that for all
p ∈ [1, 2] and ω ∈ Ω one has

(4.11) ‖Tω‖(Hp(T),∥·∥Lp(T))→(Hp(T),∥·∥Lp(T)) ≤ C,

where C > 0 is a constant that depends only on ϕ and not on p ∈ [1, 2], ω ∈ Ω.
We thus conclude by iterating (4.11) that for all p ∈ [1, 2] and for each choice of
(ω1, ω2) ∈ Ω2 one has∥∥∥∥∥ ∑

(k1,k2)∈N2

rk1(ω1)rk2(ω2)Tk1 ⊗ Tk2(g)

∥∥∥∥∥
Lp(T2)

≤ C2‖g‖Lp(T2)

for every analytic trigonometric polynomial g on T2. Therefore, (4.10) is obtained
by using the last estimate combined with multi-dimensional Khintchine’s inequality
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(see, e.g., Appendix D in [52]) and the fact that the class of analytic trigonometric
polynomials on T2 is dense in Hq(T2) for q < ∞. This completes the proof of
Proposition 4.5.
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discussions and for his comments that improved the presentation of this manuscript.

The author would also like to thank the referee for his/her useful remarks.
The author was supported by the ‘Wallenberg Mathematics Program 2018’, grant

no. KAW 2017.0425, financed by the Knut and Alice Wallenberg Foundation.

References

[1] O. Bakas, Endpoint mapping properties of the Littlewood-Paley square function, Colloq. Math.
157 (2019),1–15.

[2] O. Bakas, Variants of the inequalities of Paley and Zygmund, J. Fourier Anal. Appl. 25 (2019),
1113–1133.

[3] O. Bakas, A variant of Yano’s extrapolation theorem on Hardy spaces, Arch. Math. 113 (2019),
537–549.
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