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Here (·, ·)θ,q denotes the classical real interpolation method (see Section 2).
In this paper, we extend the interpolation formula (1.1). More precisely, we will

characterize the spaces (X,X
(0,b)
p )θ,q for an arbitrary slowly varying function b, in

the case when 0 < p, q < ∞ or p = q = ∞. For remaining values of parameters p and

q, we will identify the spaces (X,X
(0,b)
p )θ,q when b is taken, in particular, to be an

iterated logarithmic function (see Section 2). We also cover the limiting cases θ = 0
(if 0 < q ≤ ∞) and θ = 1 (if q = ∞) which were left open in [18, Theorem 4]. As an
application, we derive an interpolation theorem for the Lorentz-Karamata operator
ideals. In particular, we provide a generalization of the second interpolation formula
in [14, Theorem 5.4].

The organization of the paper is as follows. All the necessary background, along
with some auxiliary results, is given in Section 2. We derive discrete Hardy-type
inequalities involving general weights in Section 3. Section 4 contains the main re-
sults. Finally, Section 5 provides an application to the interpolation of the Lorentz-
Karamata operator ideals.

2. Preliminaries

2.1. Some notations. For two non-negative quantities a1 and a2, we write a1 ≲ a2
to denote the inequality a1 ≤ ca2 for some positive constant c, which is appropriately
independent in a1 and a2. We write a1 ≈ a2 if a1 ≲ a2 and a2 ≲ a1.

For two quasi-normed spaces X and Y , we write X ↪→ Y if X is continuously
embedded in Y.

Let 0 < q ≤ ∞, and γ̄ = (γ1, γ2, ..., γn) ∈ Rn. Following [16], we say γ̄ ∈
Mq,m,S (or γ̄ ∈ Mq,m,G) for some 2 ≤ m ≤ n if γ1 = ... = γm−1 = −1/q and
γm < −1/q (or γm > −1/q). Here, as usual, we interpret 1/∞ as 0. By γ̄ ∈
Mq,1,S (or γ̄ ∈ Mq,1,G), we will mean γ1 < −1/q (or γ1 > −1/q). Moreover, we will
write γ̄ =< γ >n if γ1 = ... = γn = γ.

2.2. Slowly varying functions. Let b : [1,∞) → (0,∞) be a Lebesgue measurable
function. Following [17], we say b is slowly varying on [1,∞) if, for every ε > 0, the
function tεb(t) is equivalent to a non-decreasing function and the function t−εb(t)
is equivalent to a non-increasing function. Moreover, we say that b : (0, 1] → (0,∞)
is slowly varying on (0, 1] if b(1/t) is slowly varying on [1,∞). We refer to [17] for
details on slowly varying functions.

The following result will be useful in Section 4.

Lemma 2.1. Let β > 0, and assume that b is slowly varying on [1,∞). Then

∞∑
k=n

k−β−1b(k) ≈ n−βb(n), n ∈ N.

Proof. In view of [17, Proposition 3.4.33], the proof simply follows from

∞∑
k=n

k−β−1b(k) ≈
∫ ∞

n
x−βb(x)

dx

x
.

□
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2.3. Iterated logarithmic functions. Define positive functions λ1, λ2, ..., λn on
(0,∞) by

λ1(t) = 1 + | ln t|, λk(t) = λ1(λk−1(t)), k = 2, 3, ..., n,

and put λγ̄(t)=λγ1
1 (t)λγ2

2 (t)...λγn
n (t), t > 0. It is easy to verify that the iterated

logarithmic function λγ̄ is slowly varying on (0, 1] and [1,∞).
The next three lemmas will be needed in what follows.

Lemma 2.2 ([16, Lemma 2]). Let 0 < q < ∞.

(a) If γ̄ ∈ Mq,m,S , then(∫ t

0
λqγ̄(u)

du

u

)1/q

≈ λ
γ̄+< 1

q
>m(t), 0 < t < 1.

(b) If γ̄ ∈ Mq,m,G, then(∫ 1

t
λqγ̄(u)

du

u

)1/q

≈ λ
γ̄+< 1

q
>m(t), 0 < t < 1/2.

(c) If γ̄ ∈ M∞,m,G, then

sup
t≤u<1

λγ̄(u) ≈ λγ̄(t), 0 < t < 1.

The second assertion of the previous lemma can be reformulated as follows.

Lemma 2.3. Let 0 < q < ∞. If γ̄ ∈ Mq,m,G, then(
1 +

∫ 1

t
λqγ̄(u)

du

u

)1/q

≈ λ
γ̄+< 1

q
>m(t), 0 < t < 1.

Remark 2.4. Let 0 < q < ∞. The proof of Lemma 2 in [16] shows that∫ 1

0
λqγ̄(u)

du

u
= ∞,

if γ̄ ∈ Mq,m,G. Moreover, we have

sup
0<u≤1

λγ̄(u) = ∞,

if γ̄ ∈ M∞,m,G.

The next technical result will be needed while making a change of variables in
Section 4. In what follows, we say a positive function v on (0, 1) satisfies the
condition (H0) if v is increasing and differentiable such that lim

t→0+
v(t) = 0, and

lim
t→1−

v(t) = 1.

Lemma 2.5. [16, Lemma 3] Suppose that γ̄ ∈ M∞,m,S . Then there is a function v
on (0, 1) that satisfies the condition (H0) with

v ≈ λγ̄ and
dv

v
≈ λ−<1>m(t)

dt

t
.
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2.4. Real interpolation spaces. Let A0 and A1 be two quasi-normed spaces. We
say that (A0, A1) is a compatible couple if A0 and A1 are continuously embedded
in the same Hausdorff topological vector space. For each f ∈ A0 + A1 and t > 0,
the K-functional is defined by

K(t, f) = K(t, f ;A0, A1)

= inf{∥f0∥A0 + t∥f1∥A1 : f0 ∈ A0, f1 ∈ A1, f = f0 + f1}.

In what follows, we always assume that the couple (A0, A1) is ordered in the sense
that A1 ↪→ A0.

Let 0 < q ≤ ∞, 0 ≤ θ ≤ 1, and let b be slowly varying on (0, 1]. The real
interpolation space Āθ,q;b = (A0, A1)θ,q;b is formed of those f ∈ A0 for which the
quasi-norm

∥f∥Āθ,q;b
=

(∫ 1

0
s−θqbq(s)Kq(s, f)

ds

s

)1/q

is finite (with the usual modification when q = ∞); see [2, 22]. If b ≡ 1 and
0 < θ < 1, then we recover the classical real interpolation spaces Āθ,q (see [6,7,27]).

In the sequel, we will work with the limiting spaces Ā0,q;b. It is not hard to verify
that the limiting spaces Ā0,q;b are intermediate, without any condition on b and q,
for the couple (A0, A1), that is,

A1 ↪→ Ā0,q;b ↪→ A0.

However, in order to exclude the trivial case Ā0,q;b = A0, we always assume that

(2.1)

∫ 1

0
bq(t)

dt

t
= ∞, if 0 < q < ∞,

or,

(2.2) sup
0<t≤1

b(t) = ∞, if q = ∞.

This observation immediately follows from the elementary fact that, as a function
of t, K(t, f) is non-decreasing. Put Ā0,q = Ā0,q;b if b ≡ 1. Note that (2.1) is
met if b ≡ 1. Therefore, the limiting spaces Ā0,q also make sense for q < ∞, and
these limiting spaces were considered in [23]. The reader is referred to [9] where
the limiting spaces Ā1,q;K = (A0, A1)1,q;K have been defined for the ordered couple
(A0, A1) with A0 ↪→ A1. We should mention that definitions of the limiting spaces
Ā0,q and Ā1,q;K can be extended, without using any auxiliary function b, from
ordered couples to arbitrary general couples (see [1, 10]).

We put Ā0,q;γ̄ = Ā0,q;b if b is the iterated logarithmic function λγ̄ on (0, 1]. In
view of Remark 2.4, observe that the condition (2.1) or (2.2) is met if γ̄ ∈ Mq,m,G.

2.5. Limiting approximation spaces. In this subsection, we make two comments

about the limiting approximation spaces X
(0,b)
q (which are defined in the Introduc-

tion). First, since the sequence (En(f)) is non-increasing with E1(f) = ∥f∥X , we
always assume that

∞∑
n=1

bq(n)n−1 = ∞, if 0 < q < ∞,
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or,
sup
n≥1

b(n) = ∞, if q = ∞,

so that the trivial case X
(0,b)
q = X is excluded. Secondly, we put X

(0,γ̄)
q = X

(0,b)
q if

b is the iterated logarithmic function λγ̄ on [1,∞).

3. Weighted Hardy-type inequalities

We derive discrete Hardy-type inequalities involving general weights. To this end,
we need the following well-known power rule for series (see [5, Lemma 3]).

Lemma 3.1. Let s ∈ (0,∞), and assume that (an) is a sequence of positive real
numbers. Then (

n∑
k=1

ak

)s

≈
n∑

k=1

ak

 k∑
j=1

aj

s−1

, n ∈ N.

The next result is a discrete analogue of [2, Lemma 3.2].

Lemma 3.2. Let 1 ≤ s < ∞, and suppose that (wn) and (un) are sequences of
positive real numbers. Put

vn = w1−s
n

(
un

∞∑
k=n

wk

)s

.

Then

(3.1)
∞∑
n=1

(
n∑

k=1

ukak

)s

wn ≲
∞∑
n=1

asnvn

holds for all sequences (an) of positive real numbers.

Proof. An application of Lemma 3.1 and Fubini’s theorem yields

(3.2)

∞∑
n=1

(
n∑

k=1

ukak

)s

wn ≈
∞∑
k=1

ukak

 k∑
j=1

ujaj

s−1
∞∑
n=k

wn.

Now (3.1) trivially follows from (3.2) when s = 1. Let s > 1. Applying Hölder’s
inequality in (3.2), we obtain

∞∑
n=1

(
n∑

k=1

ukak

)s

wn ≲
( ∞∑

n=1

(
n∑

k=1

ukak

)s

wn

)1− 1
s
( ∞∑

n=1

asnvn

) 1
s

,

which yields the desired estimate (3.1). The proof is complete. □
The next assertion is a discrete analogue of [2, Lemma 3.3].

Lemma 3.3. Let 0 < s < 1, and assume that (wn) and (un) are sequences of
positive real numbers. Put

ṽn = un

(
n∑

k=1

uk

)s−1 ∞∑
k=n

wk.
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Then

(3.3)
∞∑
n=1

(
n∑

k=1

ukak

)s

wn ≲
∞∑
n=1

asnṽn

holds for all non-increasing sequences (an) of positive real numbers.

Proof. Note that (3.2) also holds for 0 < s < 1. Now (3.3) immediately follows from

(3.2) in view of the trivial estimate
k∑

j=1
ujaj ≥ ak

k∑
j=1

uj . □

We will also make use of the following weighted Hardy-type inequality for a
supremum operator restricted to non-decreasing functions.

Lemma 3.4. [24, Theorem 4.2] Let 0 < s < ∞, and assume that w, φ and v are
non-negative functions on (0,∞). Then

(3.4)

∫ ∞

0

(
ess sup
t≤u<∞

φ(u)h(u)

)s

w(t)dt ≲
∫ ∞

0
hs(t)v(t)dt

holds for all non-negative, non-decreasing functions h on (0,∞) if

(3.5)

∫ ∞

x

(
ess sup
t≤u<∞

φ(u)

)s

w(t)dt ≲
∫ ∞

x
v(t)dt

and

(3.6) sup
x≤t<∞

(
ess sup
t≤u<∞

φ(u)

)s(∫ ∞

t
v(u)du

)−1

≲
(∫ x

0
w(t)dt

)−1

hold for all x > 0.

4. Interpolation formulae

First, we characterize the spaces X
(0,b)
q as limiting real interpolation spaces be-

tween X and X1
1 . Here we note that the couple (X,X1

1 ) is ordered with X1
1 ↪→ X.

Lemma 4.1. Let 0 < q ≤ ∞, and assume that b is slowly varying on [1,∞). Then

X(0,b)
q = (X,X1

1 )0,q;b0

where b0(t) = b(1/t), 0 < t ≤ 1.

Proof. Put Y = (X,X1
1 )0,q;b0 , and take f ∈ X. Assume that 0 < q < ∞. By the

usual discretization technique, it turns out that

∥f∥Y ≈

( ∞∑
n=1

n−q−1bq(n)Kq(n, f ;X1
1 , X)

)1/q

.

Since (see [11] or [8, Lemma 2.6])

(4.1) K(n, f ;X1
1 , X) ≈

n∑
j=1

Ej(f), n ∈ N,
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we have

∥f∥Y ≈

 ∞∑
n=1

n−q−1bq(n)

 n∑
j=1

Ej(f)

q1/q

,

whence we get the estimate ∥f∥Y ≥ ∥f∥
X

(0,b)
q

immediately as the sequence (En(f))

is non-increasing. In order to derive ∥f∥Y ≲ ∥f∥
X

(0,b)
q

, we apply Lemmas 3.2 and

3.3 with wn = n−q−1bq(n), un = 1 and an = En(f). We can compute, with the
aid of Lemma 2.1, that vn ≈ ṽn ≈ n−1bq(n). Thus, it follows that ∥f∥Y ≲ ∥f∥

X
(0,b)
q

holds. The proof is complete in the case 0 < q < ∞. Next we assume that q = ∞.
This time, using (4.1), we get

∥f∥Y ≈ sup
n≥1

b(n)n−1
n∑

j=1

Ej(f).

Once again the estimate ∥f∥Y ≥ ∥f∥
X

(0,b)
q

follows trivially, and in order to prove

∥f∥Y ≲ ∥f∥
X

(0,b)
q

we observe that

∥f∥Y ≲ c∥f∥
X

(0,b)
q

,

where

c = sup
n≥1

b(n)n−1
n∑

j=1

b−1(j).

We have to show that c is finite. We write

c = sup
n≥1

b(n)n−1
n∑

j=1

j1/2b−1(j)j−1/2,

since b slowly varying, we get

(4.2) c ≲ sup
n≥1

n−1/2
n∑

j=1

j−1/2.

Now
n∑

j=1

j−1/2 =

n−1∑
j=0

(1 + j)−1/2

≤
n−1∑
j=0

∫ j+1

j
x−1/2dx

=

∫ n

0
x−1/2dx

≈ n1/2,

which, in view of (4.2), establishes that c is finite. The proof is complete. □
The next result characterizes the limiting reiteration spaces (A0, (A0, A1)0,p;b)θ,q.

For other limiting reiteration formulae involving iterated logarithmic functions or
slowly varying functions, the reader is referred to [2–4,16,19–22].
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Lemma 4.2. (a) Let 0 ≤ θ < 1, 0 < p, q < ∞, and let b be slowly varying on (0, 1].
Then

(A0, (A0, A1)0,p;b)θ,q = (A0, A1)0,q;b̃,

where

b̃(t) =

(
1 +

∫ 1

t
bp(u)

du

u

)θ/p−1/q

bp/q(t), 0 < t ≤ 1.

(b) Let 0 ≤ θ ≤ 1, and let b be slowly varying on (0, 1]. Then

(A0, (A0, A1)0,∞;b)θ,∞ = (A0, A1)0,∞;b̂,

where
b̂(t) = b(t)( sup

t≤u<1
b(u))θ−1, 0 < t ≤ 1.

(c) Let 0 < p < ∞, and let b be slowly varying on (0, 1]. Then

(A0, (A0, A1)0,p;b)1,∞ = (A0, A1)0,p;b.

(d) Let 0 ≤ θ < 1, 0 < p < ∞, and let γ̄ ∈ Mp,m,G. Then

(A0, (A0, A1)0,p;γ̄)θ,∞ = (A0, A1)0,∞;δ̄,

where δ̄ = θ(γ̄+ < 1
p >m).

(e) Let 0 ≤ θ < 1, 0 < q < ∞, and let γ̄ ∈ M∞,m,G. Then

(A0, (A0, A1)0,∞;γ̄)θ,q = (A0, A1)0,q;η̄,

where η̄ = θγ̄− < 1
q >m .

Proof. (a) The assertion follows from [4, Theorem 11].

(b) Put Y1 = (A0, (A0, A1)0,∞;b)θ,∞ and Z1 = (A0, A1)0,∞;b̂. Let f ∈ A0. Accord-

ing to Holmstedt-type estimate (2.19) in [2], we have

(4.3) K(ρ(t), f ;A0, (A0, A1)0,∞;b) ≈ ρ(t) sup
t≤u<1

b(u)K(u, f), 0 < t < 1,

where

ρ(t) =
1

sup
t≤u<1

b(u)
, 0 < t < 1.

Note that, in view of (2.2), we have lim
t→0+

ρ(t) = 0. Since ρ is also increasing, we

obtain

∥f∥Y1 ≈ sup
0<t≤1

ρ1−θ(t) sup
t≤u<1

b(u)K(u, f)

= sup
0<u≤1

b(u)K(u, f) sup
0≤t≤u

ρ1−θ(t)

= sup
0<u≤1

ρ1−θ(u)b(u)K(u, f)

= ∥f∥Z1 ,

as desired.

(c) Put Y2 = (A0, (A0, A1)0,p;b)1,∞ and Z2 = (A0, A1)0,p;b. Set
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w(t) =

 b(t), 0 < t < 1,

t−1, t ≥ 1.

Then, according to Holmstedt-type estimate (2.19) in [2], we have

(4.4) K(σ(t), f ;A0, (A0, A1)0,p;b) ≈ σ(t)

(∫ ∞

t
wp(s)Kp(s, f)

ds

s

)1/p

, 0 < t < 1,

where

σ(t) =

(
1 +

∫ 1

t
bp(s)

ds

s

)−1/p

, 0 < t < 1.

Note that, in view of (2.1), we have lim
t→0+

σ(t) = 0. Moreover, σ is increasing with

lim
t→1−

σ(t) = 1. Therefore,

∥f∥Y2 ≈ sup
0<t<1

(∫ ∞

t
wp(s)Kp(s, f)

ds

s

)1/p

=

(∫ ∞

0
wp(s)Kp(s, f)

ds

s

)1/p

,

since K(t, f) ≈ ∥f∥A0 , t > 1, we get(∫ ∞

1
wp(s)Kp(s, f)

ds

s

)1/p

≈ ∥f∥A0 ,

therefore,

∥f∥Y2 ≈
(∫ 1

0
bp(s)Kp(s, f)

ds

s

)1/p

= ∥f∥Z2 ,

which completes the proof.

(d) Put Y3 = (A0, (A0, A1)0,p;γ̄)θ,∞ and Z3 = (A0, A1)0,∞;δ̄. Using (4.4) with

b = λγ̄ , we get

∥f∥Y3 ≈ sup
0<t<1

σ1−θ(t)

(∫ ∞

t
wp(s)Kp(s, f)

ds

s

)1/p

.

By Lemma 2.3, we get σ(t) ≈ λ
−γ̄−< 1

p
>m(t), 0 < t < 1. Therefore,

∥f∥Y3 ≈ sup
0<t<1

λ
δ̄−γ̄−< 1

p
>m(t)

(∫ ∞

t
wp(s)Kp(s, f)

ds

s

)1/p

.

Now the estimate ∥f∥Y3 ≳ ∥f∥Z3 is immediate. For the converse estimate, we note
that

∥f∥Y3 ≲ c∥f∥Z3 ,

where

c = sup
0<t<1

λ
δ̄−γ̄−< 1

p
>m(t)

(∫ ∞

t
wp(s)λ−pδ̄(s)

ds

s

)1/p

.
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Thus, it is enough to show that c is finite. Note that∫ ∞

t
wp(s)λ−pδ̄(s)

ds

s
=

∫ 1

t
λp(γ̄−δ̄)(s)

ds

s
+

∫ ∞

1
s−pλ−pδ̄(s)

ds

s
,

by [17, Proposition 3.4.33], we have∫ ∞

t
wp(s)λ−pδ̄(s)

ds

s
= 1 +

∫ 1

t
λp(γ̄−δ̄)(s)

ds

s
,

since γ̄ ∈ Mp,m,G implies that γ̄ − δ̄ ∈ Mp,m,G, we obtain, by Lemma 2.3, that∫ ∞

t
wp(s)λ−pδ̄(s)

ds

s
≈ λ

p(γ̄−δ̄+< 1
p
>m)

(t),

which shows that c is finite. The proof is complete.

(e) Put Y4 = (A0, (A0, A1)0,∞;γ̄)θ,q and Z4 = (A0, A1)0,q;η̄. We use (4.3) with
b = λγ̄ . Note that γ̄ ∈ M∞,m,G implies that −γ̄ ∈ M∞,m,S . Thus an application of
Lemma 2.2 (c) gives us ρ(t) ≈ λ−γ̄(t), 0 < t < 1. Therefore,

K(λ−γ̄(t), f ;A0, (A0, A1)0,∞;γ̄) ≈ λ−γ̄(t) sup
t<s<1

λγ̄(s)K(s, f), 0 < t < 1,

Therefore, making use of Lemma 2.5, we get at

∥f∥Y4 ≈
(∫ 1

0
λq(η̄−γ̄)(t)

(
sup
t≤s<1

λγ̄(s)K(s, f)

)q dt

t

)1/q

.

Observe that the estimate ∥f∥Y4 ≳ ∥f∥Z4 is trivial. In order to obtain the con-
verse estimate ∥f∥Y4 ≲ ∥f∥Z4 , we apply Lemma 3.4 with s = q, h(t) = K(t, f),

φ(t) = λγ̄(t)χ(0,1)(t), w(t) = λq(η̄−γ̄)(t)t−1χ(0,1)(t) and v(t) = λqη̄(t)t−1χ(0,1)(t).
From Lemma 2.5, we can infer that φ is decreasing on (0, 1). Thus, we see that
(3.5) holds trivially, while (3.6) follows in view of Lemmas 2.2 (a) and 2.2 (b).
Therefore, ∥f∥Y4 ≲ ∥f∥Z4 follows from Lemma 3.4. The proof is complete. □

The next result provides an extension of the interpolation formula (1.1).

Theorem 4.3. (a) Let 0 ≤ θ < 1, 0 < p, q < ∞, and let b be slowly varying on
[1,∞). Then

(X,X(0,b)
p )θ,q = X(0,b̃)

q ,

where

(4.5) b̃(t) =

(
1 +

∫ t

1
bp(u)

du

u

)θ/p−1/q

bp/q(t), t ≥ 1.

(b) Let 0 ≤ θ ≤ 1, and let b be slowly varying on [1,∞). Then

(X,X(0,b)
∞ )θ,∞ = X(0,b̂)

∞ ,

where

(4.6) b̂(t) = b(t)( sup
1<s≤t

b(s))θ−1, t ≥ 1.

(c) Let 0 < p < ∞, and let b be slowly varying on [1,∞). Then

(X,X(0,b)
p )1,∞ = X(0,b)

p .
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(d) Let 0 ≤ θ < 1, 0 < p < ∞, and let γ̄ ∈ Mp,m,G. Then

(X,X(0,γ̄)
p )θ,∞ = X(0,δ̄)

∞ ,

where δ̄ = θ(γ̄+ < 1
p >m).

(e) Let 0 ≤ θ < 1, 0 < q < ∞, and let γ̄ ∈ M∞,m,G. Then

(X,X(0,γ̄)
∞ )θ,q = X(0,δ̄)

q ,

where δ̄ = θγ̄− < 1
q >m .

Proof. Put b0(t) = b(1/t), 0 < t ≤ 1. By Lemma 4.1, we get

(X,X(0,b)
p )θ,q = (X, (X,X1

1 )0,p;b0)θ,q,

now applying Lemma 4.2 (a) yields

(X,X(0,b)
p )θ,q = (X,X1

1 )0,q;b̃0

where b̃0(t) = b̃(1/t), 0 < t ≤ 1. Now apply Lemma 4.1 again to obtain

(X,X1
1 )0,q;b̃0 = X

(0,b̃)
q which completes the proof of the assertion (a). We omit the

proofs of the remaining assertions since they can be done similarly using Lemmas
4.1 and 4.2. □
Corollary 4.4. Let 0 ≤ θ < 1, 0 < p, q ≤ ∞, and let γ̄ ∈ Mp,m,G. Then

(X,X(0,γ̄)
p )θ,q = X(0,δ̄)

q ,

where δ̄ = θ(γ̄+ < 1
p >m)− < 1

q >m .

Proof. Take b(t) = λγ̄(t), t ≥ 1. We just need to compute that

(4.7) b̃(t) ≈ λ
θ(γ̄+< 1

p
>m)−< 1

q
>m(t), t ≥ 1,

if 0 < p, q < ∞, and

(4.8) b̂(t) ≈ λθγ̄ , t ≥ 1,

if p = q = ∞, where b̃ and b̂ are defined by (4.5) and (4.6), respectively. Now (4.7)
follows Lemma 2.3, and (4.8) follows from Lemma 2.2 (c). The proof is complete. □
Remark 4.5. Let 0 < θ < 1 and γ > −1/p. Applying Corollary 4.4 to m = 1 with
γ̄ = (γ), we get back the interpolation formula (1.1).

5. Application

Let E and F be Banach spaces, and let L(E,F ) be the space of bounded linear
operators acting from E to F. For each T ∈ L(E,F ), put

an(T ) = inf{∥T −R∥L(E,F ) : R ∈ L(E,F ) with rank R < n}, n ∈ N.
Let 0 < q ≤ ∞ and let b be slowly varying on [1,∞). The Lorentz-Karamata
operator ideal L∞,q,b = L∞,q,b(E,F ) is formed by all those T ∈ L(E,F ) for which
the quasi-norm

∥T∥L∞,q,b
=

( ∞∑
n=1

(b(n)an(T ))
q n−1

)1/q
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is finite. For b(t) = (1 + ln t)γ , t ≥ 1, γ ∈ R, the operator ideals L∞,q,b coincide
with the Lorentz-Zygmund operator ideals L∞,q,γ (see, for example, [13, 18]).

Put
Gn = {R ∈ L(E,F ) : rank R ≤ n}, n ∈ N0.

It is plain to check that the sequence (Gn)n≥0 satisfies the conditions (1)-(3) (in
the Introduction), and we have En(T ) = an(T ). Therefore, in this case, the ap-

proximation spaces X
(0,b)
q coincide with the operator ideals L∞,q,b. Hence, writing

down Theorem 4.3 (a) in this particular case X = L(E,F ), we get the following
interpolation theorem for the operator ideals L∞,q,b.

Corollary 5.1. Let 0 ≤ θ < 1, 0 < p, q < ∞, and let b be slowly varying on [1,∞).
Then

(L(E,F ),L∞,p,b)θ,q = L∞,q,b̃,

where

b̃(t) =

(
1 +

∫ t

1
bp(u)

du

u

)θ/p−1/q

bp/q(t), t ≥ 1.

Remark 5.2. If we take θ = 0, p = q and b ≡ 1 in Corollary 5.1, then we recover
the second interpolation formula in [14, Theorem 5.4].

Acknowledgment. The authors are grateful to the referees for their valuable
comments.
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