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A NONINTERSECTION PROPERTY FOR SOLUTIONS OF
CONTINUOUS TIME OPTIMAL CONTROL PROBLEMS

ALEXANDER J. ZASLAVSKI

ABSTRACT. In this work we study the structure of overtaking optimal programs
of the continuous time Robinson-Solow-Srinivasan model and show that they
have a nonintersection property.

1. INTRODUCTION

The study of the existence and the structure of solutions of optimal control prob-
lems defined on infinite intervals and on sufficiently large intervals has recently been
a rapidly growing area of research. See, for example, [2,4-14, 18,19, 25,28, 30, 33—
35,38,49,51] and the references mentioned therein. These problems arise in engi-
neering [1,26,44], in models of economic growth [10,15,20-24,29, 32,39,41-48, 53],
in the game theory [16,37,50], in optimal control with PDE [17,36,40,52] in infi-
nite discrete models of solid-state physics related to dislocations in one-dimensional
crystals [3] and in the theory of thermodynamical equilibrium for materials [27,31].
In this paper we study the infinite horizon problem related to a continuous-time op-
timal control system describing the Robinson-Solow-Srinivasan model and establish
a nonintersection property for their optimal solutions.

It should be mentioned that optimal control problems arising in economic dynam-
ics usually are studied under the assumption that all their good programs converge
to a turnpike which is an interior point of the set of admissible pairs [48,50]. In
this paper we study a large class of control systems for which the turnpike is not
necessarily an interior point of the set of admissible pairs. This makes the situation
more difficult and less understood.

One of the main topics in the infinite horizon optimal control theory is to study
the existence and properties of solutions of problems over an infinite horizon us-
ing different optimality criteria. In the present paper, studying infinite horizon
problems, we deal with the notion of good programs introduced by D. Gale in [15]
which is of great usage in optimal control and economic dynamics (see, for ex-
ample, [10,44, 48] and the references mentioned therein) and with the notion of
overtaking optimal program [10,15,41,44,48,52,53].

2020 Mathematics Subject Classification. 49J99.
Key words and phrases. Good program, infinite horizon problem, overtaking optimal program,
turnpike.



486 A. J. ZASLAVSKI

2. THE ROBINSON-SOLOW-SRINIVASAN MODEL

Let R' (R!) be the set of real (non-negative) numbers and let R™ be the n-
dimensional Fuclidean space with non-negative orthant

Ri:{x:(x1,7xn)€Rn .CU1,ZO7 Z:l”n}

For every pair of vectors © = (21,...,25), ¥y = (y1,-.-,yn) € R"™, define their inner

product by
n
Y = Z LiYi
i=1

and let z >> y, x > y, * > y have their usual meaning. Namely, for a given pair of
vectors © = (1,...,%pn), Yy = (Y1,...,Yn) € R", we say that x >y, if z; > y; for all
i=1,....nx>yife>yandx#y,and x >>yifx; >y; foralli=1,... n.

Let e(i), i = 1,...,n, be the ith unit vector in R", and e be an element of R’}
all of whose coordinates are unity. For every € R", denote by ||z| its Euclidean
norm in R".

Denote by mes(E) the Lebesgue measure of a Lebesgue measurable set £ C R!.

Let a = (a1,...,an) >>0,b=(b1,...,b,) >>0,d € (0,1), ¢; = b;/(1+da;), i =
1,...,n. We suppose:

There exists o € {1,...,n} such that for all

(2.1) ie{l,...,n}\ {0}, ¢co > c.
We now give a formal description of our technological structure.
Set
Q={(z,2) e Rl xR": z+dr>0and a(z + dx) < 1}.
For every point (z,z) € € set
Az, z) ={y e R} : y<wzandey <1—a(z+dx)}.

Let I be either [0,00) or [0,7] with a positive number 7. A pair of functions
(z(-),y(+)) is called a program if x : I — R™ is an absolutely continuous (a.c.)
function on any finite subinterval of I, y : I — R™ is a Lebesgue measurable
function and if

(x(t),2'(t)) € Q for almost every t € I,

y(t) € A(z(t),2'(t)) for almost every t € I.

In the sequel if I = [0, T, then the program (z(-),y(+)) is denoted by (z(t),y(t))i,
and if I = [0, 00), then the program (z(-),y(-)) is denoted by (x(t), y(t));2-

Let w : [0,00) — [0,00) be a continuous strictly increasing concave and differen-
tiable function which represents the preferences of the planner.

For every point (z,z) € 2 set

u(z, z) = max{w(by) : y € A(z,2)}.

A golden-rule stock is a vector € Rl such that a point (Z,0) is a solution to
the problem:

maximize u(x, z) subject to

(i) 2 > 0; (ii) (x,2) € Q.
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It was shown in [20] that there exists a unique golden-rule stock
(2.2) z=(1/(1+day))e(o).
It is easy see that 7 is a solution of the problem

w(by) — max, y € A(Z,0).

Put
(2.3) y="1.
For all integers ¢ = 1,...,n put
(2.4) G = aibi(1 +day) Y, p; = w' (b2)G.
Set
(2.5) £ =1—d—1/a,.
It was shown in [20] that
(2.6) w(bx) > w(by) + pz

for every (z,z) €  and for every y € A(z, 2).
The following three propositions were obtained in [45].

Proposition 2.1. Let mg be a positive number. Then there exists a positive number
my such that for every positive number T and every program (z(t),y(t))i_, which
satisfies x(0) < moe the inequality x(t) < mye is valid for every number t € [0,T].

We use the following notion of good programs.
A program (z(t),y(t))52, is called good if there exist M € R! such that

/T(w(by(t)) —w(by))dt > M for all T > 0.
0

A program is called bad if

T
lim (w(by(t)) — w(by))dt = —cc.

T—o0 0
Proposition 2.2. Any program (x(t),y(t));2, that is not good is bad.

Proposition 2.3. For every point xo € R} there exists a good program (x(t),y(t))Zo
satisfying x(0) = xo.

In the sequel we use a notion of an overtaking optimal program.
A program (Z(t), g(t))2, is overtaking optimal if for every program (z(t), y(t)):,
satisfying (0) = (0) the inequality

T T
limsup[/0 w(by(t))dt —/0 w(by(t))dt] <0

T—o0

holds.
The following two theorems were obtained in [45].

Theorem 2.4. Assume that a program (z(t),y(t))2, is good. Then

~

(i) tlg& x(t) = .
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(ii) Let € € (0,1) and L > 1. Then there exists a positive number Ty such that
for every number T > Ty,
mes({t € [T, T+ L] : |ly(t) —z|| > €}) <e.
Theorem 2.5. For every xo € R there exists an overtaking optimal program
(x(t),y(t)52, such that (0) = x.
3. A TURNPIKE RESULT

Let z € R} and T' > 0 be given. Define

T
B0 UET) =sw{ [ uy)i: @).u0)

is a program such that z(0) = z}.

It is not difficult to see that U(z,T) is a finite number.
Let wg,z1 € R} and let 0 <T7 < T5. Define

Ts
(32) Uleo,or, 11T =sup{ [ Cwlbylo)ies .0,
1
is a program such that z(T1) = xo, z(Tz) > xl}.

Here we assume that supremum over empty set is —oo. In view of Proposition 2.1
and (5.2), U(xg, x1,T1,T2) < oo. It is not difficult to see that for every point z € R’}
and every positive number T, U(z,T) = U(2,0,0,T).

The following theorem, obtained in [46], describes the structure of approximate
optimal solutions of optimal control problems on sufficiently large intervals.

Theorem 3.1. Let M, e, L be positive numbers and let T' € (0,1). Then there exist

T, > 0 and a positive number v such that for each T > 2T, each zy,z1 € R}

satisfying zo < Me and azy < T'd~! and each program (z(t),y(t))I_, which satisfies

z(0) = 29, z(T) > 2, /(]Tw(by(t))dt > U(z0,21,0,T) —
there are numbers 11, T2 such that 1 € [0,Ty], 72 € [T — T}, T7,
lx(t) — Z|| < € for all t € [, T2]
and that for each number S satisfying m < S <1 — L,
mes({t € [S,S+ L] : |ly(t) — Z|| > €}) <e.
Moreover, if ||x(0) — z|| < v, then 71 =0 and if ||z(T) — || < ~, then 7o =T.

In our study we also use the following two auxiliary results. The first of them is
obvious while the second one was obtained in [46].

Lemma 3.2. Assume that nonnegative numbers T, Ty satisfy T1 < Th,
T,
((t), y(t) 2,

is a program and that u € R. Then (z(t)+e =Ty, y(t));fiTl) is also a program.
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Lemma 3.3. Let € be a positive number. Then there exists a positive number §
such that for every pair of points z,2z' € R} satisfying

Iz =2, l2' =2 <o
and every T € [271,2] there exists a program (z(t),y(t))L, such that
2(0) =z, z(T) = 2,
lz(t) = 21, [y(t) =2l < e, t € [0,T], 2’ ()] < e, t €0, T).
4. THE MAIN RESULT

Theorem 4.1. Assume that (z(t),y(t))2, is an overtaking optimal program, T > 0
and that

(4.1) z(0) = z(Tp).
Then for all integers t > 0,

8])

x(t) =
and for almost every t > 0,
y(t) =7
Proof. In view of (4.1), there exists a program (Z(t), §(t))72, such that
(4.2) I(t) = z(t), §(t) = y(t), t € [0, Ty
and that for all t > 0,
(4.3) T(t +To) = &(t), y(t + To) = y().
Proposition 2.2 implies that there are two cases:
(1) the program (Z(t), y(t)):2, is good,;
(2) the program (z(t), y(t));2, is bad.
Assume that case (2) holds. By (4.2) and (4.3),

Tok
—o0 = lim (w(bj(t)) — w(ba))dt

k—o0 0

k—o0

To
— lim k/o (w(bf(t)) — w(bF))dt

To
= lim k‘/o (w(by(t)) — w(b))dt,

k—o0

where £ is a natural number. Therefore

(4.4) / " by ()dt < Tyw(b).

In view of (4.4), there exists ao positive number A such that
(4.5) A < Tyw(bd) — /0 " by ().

There exists Ag € (0, A) such that
2A06(0’) < z

(4.6) wb(@ — Age(0))) > w(bF) — AJS.
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Lemma 3.3 implies that there exists § € (0, Ap) such that the following property
holds:
(P) for each z, 2" € R} satisfying

Iz =2, [ -z <o
and every 7 € [271, 2] there exist a program (u(t),v(t))7_, such that
u(0) = 2z, u(r) > 2/,
[u(t) = ||, [lo(t) = Z|| < Ao, ¢ € [0,7],
[u' ()] < Ao, t € [0,7]
and
(4.7) w(b(x + de)) < w(z) + A/8.

Theorem 2.4 implies that
lim z(t) = .

t—o00
and that there exists 77 > 0 such that for all ¢ > T7,
(4.8) |x(t) — || <.

Property (P) and (4.8) imply that there exists a program
(1), 5 ()25 T

such that

(4.9) eM () =zt +To), vV (t) = y(t + Tp), t € [0, Tp + T1),

(4.10) ey +Ty +1) > 7,

(4.11) Iz () = 2|, Iy () — 2] < Ao, t € [To+ T, To + T1 + 1],
(4.12) [(zWY (@)]] < Ao, t € [To+T1,To + T1 +1].

For all t € (TO +Ty+ 1,27+ T + 1] set

(4.13) cM @) =7+ e DD W+ 17y +1) - 7), gy @) =7

Lemma 3.2, (4.10), (4.12) and (4.13) imply that (z(V(t),y™ ()2 is a pro-
gram. In view of (4.10) and (4.13),

(4.14) MR+ T +1) > 7.
Property (P) and (4.8) imply that there exists a program
(x(2) (t), y(2) (t))2T0+T1+2

t=2To+T1+1
such that
(4.15) DTy + Ty +1) =7, 2P 2Ty + Ty +2) > x(2Th + T1 + 2),
(4.16)  [zP) =z, [y () - 7| < Ao, t € [2Tp +T1 +1,2Tp + T1 + 2],

(4.17) (@Y (@) < Ao, t € [2To+T1 + 1,21 + T1 + 2).
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For all t € [2Ty + Ty + 1,27y + T4 + 2| define
(4.18) y(t) =y (),
(4.19) e () = 2@ (1) 4 e~ 21D (D 2Ty + Ty + 1) — 7).

Lemma 3.2, (4.14), (4.15) and (4.19) imply that (ac(l)(t),y(l)(t))?£%+Tl+2 is a pro-
gram. By (4.13) and (4. 19) for all t € 2Ty + 11 + 1,27 + 11 + 2],

e () = 2@ () 4 e~ M2T0-"T=D(7 4 =40 (VT + Ty +1) — 7) — 7)
= 2@ (t) 4 e~ D ()T 477 + 1) — 7).
It follows from (4.9), (4.1 ) (4.15) and (4.19) that

(4.21) 21(0) = 2(Tp) = 2(0),

(4.20)

(4.22) eW QT+ T +2) > 2P QT + Ty +2) > 2(2To + T1 + 2).

Since the program (x(t),y(t));2, is overtaking optimal Lemma 3.2, (4.5) and (4.22)
imply that

2To+T1+2 2To+T1+2
0< / w(by(t))dt — / w(by (1))t
0 0

To 2To+T1+2 2To+T1+2
(4.23) = / w(by(t))dt + / w(by(t))dt — w(by™ (¢))dt
0 2To+T11 To+T
2To+T1+2 2To+T1+2
< —A + Tyw(bZ) + / w(by(t))dt — w(by W (t))dt.
2To+T1 To+Th
In view of (48), for all t € [QT() + Tl, 2T0 + T1 + 2],
(4.24) 0 <y(t) <z(t) <T+de.
By (4.7) and (4.24), for all t € [2T0 + 11,2170+ T1 + 2],
(4.25) w(by(t)) < w(b(@ + de)) < w(bZ) + A/8.
It follows from (4.14), (4.18), (4.19), (4.23) and (4.25) that
2To+T1+2
0 < —A + Tow(bE) + 2w(b3) + A4 — / w(by D (1))t
To+T1
To+T1+1
< (Th + 2)w(bd) — 3A/4 — / w(by W (1)) dt
To+T
(4'26) 2To+T1+1 2To+T1+2
- / w(bZ)dt — / w(by™(t))dt
To+T1+1 2To+T1+1
To+T1+1 2To+T1+2
< 2w(bZ) — 3A /4 — / w(by™M (t))dt — / w(byM (t))dt.
To+T1 2To+T1+1
In view of (4.12), for all ¢t € [Ty + T1,To + 11 + 1],
(4.27) y (1) > 7 — Age(o).

By (4.16) and (4.18), for all ¢t € 2T + T + 1,21y + 11 + 2],
(4.28) y D) =y D) > T — Age(o).
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It follows from (4.6), (4.27) and (4.28) that for all ¢t € [Ty + 11, To + 11 + 1] U [2Th +
Ty +1,2T0 + Ty + 2],
(4.29) wbyM () > w(bE) — A/8.
By (4.26) and (4.29),
0 <2w(bz) — 3A/4 — 2(w(bz) — A/8) < 3A/4+ A/4,
a contradiction. The contradiction we have reached proves that case (2) does not
hold. Thus the program (Z(t),y(t)):2, is good. Together with Theorem 2.4, (4.2)
and (4.3) this implies that
z(t) =2, t € [0,Tp)

y(t) =2, t €[0,Tp] (a. e.) .
Combined with Theorem 3.1 and the inequality aZ < d~' this completes the proof
of Theorem 4.1. O

5. THE ONE-DIMENSIONAL CASE

Assume that n = 1 and that (z(t),y(t))2, is an overtaking optimal program.
There are three cases:
z(0) =Z; z(0) > x; z(0) < .
If (0) = 7, then in view of Theorem 3.1, for all t > 0, z(t) = Z and for a. e. t > 0,
y(t) = . Assume that

(5.1) z(0) > 7.

Theorem 2.4 implies that

(5.2) tllglo z(t) = .

It follows from Theorems 3.1 and 4.1, (5.1) and (5.2) that
(5.3) z(t) > 7 for all t >0,

(5.4) z(t) < z(0) for all ¢ > 0.

If (1) = & for some 7 > 0, then there exists 79 > 0 such that
z(t) =z, y(t) = for all t > 79,
x(t) > 7 for all t € [0,79),
the function x is strictly decreasing on the interval [0, 7p].
Assume that
x(t) # 7 for all t > 0.
It is not difficult to see that
z(t) >z forallt >0

and the function x is strictly decreasing on [0, 00).
Assume that

(5.5) z(0) < 7.
Theorem 2.4 implies (5.2). It follows from Theorem 3.1, (5.2) and (5.5) that
x(t) <z for all t > 0,
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x(t) > x(0) for all £ > 0.

It is not difficult to see that if z(7) = Z for some 7 > 0, then there exists 79 > 0
such that

ﬂj(t) = EC\: y(t) = EU\ for all ¢ Z 70,
z(t) < T for all ¢t € [0,79),

the function x is strictly increasing on the interval [0, 79].
Assume that

x(t) # 7 for all t > 0.

It is not difficult to see that

xz(t) <z forallt>0

and the function z is strictly increasing on [0, c0).
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