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Let {Aθ}θ∈Θ be a family of Banach spaces such that for some Banach space A the
continuous inclusions Aθ ⊂ A, θ ∈ Θ, hold with uniformly bounded norms. Then
we set

Σ(Aθ) = ΣΘ(Aθ) :=
{
a ∈ A : a =

∞∑
k=1

ak : ak ∈ Aθk ,
∑
k

‖ak‖Aθk
< ∞

}
,

with the norm ‖a‖Σ(Aθ) := inf
∑

k ‖ak‖Aθk
, where the infimum is taken over all

admissible representations of a ∈ Σ(Aθ). One can calculate (see e.g. [10, page 83])
that for every β > 0 and p0 > 1 we have

(1.2) Σ(1,p0) (Lp[0, 1]) = L1 and Σ(1,p0)

(
(p− 1)−βLp[0, 1]

)
= L(logL)β .

Clearly, Yano’s theorem follows easily from these relations, showing the usefulness
of the Σ-method as an extrapolation construction. Later on, in [11] Karadzhov and
Milman have introduced and developed as a generalization of the Σ-method the
functors Σ(p), 1 ≤ p ≤ ∞, which allowed them to expand the scope of extrapolation
methods and to obtain new results. Meanwhile, in the same year, 2005, Astashkin
[1] defined a new family of extrapolation methods, including the functors Σ and

Σ(p) as very special cases. Basing on this approach, he has obtained in [1] (see
also [2]) an extrapolation description of all interpolation spaces between the spaces

A0 and Λφ(A⃗), where (A0, A1) is an ordered Banach couple (i.e., A1 ⊂ A0) and

Λφ(A⃗)(= A⃗J
φ,1) is the generalized Lorentz space [15, p. 430] constructed by a function

φ satisfying some growth conditions. More recently, by using another extrapolation
construction, similar results were proved, provided that a parameter G is separable

and A1 is dense in A0, for limiting interpolation J-spaces A⃗J
G [3, Theorem 4].

It is worth to emphasize that all the above-mentioned results have been obtained
only in the case of ordered Banach couples. The main aim of the present paper

is to give an extrapolation description of limiting interpolation J-spaces A⃗J
G for

an arbitrary Banach couple (A0, A1). Moreover, we replace the above restrictions
imposed on a parameter G with a more natural condition of the boundedness of
a simple doubling operator acting in the underlying parameter G (see Section 3).
The proof of the main results, Theorems 5.2 and 5.3, is based on using some special
sparse interpolation and extrapolation constructions (see Section 4), which may be
hopefully of independent interest.

Finally, in Section 6, we present some applications of our results to an extrapo-
lation description of real interpolation spaces parameterized by weighted ℓ1-spaces.

Acknowledgement. We are very grateful to Mario Milman for helpful discussions
and valuable suggestions concerning some results of this paper.

2. Preliminaries

In this section, we briefly list definitions and notions from interpolation theory,
which will be used later on. For more detailed information, we refer to the mono-
graphs [4–6].

Let A⃗ = (A0, A1) be an arbitrary Banach couple. Suppose that G is a Banach
sequence lattice modelled on N := {1, 2, . . .} such that ℓ1(2

k) ⊂ G ⊂ ℓ1. Denote by
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A⃗J
G the space of all a ∈ A0 +A1 representable in the form

(2.1) a =

∞∑
k=1

ak, ak ∈ A0 ∩A1, k = 1, 2, . . . (the series converges in A0 +A1),

with the norm

(2.2) ‖a‖A⃗J
G
:= inf

∥∥∥{J(2−k, ak; A⃗)}∞k=1

∥∥∥
G
,

where the infimum is taken over all representations (2.1). Here and next, J(t, a; A⃗)
is the Peetre J-functional defined for all a ∈ A0 ∩A1 by

J(t, a; A⃗) := max{‖a‖A0
, t‖a‖A1

}, t > 0.

In the same manner we can also define the real interpolation K-spaces. For every

Banach couple A⃗ = (A0, A1) and for all a ∈ A0 +A1 we set

K(t, a; A⃗) := inf{‖a0‖A0
+ t‖a1‖A1

: a = a0 + a1, ai ∈ Ai, i = 0, 1}, t > 0.

Then, if F is a Banach sequence lattice modelled on N such that ℓ∞(2k) ⊂ F ⊂ ℓ∞,

by A⃗K
F we denote the space of all a ∈ A0 +A1 such that

{K(2−k, a; A⃗)}∞k=1 ∈ F

with the norm

‖a‖A⃗K
F
:=
∥∥∥{K(2−k, a; A⃗)}∞k=1

∥∥∥
F
.

Let us emphasize that, in contrast to the usual real method, here we use as
parameters Banach lattices of one-sided sequences of real numbers. However, it is

easy to see that the mappings A⃗ 7→ A⃗J
G and A⃗ 7→ A⃗K

G are still exact interpolation
functors and, moreover, this definition leads to the usual real interpolation J- and
K-spaces whenever A1 ⊂ A0 [3, Propositions 1 and 2].

Let 0 < θ ≤ 1 and 1 ≤ q ≤ ∞. Next, by A⃗J
θ,q we denote the modified Lions-Peetre

interpolation J-spaces consisting of all a ∈ A0 +A1 representable in the form (2.1)
with the norm

(2.3) ‖a‖θ,q := θ−1/q′ inf

( ∞∑
k=1

(
2kθJ(2−k, ak; A⃗)

)q)1/q

,

where q′ = q/(q − 1) and the infimum is taken over all representations (2.1). In
what follows, the notation ‖a‖θ,q is understood as it is defined in (2.3).

Clearly, for all 0 < θ ≤ 1 we have

(2.4) ‖a‖θ,1 ≤ 2nθJ(2−n, a; A⃗), n ∈ N,

and, in view of the embedding ℓ1 ⊂ ℓq, 1 ≤ q ≤ ∞,

(2.5) ‖a‖θ,q ≤ θ−1/q′‖a‖θ,1.

Moreover, if θ1 < θ2, then

(2.6) ‖a‖θ1,q ≤ ‖a‖θ2,q.
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The main aim of this paper is to identify the space A⃗J
G, under a certain condition

imposed on a parameter G, as the extrapolation space A⃗
q(θ)
G,ext, consisting of all

a ∈ A0 +A1 representable in the form (2.1), with the norm

‖a‖
A⃗

q(θ)
G,ext

:= inf
∥∥{‖ak‖1/k,q(1/k)}∞k=1

∥∥
G
,

where the infimum is taken over all representations (2.1), provided that a continuous
function q(θ) : (0, 1] → [1,∞) tends to 1 in appropriate way as θ → 0. In particular,

if q(θ) ≡ q, the latter space will be denoted by A⃗q
G,ext.

A Banach couple (A0, A1) is said to be Gagliardo complete if the condition x =
limn→∞ xn in the A0+A1-norm for some bounded sequence {xn} ⊂ Ai implies that
x ∈ Ai for i = 0 and i = 1.

If X is a sequence space modelled on N and w = w(k) is a positive function on
N, then we denote by X(w) the sequence space equipped with the norm

‖{xk}∞k=1‖X(w) := ‖{xk · w(k)}∞k=1‖X .

If {ak}∞k=1 is a sequence of elements from a Banach space A, then

supp({ak}) := {k ∈ N : ak 6= 0}.
The notation A � B means that there exist constants C > 0 and c > 0 not
depending on the arguments of A and B such that c·A ≤ B ≤ C·A. Finally, for a
Banach couple (A0, A1) we denote by I(A0, A1) the class of all interpolation spaces
between A0 and A1.

3. Auxiliary results

Let {ek}∞k=1 be the unit vector basis in sequence spaces modelled on N. Denote
by R (resp. L, D) the right shift (resp. left shift, doubling) operator defined as
follows

R
( ∞∑

k=1

xkek

)
:=

∞∑
k=1

xkek+1

(resp.

L
( ∞∑

k=1

xkek

)
:=

∞∑
k=1

xk+1ek and D
( ∞∑

k=1

xkek

)
:=

∞∑
k=1

xk(e2k−1 + e2k)).

Moreover, let

P
( ∞∑

k=1

xkek

)
:=

∞∑
k=1

xke2k and S
( ∞∑

k=1

xkek

)
:=

∞∑
k=0

( 2k+1∑
l=2k+1

xl

)
e2k .

Lemma 3.1. Let G be a sequence Banach lattice such that G ∈ I(ℓ1, ℓ1(2
k)). Then

the operators R, L and S are bounded in G.

Proof. It is clear that R is an isometry in ℓ1. Since

‖R(x)‖ℓ1(2k) =
∞∑
k=2

|xk−1|2k = 2
∞∑
k=1

|xk|2k = 2‖x‖ℓ1(2k),
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we get the desired result for R. Similarly, ‖L(x)‖ℓ1 ≤ ‖x‖ℓ1 , ‖L(x)‖ℓ1(2k) ≤
1
2‖x‖ℓ1(2k), and, therefore, L is bounded on G.
For the operator S we have

‖S(x)‖ℓ1 =
∞∑
k=0

∣∣∣∣∣∣
2k+1∑

l=2k+1

xl

∣∣∣∣∣∣ ≤
∞∑
l=2

|xl| ≤ ‖x‖ℓ1

and

‖S(x)‖ℓ1(2k) =
∞∑
k=0

∣∣∣∣∣∣
2k+1∑

l=2k+1

xl

∣∣∣∣∣∣ 22k ≤
∞∑
l=2

|xl|2l ≤ ‖x‖ℓ1(2k).

□

Let m,n ∈ N, q ∈ [1,∞] and G ∈ I(ℓ1, ℓ1(2
k)). Define the space A⃗q,m,n

G,ext , consisting

of all a ∈ A0 +A1 representable in the form (2.1) and equipped with the norm

‖a‖A⃗q,m,n
G,ext

:= inf
∥∥{‖ak‖1/(k+m),q}∞k=1

∥∥
G
,

where the infimum is taken over all representations (2.1) with supp({ak}) ⊂ [n,∞).

Proposition 3.2. Suppose G ∈ I(ℓ1, ℓ1(2
k)). Then, we have

A⃗q,m,n
G,ext = A⃗q

G,ext and ‖a‖A⃗q,m,n
G,ext

� ‖a‖A⃗q
G,ext

.

Proof. First, due to inequality (2.6), A⃗q
G,ext ⊂ A⃗q,m,1

G,ext.

Conversely, let a ∈ A⃗q,m,1
G,ext be represented as a =

∑∞
k=1 ak, with

2‖a‖
A⃗q,m,1

G,ext
≥
∥∥{‖ak‖1/(k+m),q}∞k=1

∥∥
G
.

Putting bk = ak−m, k ∈ N, where a0 = a−1 = . . . = a−m+1 = 0, by Lemma 3.1, we
obtain

‖a‖A⃗q
G,ext

≤
∥∥{‖bk‖1/k,q}∞k=1

∥∥
G
=
∥∥Rm({‖ak‖1/(k+m),q}∞k=1)

∥∥
G

≤ 2‖R‖mG→G · ‖a‖
A⃗q,m,1

G,ext
.

Furthermore, A⃗q,m,n
G,ext ⊂ A⃗q,m,1

G,ext ⊂ A⃗q
G,ext for n ∈ N. On the other hand,

‖a‖A⃗q,m,n
G,ext

= inf
∥∥Rn−1({‖ak‖1/(k+m+n−1),q}∞k=1)

∥∥
G

≤ ‖R‖n−1
G→G · ‖a‖

A⃗q,m+n−1,1
G,ext

≤ ‖R‖n−1
G→G · ‖a‖A⃗q

G,ext
,

and the proof is completed. □

Let G be a Banach lattice such that ℓ1(2
k) ⊂ G ⊂ ℓ1. Define by P (G) the set of

all x ∈ ℓ1 such that P (x) ∈ G. Then P (G) is the Banach lattice with the norm

‖x‖P (G) := ‖P (x)‖G.

Moreover, it is easy to see that we have ℓ1(2
2k) ⊂ P (G) ⊂ ℓ1.
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Lemma 3.3. Let G be a sequence Banach lattice such that the operator D is bounded
in G. Then, the operator R is bounded in P (G) and

‖R‖P (G)→P (G) ≤ ‖D‖G→G.

Proof. In fact, if L is the left shift operator, then

‖R(x)‖P (G) = ‖P (R(x))‖G ≤ ‖P (R(x)) + L(P (R(x)))‖G = ‖D(P (x))‖G
≤ ‖D‖G→G‖P (x)‖G = ‖D‖G→G‖x‖P (G).

□
We proceed with establishing an extrapolation description of a certain sparse

version of the interpolation J-method.

4. Extrapolation description of sparse interpolation J-spaces

Let A⃗ = (A0, A1) be an arbitrary Banach couple and let H be a Banach lat-

tice such that ℓ1(2
2k) ⊂ H ⊂ ℓ1. Denote by A⃗J,∗

H the space of all a ∈ A0 + A1

representable in the form (2.1), equipped with the norm

(4.1) ‖a‖
A⃗J,∗

H
:= inf

∥∥∥{J(2−2k , ak; A⃗)}∞k=1

∥∥∥
H
,

where the infimum is taken over all representations (2.1) of a ∈ A0 + A1. One can

easily check that the mapping A⃗ 7→ A⃗J,∗
H is an exact interpolation functor. Show

that A⃗J,∗
H coincides, under some non-restrictive conditions imposed on H, with the

sparse extrapolation space A⃗1,∗
H,ext endowed with the norm

‖a‖
A⃗1,∗

H,ext
:= inf

∥∥{‖ak‖2−k,1}∞k=1

∥∥
H
,

where the infimum is taken, as above, over all representations (2.1).

Theorem 4.1. Let H be a Banach sequence lattice such that ℓ1(2
2k) ⊂ H ⊂ ℓ1, and

let the operator R be bounded in H. Then, A⃗J,∗
H = A⃗1,∗

H,ext for each Banach couple

A⃗.

In the proof of Theorem 4.1 we shall use a certain description of a sparse inter-
polation J-space. To this end, we introduce one more interpolation construction.

Let A⃗ = (A0, A1) be a Banach couple. Define on the sum A0 + A1 the following
sequence of norms:

‖b‖k := inf

(
sup

m∈N,m≥k
22

m−k
J(2−2m , bm; A⃗)

)
, k ∈ N,

where the infimum is taken over all representations

(4.2) b =

∞∑
m=k

bm, bm ∈ A0 ∩A1,m ≥ k (the series converges in A0 +A1).

Then, the space A⃗J,∗∗
H consists of all a ∈ A0 + A1 representable in the form (2.1)

and it is equipped with the norm

‖a‖
A⃗J,∗∗

H
:= inf ‖{‖ak‖k}

∞
k=1‖H ,
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where the infimum is taken over all such representations.

Proposition 4.2. Suppose the conditions of Theorem 4.1 to be fulfilled. Then,

A⃗J,∗
H = A⃗J,∗∗

H for each Banach couple A⃗.

Proof. Firstly, let a ∈ A⃗J,∗
H and let a =

∑∞
k=1 ak, ak ∈ A0 ∩ A1. Representing

ak =
∑∞

m=k b
k
m, with bkk = ak and bkm = 0 for m > k, we see that

‖ak‖k ≤ 2J(2−2k , ak; A⃗), k = 1, 2, . . .

Hence,

A⃗J,∗
H ⊂ A⃗J,∗∗

H and ‖a‖
A⃗J,∗∗

H
≤ 2‖a‖

A⃗J,∗
H

.

Conversely, suppose a ∈ A⃗J,∗∗
H . Let

a =
∞∑
k=1

ak and ak =
∞∑

m=k

akm

be “almost optimal” representations of a and ak, k = 1, 2, . . . , or more specifically

2‖a‖
A⃗J,∗∗

H
≥ ‖{‖ak‖k}

∞
k=1‖H

and

2‖ak‖k ≥ sup
m≥k

22
m−k

J(2−2m , akm; A⃗), k = 1, 2, . . . .

Then, by the definition of the operator R, for every m = 1, 2, . . . we have

m∑
k=1

J(2−2m , akm; A⃗) =

m∑
k=1

2−2m−k · 22m−k
J(2−2m , akm; A⃗)

≤ 2 ·
m∑
k=1

2−2m−k‖ak‖k

≤ 2 ·
m∑
k=1

2−2m−k
[
Rm−k

(
{‖aj‖j}

∞
j=1

)]
m

≤ 2 ·
∞∑
i=0

2−2i
[
Ri
(
{‖aj‖j}

∞
j=1

)]
m
,

where [{yk}∞k=1]m denotes the m-th coordinate of the sequence {yk}∞k=1, i.e., ym.
Hence, from the hypothesis of the proposition it follows∥∥∥∥∥{

m∑
k=1

J(2−2m , akm; A⃗)
}∞

m=1

∥∥∥∥∥
H

≤ 2

∥∥∥∥∥
∞∑
i=0

2−2iRi
(
{‖aj‖j}

∞
j=1

)∥∥∥∥∥
H

≤ 2

∞∑
i=0

2−2i‖R‖iH→H

∥∥∥{‖aj‖j}∞j=1

∥∥∥
H

≤ C
∥∥∥{‖aj‖j}∞j=1

∥∥∥
H

≤ 2C‖a‖
A⃗J,∗∗

H
.(4.3)
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Since the lattice H is continuously embedded into ℓ1, this inequality implies that

∞∑
m=1

m∑
k=1

‖akm‖A0 ≤
∞∑

m=1

m∑
k=1

J(2−2m , akm; A⃗)

≤ C

∥∥∥∥∥{
m∑
k=1

J(2−2m , akm; A⃗)
}∞

m=1

∥∥∥∥∥
H

< ∞,

i.e., the series
∑∞

m=1

∑m
k=1 a

k
m absolutely converges in A0. Therefore, denoting

bm =
∑m

k=1 a
k
m, m = 1, 2, . . . , we obtain

∞∑
m=1

bm =
∞∑

m=1

m∑
k=1

akm =
∞∑
k=1

∞∑
m=k

akm = a (in A0 +A1).

Moreover, since

J(2−2m , bm; A⃗) ≤
m∑
k=1

J(2−2m , akm; A⃗), m = 1, 2, . . . ,

by (4.3), we have ∥∥∥{J(2−2m , bm; A⃗)}∞m=1

∥∥∥
H

≤ 2C‖a‖
A⃗J,∗∗

H
.

Combining this inequality with the definition of the A⃗J,∗
H -norm, we conclude that

A⃗J,∗∗
H ⊂ A⃗J,∗

H , and the proof is completed. □

Proof of Theorem 4.1. Let us consider a representation of a ∈ A⃗J,∗
H in the form (2.1).

Then, inserting into inequality (2.4) θ = 2−k and n = 2k, we obtain

‖ak‖2−k,1 ≤ 2J(2−2k , ak; A⃗), k = 1, 2, . . .

Therefore, by the definition of A⃗J,∗
H and A⃗1,∗

H,ext, we have

A⃗J,∗
H ⊂ A⃗1,∗

H,ext and ‖a‖
A⃗1,∗

H,ext
≤ 2‖a‖

A⃗J,∗
H

.

Keeping in mind future applications of Proposition 4.2, we prove for every a ∈
A0 ∩A1 the following estimate:

(4.4) ‖a‖k ≤ 4‖a‖2−k+1,1, k = 2, 3, . . . .

Given k = 2, 3, . . . we choose a representation a =
∑∞

l=1 al so that

2‖a‖2−k+1,1 ≥
∞∑
l=1

2l2
1−k

J(2−l, al; A⃗).
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Now, putting bk :=
∑2k

l=1 al and bm :=
∑2m

l=2m−1+1 al, m ≥ k + 1, we have a =∑∞
m=k bm. Then, by Minkowski’s inequality,

2‖a‖2−k+1,1 ≥
2k∑
l=1

2l2
1−k

J(2−l, al; A⃗) +

∞∑
m=k+1

2m∑
l=2m−1+1

2l2
1−k

J(2−l, al; A⃗)

≥
2k∑
l=1

J(2−2k , al; A⃗) +

∞∑
m=k+1

2m∑
l=2m−1+1

22
m−k

J(2−2m , al; A⃗)

≥ J(2−2k ,
2k∑
l=1

al; A⃗) +
∞∑

m=k+1

22
m−k

J(2−2m ,
2m∑

l=2m−1+1

al; A⃗)

≥ 1

2

( ∞∑
m=k

22
m−k

J(2−2m , bm; A⃗)

)

≥ 1

2

(
sup
m≥k

22
m−k

J(2−2m , bm; A⃗)

)
≥ 1

2
‖a‖k,

and (4.4) is proved.
Further, let a representation (2.1) of a ∈ A0 + A1 be “almost optimal” for the

norm ‖a‖
A⃗1,∗

H,ext
, i.e.,

2‖a‖
A⃗1,∗

H,ext
≥
∥∥{‖ak‖2−k,1}∞k=1

∥∥
H
.

Setting a0 = 0 and applying (4.4), we have

‖a‖
A⃗J,∗∗

H
≤ ‖{‖ak−1‖k}

∞
k=1‖H ≤ 4

∥∥∥{‖ak−1‖21−k,1}
∞
k=1

∥∥∥
H

= 4
∥∥∥R({‖ak‖2−k,1}

∞
k=1

)∥∥∥
H

≤ 4‖R‖H→H

∥∥∥{‖ak‖2−k,1}
∞
k=1

∥∥∥
H

≤ 8‖R‖H→H‖a‖
A⃗1,∗

H,ext
.

Combining this with Proposition 4.2, we infer

A⃗1,∗
H,ext ⊂ A⃗J,∗

H and ‖a‖
A⃗J,∗

H
≤ C‖a‖

A⃗1,∗
H,ext

.

Summing up, we get A⃗1,∗
H,ext = A⃗J,∗

H (with equivalence of norms), and so everything
is done. □

The following result is an immediate consequence of Theorem 4.1 and Lemma
3.1.

Corollary 4.3. If H is a Banach sequence lattice such that H ∈ I(ℓ1, ℓ1(2
k)) then

we have A⃗J,∗
H = A⃗1,∗

H,ext for every Banach couple A⃗.

5. Main results

We suppose first that q(θ) ≡ 1 and establish a direct link between extrapolation

spaces A⃗1
G,ext and their sparse versions.
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Theorem 5.1. Let G be a Banach sequence lattice, G ∈ I(ℓ1, ℓ1(2
k)), and let the

operator D be bounded in G. Then, for every Banach couple A⃗ we have A⃗1
G,ext =

A⃗1,∗
H,ext (with equivalence of norms), where H := P (G).

Proof. Denote by D the set {2i, i ∈ N}. From the estimate

‖a‖A⃗1
G,ext

= inf
a=

∑
ak

∥∥{‖ak‖1/k,1}∞k=1

∥∥
G

≤ inf
a=

∑
ak, supp({ak})⊂D

∥∥{‖ak‖1/k,1}∞k=1

∥∥
G

= inf
a=

∑
a
2k

∥∥P ({‖a2k‖2−k,1}∞k=1

)∥∥
G

= inf
a=

∑
a
2k

∥∥{‖a2k‖2−k,1}∞k=1

∥∥
P (G)

= ‖a‖
A⃗1,∗

H,ext

it follows immediately that A⃗1,∗
H,ext ⊂ A⃗1

G,ext. Therefore, it is left to prove only the
opposite embedding.

Observe that the norm ‖a‖A⃗1
G,ext

is equivalent to the infimum taken over all

representations (2.1) of a with the additional property a1 = 0. Indeed, since G ∈
I(ℓ1, ℓ1(2

k)), then from Lemma 3.1 it follows that the operator R is bounded in G.
Hence, if a1 = 0, by inequality (2.6), we obtain∥∥{‖ak‖1/k,1}∞k=1

∥∥
G

≤
∥∥R ({‖ak+1‖1/k,1}∞k=1

)∥∥
G

≤ ‖R‖G→G

∥∥{‖ak+1‖1/k,1}∞k=1

∥∥
G
,

whence

inf
a=

∑
ak, a1=0

∥∥{‖ak‖1/k,1}∞k=1

∥∥
G
≤ ‖R‖G→G‖a‖A⃗1

G,ext
.

Thus, we can find a representation of the form (2.1) with a1 = 0 such that

(5.1)
∥∥{‖ak‖1/k,1}∞k=1

∥∥
G
≤ 2‖R‖G→G‖a‖A⃗1

G,ext
.

Clearly, a =
∑∞

k=1 bk, where

bk =

2k∑
l=2k−1+1

al, k = 1, 2, . . . .

Moreover, by (2.6),

‖a‖
A⃗1,∗

H,ext
≤

∥∥∥{‖bk‖2−k,1}
∞
k=1

∥∥∥
H

=
∥∥∥P ({‖bk‖2−k,1}

∞
k=1)

∥∥∥
G

≤
∥∥∥∥P({ 2k∑

l=2k−1+1

‖al‖2−k,1

}∞

k=1

)∥∥∥∥
G

≤
∥∥∥∥P({ 2k∑

l=2k−1+1

‖al‖1/l,1
}∞

k=1

)∥∥∥∥
G

.
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On the other hand, taking into account the definition of the operators D and S and
the fact that a1 = 0, we have

S(D({‖al‖1/l,1}
∞
l=1)) = S

( ∞∑
l=1

‖al‖1/l,1(e2l−1 + e2l)
)

= 2
∞∑
k=1

( 2k∑
l=2k−1+1

‖al‖1/l,1
)
e2k

= 2P

({ 2k∑
l=2k−1+1

‖al‖1/l,1
}∞

k=1

)

Combining this with the preceding estimate, Lemma 3.1, the hypothesis of the
theorem and inequality (5.1), we obtain

‖a‖
A⃗1,∗

H,ext
≤ 1

2
‖S‖G→G ·

∥∥D({‖ak‖1/k,1}∞k=1

)∥∥
G

≤ 1

2
‖S‖G→G‖D‖G→G ·

∥∥{‖ak‖1/k,1}∞k=1

∥∥
G

≤ ‖S‖G→G‖D‖G→G‖R‖G→G‖a‖A⃗1
G,ext

.

As a result, A⃗1
G,ext ⊂ A⃗1,∗

H,ext, which completes the proof. □

Theorem 5.2. Suppose that G ∈ I(ℓ1, ℓ1(2
k)) and the operator D is bounded in G.

Then, for every Banach couple A⃗ the interpolation space A⃗J
G can be identified as the

extrapolation space A⃗1
G,ext. In particular,

‖a‖A⃗J
G
� inf

∥∥{‖ak‖1/k,1}∞k=1

∥∥
G
,

where the infimum is taken over all representations (2.1) of a ∈ A0 +A1.

Proof. Arguing in the same way as in the beginning of the proof of Theorem 4.1

by using inequality (2.4), we get the embedding A⃗J
G ⊂ A⃗1

G,ext (with some constant

≤ 2).
Next, according to Lemma 3.3, the operator R is bounded in the lattice H :=

P (G). Therefore, the spaces H and G satisfy the conditions of Theorems 4.1 and
5.1, respectively. Thus,

(5.2) A⃗1
G,ext = A⃗1,∗

H,ext = A⃗J,∗
H (with equivalence of norms).
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At the same time, precisely as in the proof of Theorem 5.1, for every a ∈ A⃗J
G we

have

‖a‖A⃗J
G

= inf
a=

∑
ak

∥∥∥{J(2−k, ak; A⃗)}∞k=1

∥∥∥
G

≤ inf
a=

∑
ak, supp({ak})⊂D

∥∥∥{J(2−k, ak; A⃗)}∞k=1

∥∥∥
G

= inf
a=

∑
a
2k

∥∥∥P ({J(2−2k , a2k ; A⃗)}∞k=1

)∥∥∥
G

= inf
a=

∑
a
2k

∥∥∥{{J(2−2k , a2k ; A⃗)}∞k=1

∥∥∥
P (G)

= ‖a‖
A⃗J,∗

H
,

whence A⃗J,∗
H ⊂ A⃗J

G (with some constant ≤ 1). Combining this embedding with

(5.2), we conclude that A⃗1
G,ext ⊂ A⃗J

G, and the proof is completed. □

Show that the result of Theorem 5.2 still holds if we replace the norms ‖ · ‖θ,1
with the norms ‖ · ‖θ,q(θ) provided that a function q(θ) : (0, 1) → [1,∞) tends to 1

in appropriate way as θ → 0.

Theorem 5.3. Let G be a Banach sequence lattice, G ∈ I(ℓ1, ℓ1(2
k)), and let the

operator D be bounded in G. Then, for every Banach couple A⃗ and each continuous
function q(θ) : (0, 1) → [1,∞) such that q(θ) ≤ 1

1−θ it holds

(5.3) A⃗J
G = A⃗

q(θ)
G,ext (with equivalence of norms).

Firstly, we prove that replacing {1/k} with the sequence {1/(2k)} in the definition
of the norm ‖a‖A⃗1

G,ext
gives an equivalent norm.

Lemma 5.4. If the operator D is bounded in a Banach lattice G, then for every

Banach couple A⃗ we have

‖a‖A⃗1
G,ext

� inf
∥∥{‖ak‖1/(2k),1}∞k=1

∥∥
G
,

where the infimum is taken over all representations (2.1).

Proof. From inequality (2.6) it follows immediately

inf
∥∥{‖ak‖1/(2k),1}∞k=1

∥∥
G
≤ ‖a‖A⃗1

G,ext
.

Conversely, denote by E the set of all even positive integers. Then, we have

‖a‖A⃗1
G,ext

= inf
a=

∑
ak

∥∥{‖ak‖1/k,1}∞k=1

∥∥
G

≤ inf
a=

∑
ak, supp({ak})⊂E

∥∥{‖ak‖1/k,1}∞k=1

∥∥
G

≤ inf
a=

∑
a2k

∥∥D ({‖a2k‖1/(2k),1}∞k=1

)∥∥
G

≤ ‖D‖G→G inf
a=

∑
a2k

∥∥{‖a2k‖1/(2k),1}∞k=1

∥∥
G
.

□
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Proof of Theorem 5.3. By Hölder’s inequality, for every 0 < θ ≤ 1/2 and 1 ≤ q < ∞
we have

∞∑
k=1

2kθJ(2−k, ak; A⃗) =

∞∑
k=1

(22θkJ(2−k, ak; A⃗)) · 2−θk

≤

( ∞∑
k=1

(22θkJ(2−k, ak; A⃗))q

)1/q

·

( ∞∑
k=1

2−θkq′

)1/q′

= (2θq
′ − 1)−1/q′

( ∞∑
k=1

(22θkJ(2−k, ak; A⃗))q

)1/q

≤ 4(2θ)−1/q′

( ∞∑
k=1

(22θkJ(2−k, ak; A⃗))q

)1/q

,

whence

(5.4) ‖a‖θ,1 ≤ 4‖a‖2θ,q.

Therefore, applying Lemma 5.4, we get

‖a‖A⃗q
G,ext

= inf
a=

∑
ak

∥∥{‖ak‖1/k,q}∞k=1

∥∥
G

≥ 1

4
inf

a=
∑

ak

∥∥{‖ak‖1/(2k),1}∞k=1

∥∥
G
≥ c‖a‖A⃗1

G,ext
.

Thus, A⃗q
G,ext ⊂ A⃗1

G,ext for each 1 ≤ q < ∞. Moreover, the same reasoning shows

that A⃗
q(θ)
G,ext ⊂ A⃗1

G,ext, where q = q(θ) : (0, 1) → [1,∞) is an arbitrary continuous
function.

On the other hand, from inequality (2.5) with q = q(θ) ≤ 1/(1−θ) it follows that

‖a‖θ,q(θ) ≤ e1/e‖a‖θ,1.

Hence, the converse embedding A⃗1
G,ext ⊂ A⃗

q(θ)
G,ext holds as well. Finally, applying

Theorem 5.2, we complete the proof. □

Remark 5.5. In view of Proposition 3.2, the space A⃗1
G,ext in Theorem 5.2 can be

replaced by the space A⃗1,m,n
G,ext for every m,n ∈ N. Similarly, under the conditions of

Theorem 5.3, we have

‖a‖A⃗J
G
� inf

∥∥{‖ak‖1/(k+m),q(1/(k+m))}∞k=1

∥∥
G
,

where the infimum is taken over all representations (2.1) of a ∈ A0 + A1 with
supp({ak}) ⊂ [n,∞). This observation shows that the above results lead to extrap-

olation theorems applicable to operators T : A⃗ → B⃗ with the prescribed behaviour
of norms ‖T‖A⃗θ,q(θ)→B⃗θ,q(θ)

only for sufficiently small values of θ (cf. the discussion

related to equalities (1.2) and Yano’s theorem in the Introduction).
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We proceed now with considering the following partial case. Let Lp = Lp[0, 1],

1 ≤ p ≤ ∞ and A⃗ = (L1, L∞). Then, we have

(5.5) ‖x‖1/k,k/(k−1) � ‖x‖Lk/(k−1)
,

with constants independent of k ≥ 2 (as above, the norm ‖x‖θ,p is defined by (2.3)).
Equivalence (5.5) can be obtained by an inspection of the proof of Theorem 3.7.1
in [5] combined with using duality and the fact that

‖x‖(L1,L∞)K
1/q′,q

� ‖x‖Lq

with constants independent of q ≥ 2 (cf. [14, Example 7]), where q′ = q/(q−1). An
alternative way to prove (5.5) is to exploit a connection between the real method of
interpolation and the so-called methods of constants and means (see [12, Theorem
IV.2.14 and Section IV.5]).

Applying now Theorem 5.3 to the couple A⃗ = (L1, L∞) and the parameter G = ℓ1
(resp. G = ℓ1(k

β), β > 0) together with equivalence (5.5) and taking into account
Remark 5.5, for arbitrary k0 ≥ 1 we get

(5.6) (L1, L∞)Jℓ1 = Σk≥k0(L1+1/k) (resp. (L1, L∞)Jℓ1(kβ) = Σk≥k0(k
βL1+1/k)).

Moreover, one can easily check that

(5.7) (L1, L∞)Jℓ1 = L1

Indeed, if a =
∑

k=1 ak, then∥∥∥{J(2−k, ak; A⃗)}∞k=1

∥∥∥
ℓ1

≥
∞∑
k=1

‖ak‖L1
≥ ‖a‖L1

,

and therefore

‖a‖(L1,L∞)Jℓ1
≥ ‖a‖L1

.

On the other hand, let El := {t ∈ [0, 1] : l − 1 ≤ |a(t)| < l}, l = 1, 2, . . . Then,
setting

ak :=

{
a · χEl

, if k = nl,

0, otherwise ,

where positive integers n1 < n2 < . . . are chosen in such a way that

‖a · χEl
‖L∞ ≤ 2nl‖a · χEl

‖L1 ,

we have a =
∑∞

k=1 ak and

‖a‖(L1,L∞)Jℓ1
≤
∥∥∥{J(2−k, ak; A⃗)}∞k=1

∥∥∥
ℓ1

=
∞∑
k=1

‖ak‖L1
= ‖a‖L1

.

The identification of the spaces (L1, L∞)J
ℓ1(kβ)

, β > 0, is somewhat more compli-

cated and this will be done in the next section.
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6. Extrapolation description of real interpolation spaces generated
by ℓ1(w)-parameters

Let w(t) be a quasi-concave function defined on the interval [1,∞) (i.e., w(t) > 0,
w(t) increases and the function w(t)/t decreases) such that for some M > 0 we have

(6.1) w(t2) ≤ Mw(t), t ≥ 1.

Then, the weighted space ℓ1(w), consisting of all sequences x = (xk)
∞
k=1, for which

the norm

‖x‖ℓ1(w) :=

∞∑
k=1

|xk|w(2k)

is finite, is an interpolation space with respect to the couple (ℓ1, ℓ1(2
k)) (see e.g. [5,

Theorem 5.4.4]). Moreover, condition (6.1) assures that the operator D is bounded
in ℓ1(w) and ‖D‖ℓ1(w)→ℓ1(w) ≤ 2M . Therefore, by Lemma 3.3, the operator R is
bounded in P (ℓ1(w)) and

‖R‖P (ℓ1(w))→P (ℓ1(w)) ≤ 2M.

In particular, condition (6.1) is fulfilled for the weights wα(t) = logα(ct), α ≥ 0,
c = eα. We shall denote the spaces ℓ1(wα) by ℓ1(α). Clearly,

‖x‖ℓ1(α) �
∞∑
k=1

|xk|kα.

Applying Theorem 5.3, we obtain the following result.

Corollary 6.1. Let w(t) be a quasi-concave function on the interval [1,∞) satisfy-

ing condition (6.1). Then, for every Banach couple A⃗ and each continuous function
q(θ) : (0, 1) → [1,∞) such that q(θ) ≤ 1

1−θ it holds

A⃗J
ℓ1(w) = A⃗

q(θ)
ℓ1(w),ext (with equivalence of norms).

In particular, for every α ≥ 0 we have A⃗J
ℓ1(α)

= A⃗
q(θ)
ℓ1(α),ext

.

Let us show that in the case of ordered Banach couples a similar result holds also
for the corresponding interpolation K-spaces. First, condition (6.1) guarantees that
ℓ1(w) is an intermediate space with respect to the couple (ℓ∞, ℓ∞(2k)), i.e.,

(6.2) ℓ∞(2k) ⊂ ℓ1(w) ⊂ ℓ∞.

Indeed, it is clear that the left-hand side embedding will be proved once we show
that the sequence {2−k} belongs to ℓ1(w). The latter follows from (6.1) because

‖{2−k}‖ℓ1(w) =
∞∑
k=1

2−kw(2k) =
∞∑
i=0

2i+1−1∑
j=2i

2−jw(2j)

≤
∞∑
i=0

2i2−2iw(22
i+1

) ≤ w(2)

∞∑
i=0

2iM i+12−2i < ∞.

Since the right-hand side embedding in (6.2) is obvious, we get the desired result and

therefore interpolation K-spaces A⃗K
ℓ1(w) are well-defined. The next lemma, which
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shows that these spaces coincide with suitable interpolation J-spaces, is in fact a
version of known results (cf. [7, Theorem 7.6] and [3, Lemma 2]). We include its
proof below for the completeness.

For every weighted sequence v = (vk)
∞
k=1 and arbitrary Banach couple A⃗ by A⃗J

v

(resp. A⃗K
v ) we denote the space A⃗J

ℓ1(vk)
(resp. A⃗K

ℓ1(vk)
), where ℓ1(vk) is the Banach

sequence space with the norm

‖(xk)‖ℓ1(vk) :=
∞∑
k=1

|xk|vk.

Lemma 6.2. Let v = (vk)
∞
k=1 be a weighted sequence such that

ṽk :=
∞∑
i=1

min(1, 2k−i)vi < ∞

for each k = 1, 2, . . . Then for every Gagliardo complete couple A⃗ = (A0, A1) such

that A1 ⊂ A0 and A1 is dense in A0 it holds A⃗K
v = A⃗J

ṽ .

Proof. Let a ∈ A⃗J
ṽ . Represent a in the form (2.1) so that

2‖a‖A⃗J
ṽ
≥

∞∑
k=1

J(2−k, ak; A⃗)ṽk.

From Minkowski’s inequality and the fact that

K(2−i, ak; A⃗) ≤ min(1, 2k−i)J(2−k, ak; A⃗) for all k, i = 1, 2, . . .

[5, Lemma 3.2.1], it follows that for each i = 1, 2, . . .

K(2−i, a; A⃗) ≤
∞∑
k=1

K(2−i, ak; A⃗) ≤
∞∑
k=1

min(1, 2k−i)J(2−k, ak; A⃗).

Hence, using the definition of ṽ, we get

‖a‖A⃗K
v

=

∞∑
i=1

K(2−i, a; A⃗)vi

≤
∞∑
i=1

∞∑
k=1

min(1, 2k−i)J(2−k, ak; A⃗)vi

=
∞∑
k=1

∞∑
i=1

min(1, 2k−i)viJ(2
−k, ak; A⃗)

=

∞∑
k=1

J(2−k, ak; A⃗)ṽk

≤ 2‖a‖A⃗J
ṽ
.

Conversely, let a ∈ A⃗K
v . Since A1 is dense in A0, we have lim

t→0
K(t, a; A⃗) = 0.

Therefore, by the strong form of the fundamental lemma (cf. [8, Theorem 1.4]), we
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can find a representation a =
∑∞

k=1 ak, ak ∈ A1, such that
∞∑
k=1

min(1, 2k−i)J(2−k, ak; A⃗) ≤ γK(2−i, a; A⃗), i = 1, 2, . . .

with a universal constant γ (observe that in the case of ordered couples the proof
of this result given in [8] can be easily modified to get the above one-sided repre-
sentation instead of a representation in the form a =

∑∞
k=−∞ ak). Multiplying the

last inequality by vi and then summing over all i = 1, 2, . . . , we have
∞∑
i=1

∞∑
k=1

min(1, 2k−i)J(2−k, ak; A⃗)vi ≤ γ

∞∑
i=1

K(2−i, a; A⃗)vi = γ‖a‖A⃗K
v
,

or
∞∑
k=1

J(2−k, ak; A⃗)ṽk ≤ γ‖a‖A⃗K
v
.

Thus,
‖a‖A⃗J

ṽ
≤ γ‖a‖A⃗K

v
,

as we wished to show. □
Corollary 6.3. Let w(t) be a quasi-concave function on the interval [1,∞) satisfy-

ing condition (6.1). Then, for every Gagliardo complete couple A⃗ such that A1 ⊂ A0

and A1 is dense in A0, and each continuous function q(θ) : (0, 1) → [1,∞) such
that q(θ) ≤ 1

1−θ we have

A⃗K
ℓ1(w) = A⃗

q(θ)
ℓ1(w̃),ext,

where

w̃(t) :=

∫ ∞

1
min(1,

t

s
)w(s)

ds

s
.

In particular, for every α ≥ 0

A⃗K
ℓ1(α)

= A⃗
q(θ)
ℓ1(α+1),ext.

Proof. First of all, w̃ is clearly a quasi-concave function on [1,∞), and hence ℓ1(w̃) ∈
I(ℓ1, ℓ1(2

k)). Let us check that the function w̃ satisfies condition (6.1).
Indeed, representing

w̃(t2) =

∫ t2

1
w(s)

ds

s
+

∫ ∞

t2

t2

s
w(s)

ds

s
,

we estimate the integrals from the right-hand side separately. Since (6.1) holds for
w, we have ∫ t2

1
w(s)

ds

s
= 2

∫ t

1
w(u2)

du

u
≤ 2M

∫ t

1
w(u)

du

u
≤ 2Mw̃(t)

and ∫ ∞

t2

t2

s
w(s)

ds

s
=

∫ ∞

t

t

u
w(tu)

du

u
≤
∫ ∞

t

t

u
w(u2)

du

u

≤ M

∫ ∞

t

t

u
w(u)

du

u
≤ Mw̃(t).
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Thus, the function w̃ satisfies condition (6.1) with the constant 3M .
Finally, observe that from the quasi-concavity of w it follows

w̃(2k) =
∞∑
i=1

∫ 2i

2i−1

min(1,
2k

s
)w(s)

ds

s
�

∞∑
i=1

min(1, 2k−i)w(2i).

Therefore, applying Corollary 6.1 and Lemma 6.2, we get the first assertion. The
second one follows now from the fact that in the case when w(t) = logα(ct) we have
w̃(t) � logα+1(ct). □

Let us note that the spaces A⃗K
ℓ1(α)

can be defined also for negative values of α.

Indeed, though the space ℓ1(α) := ℓ1(k
α), α < 0, is not intermediate with respect to

the Banach couple (ℓ∞, ℓ∞(2k)), the norms of nonincreasing nonnegative sequences

in the spaces ℓ1(α) and ℓ1(α)∩ ℓ∞ coincide, and hence we have A⃗K
ℓ1(α)

= A⃗K
ℓ1(α)∩ℓ∞ .

Then, an immediate inspection of the proof of Corollary 6.3 shows that the equation

A⃗K
ℓ1(α)

= A⃗J
ℓ1(α+1)

can be extended to the case of α > −1.
Therefore, if β > 0 and A⃗ = (L1[0, 1], L∞[0, 1]), then

‖a‖A⃗J
ℓ1(β)

�
∞∑
k=1

K(2−k, a;L1, L∞)kβ−1 =

∞∑
k=1

∫ 2−k

0
a∗(t) dt kβ−1

�
∫ 1

0

∫ s

0
a∗(t) dt logβ−1(e/s) d log(e/s)

=

∫ 1

0
a∗(t)

∫ 1

t
logβ−1(e/s) d log(e/s) dt

�
∫ 1

0
a∗(t) logβ(e/t) dt = ‖a‖L(logL)β .

Thus, for every β > 0 we have

(L1, L∞)Jℓ1(β) = L(logL)β .

Combining this together with (5.6) and (5.7), we obtain the following discrete ver-
sion of (1.2): for arbitrary k0 ≥ 1

Σk≥k0(L1+1/k) = L1 and Σk≥k0(k
βL1+1/k) = L(logL)β .
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