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NONLINEAR SPECTRAL RESOLUTION

WEN HSIANG WEI

ABSTRACT. A quasi-product on a normed space is defined. In addition, the
notions of the eigenvectors of linear operators can be extended for nonlinear op-
erators. Based on the quasi-product and the generalized eigenvectors, spectral
theorems for certain possibly nonlinear operators which include bounded sym-
metric linear operators as special cases can be proved. Operational calculus of
the class of possibly nonlinear operators is developed and nonlinear spectral op-
erators are given. Two classes of operators, nonlinear generalizations of linear
operators on finite dimensional vector spaces and compact linear operators on
normed spaces, and two operators associated with the ones playing a role in
quantum mechanics are given for illustrations.

1. INTRODUCTION

Operator theory has been at the heart of research in analysis (see [1]; [8], Chapter
4). Moreover, as implied by [7], considering nonlinear case should be essential.
Developing useful results for the operators holds the promise for wide applications
of nonlinear functional analysis to a variety of scientific areas.

In classical functional analysis, the space of bounded linear operators is a normed
space endowed with a sensible norm. Further, by defining the composition of
two bounded linear operators as the operation of multiplication, the space of the
bounded linear operators is also a normed algebra. In Section 2, a normed function
is defined and some set of possibly nonlinear operators from a normed space into
a normed space turns out to be a normed space. Further, if the domain and the
range of the possibly nonlinear operators are the same normed algebra, the normed
space of the possibly nonlinear operators can be a normed algebra by defining an
operation of multiplication for two operators.

Spectral theory is one of main topics of modern functional analysis and its ap-
plications (see [5]; [10]). Spectral theory for certain classes of linear operators has
been well developed (see [3]), particularly symmetric linear operators in a Hilbert
space. Spectral theory for the nonlinear operators is an emerging field in functional
analysis (see [2]). However, relatively little has been done for the spectral resolution
of the possibly nonlinear operator of interest and associated extensions which are
main objectives of this article. The inner product is important for the development
of spectral theory in Hilbert spaces. Therefore, in order to develop the spectral
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decomposition of the possibly nonlinear operator on a normed space, a ”product”
which is referred to as the quasi-product and plays the role analogous to the inner
product in the inner product space is proposed in next section. Section 3 defines a
generalized real definite operator which can be considered as the generalization of
the symmetric linear operator on the Hilbert space. Furthermore, the generalized
eigenvalue which can be considered as the generalized version of the eigenvalue in
the linear case is also defined. Spectral theorems of the bounded generalized real
definite operator are given in the section. Extensions of the results in Section 3,
including the operational calculus of the generalized real definite operator and non-
linear spectral operators (see [4]), are given in Section 4. Finally, several nonlinear
operators along with their applications are given for illustrations in Section 5. For
readability, only proofs of main results are given in these sections. Proofs of other
results are delegated to Section 6. Note that the results in this article can be used
to prove spectral theorems for a more general class of possibly nonlinear opera-
tors which includes bounded normal linear operators as special cases. In addition,
the spectral representations for unbounded nonlinear operators can be also proved
based on these results.

Hereafter D(F') and R(F') are denoted as the domain and the range of an operator
F, respectively, and the notation || - ||z is denoted as the norm of the normed
space Z. The spaces of interest are normed spaces implicitly. On the other hand,
Banach spaces or normed algebras will be indicated explicitly. Note that the vector
spaces and the normed spaces of interest in this article are not trivial, i.e., not only
including the zero element.

2. NONLINEAR FUNCTIONAL SPACES

2.1. Basics. Let X and Y be normed spaces over a field K with some sensible
norms, where K is either the real field R or the complex field C. Let V(X,Y)
be the set of all operators from X into Y, i.e., the set of arbitrary maps of X
into Y. Let the algebraic operations of Fi, F € V(X,Y) be the operators with
(F1 + Fy)(x) = Fi(x) + Fa(z) and (aF))(z) = aF)(x) for x € X, where a € K is a
scalar. Also let the zero element in V(X,Y') be the operator with the image equal
to the zero element in Y.

In this subsection, basic properties of the nonlinear functional spaces are given.
The proofs of several theorems and corollaries, including Theorem 2.2, Corollary 2.3,
Theorem 2.4, Corollary 2.5, and Theorem 2.7, are quite routine and are delegated
to Section 6.

Theorem 2.1. V(X,Y) is a vector space over the field K.

The routine proof of the above theorem is not presented. Define a non-negative
extended real-valued function p, i.e., the range of p including oo, on V(X,Y) by

p<F>:max< sup ”””C)”Y,uﬂowy)

x#£0,2eX HxHX

for F € V(X,Y). The non-negative extended real-valued function p is a generaliza-
tion of the norm for linear operators. Let B(X,Y’), the subset of V(X,Y’), consist
of all operators with p(F) being finite.
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Theorem 2.2. p is a norm on B(X,Y) and [B(X,Y),p] is a normed space.

Hereafter the norm p is used, i.e., ||[F||g(x,y) = p(F) for FF € B(X,Y’). Note that
bounded linear operators lie in B(X,Y). As X =Y, the notation B(X) = B(X, X)
is used.

Let the notation of the composition of two operators be o hereafter.

Corollary 2.3. Let Fy € B(X,Y) and F» € B(Y,Z), where Z is a normed space.
Then

I1F1(2)ly < 1F1llBxvllzllx, z # 0.
If Fy(0) = F5(0) = 0, then
12 0 Fillpix,z) < 1F1llBx vy 1 F2llBov,2)-

Let BC(X,Y), the subspace of B(X,Y), consist of bounded continuous operators.
It is well known that the space of all bounded linear operators from a normed space

X to a Banach space Y is complete. The analogous results also hold for the spaces
B(X,Y) and BC(X,Y).

Theorem 2.4. If Y is a Banach space, then B(X,Y) and BC(X,Y) are Banach
spaces.

Unlike a linear operator, a continuous nonlinear operator F' might not be bounded.
The following corollary gives sufficient conditions for the boundedness of a contin-
uous operator.

Corollary 2.5. Let IC be a compact subset of X. Let F: X — Y be continuous on
K. F € B(X,Y) if the following conditions hold:

(a) 1F'(K)px,yy < M, where K¢ is the complement of the set K and M is a
positive number.
(b) limg—o || F(z)|ly/||x||x exists and is finite.

The linear functionals in the dual space of a normed space can distinguish the
points of the normed space. Since the dual space of the normed space X is a
subspace of B(X, K), the results hold for the nonlinear functionals in B(X, K).
Further, the following theorem gives the counterpart of the one for the bounded
linear functionals in the second dual space.

Theorem 2.6. Let x # 0 and g, : B(X,K) — K be defined by g.(F) = F(x) for
F e B(X,K). Then g, € B[B(X,K), K] and

F
lzlx = sup F(z)]

T = el :
F#O,FEB(XJ() HFHB(XJ() B[B(XJ{),K}

Proof. For any = # 0, there exists a bounded linear functional F, € B(X, K) such
that F(z) = ||z||x and ||F:|[px,x) = 1. Thus,

< [F(@)] o |Fa(2)]
up =
rroreBxK) 1FllBx,x) — I1F:l Bx,K)

= [l x-
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On the other hand, |[z||x > supp.o pep(x,x) [F(@)| /|1 Fl B(x,x) because by Corol-
lary 2.3, |F(2)] < |Fllp(x g0l Finally,

Fl(x
T - . gy 1

F20,FeB(x,K) |l B(X.K)

because ¢(0) = 0. O
The Banach space of all bounded linear operators on a Banach space X is a
Banach algebra with the multiplication being the composition of the operators.
The Banach space B(X) is not a Banach algebra with the multiplication being the
composition of the operators and X being a Banach space. However, B(X) can be

a normed algebra or a Banach algebra depending on X being a normed algebra or a
Banach algebra (see Theorem 2.4) as the multiplication of the operators is defined

properly.

Theorem 2.7. Let X be a normed (Banach) algebra. Define the multiplication of
Fy and Fy in V(X,X) by

Fl(:Z:)FQ(I‘)

(Fy % Fy)(x) =
[l x

,t# 0,z € X,

and

Then B(X) is a normed (Banach) algebra. If X has a unit, B(X) is a normed
(Banach) algebra with a unit e.

2.2. Quasi-product.

Definition 2.8. Let X be a normed space and S be a subset of X. A quasi-product
[-,-]s on S is a mapping (or a map) of S x S into the scalar field K with the following
properties:

(a)
[z,x]s >0

forx e S.

(b)
[z, yls| <ellellx [lvllx

for x,y € S, where € is a positive number.

(c)
[Z Oy, y]

for any n > 1, z1,...,2n,y,> 1y iz; € S and aq,...,a, € K, where
¢:S — R is a positive bounded function and is bounded away from 0.

= c(y) Zai [i,y]s
=1

S
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A quasi-product is quasi-symmetric if and only if [z,y|s = q(x,y)[y, x]g, where
Z is the conjugate of the complex number z and ¢ : S x S — R is a positive
bounded function and is bounded away from 0. A quasi-symmetric quasi-product
is symmetric if and only if [x,y]s is equal to the conjugate of [z,y]g, i.e., [x,y]s =

[%x]S'

Remark 2.9. If S = X, ¢(y) =¢ =1, [z,z]x = 0 implies x = 0, and the quasi-
product is symmetric, X is an inner product space with the inner product being the
quasi-product. On the other hand, an inner product < -,- >x on the inner product
space X can be a symmetric quasi-product by setting < x,y >x= [z, y]x.

The following are examples of the quasi-products on some normed spaces or the
subset of some normed space.

Example 2.10. Let X be an inner product space with an inner product < -, >x
and the norm induced by the inner product. Then

[z, y]x = c(y) < z,y >x

for z,y € X, where ¢ is a positive bounded function on X and is bounded away
from 0, for example,

Iyl
cly) = X 4
W) = Tl +1

and k > 0.

Example 2.11. Let X be the real normed space of real-valued Lebesgue integrable
functions on the measurable set © C R with the norm ||z||x = [, [z|du for z € X,
where p is the Lebesgue measure. Let the symmetric quasi-product defined by

[w,y]xz/xdu/ydu
Q Q

Example 2.12. Let X be the real normed space of real-valued bounded functions
on the compact domain €2 € R with the supremum norm and the subset S of X
consist of bounded Lebesgue integrable functions with positive integrals. Define the
non-symmetric quasi-product on S by

[%y]s:/xdusupy(t),
Q teQ

for z,y € X.

where p is the Lebesgue measure.

Note that the quasi-product function [z,y]x = f,(z), considered as a function of
x, is continuous on X. In addition, if the quasi-product is symmetric, it is jointly
continuous.

The bilinear form on a Hilbert space has a representation associated with a unique
continuous linear operator (see [5], Theorem 3.8-4; [9], Chapter VI, Theorem 1.2).
The following theorem can be considered as the nonlinear counterpart of the linear
case.
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Theorem 2.13. Let F' € B(X,Y) with F(0) = 0 and there exists a positive function
d defined on'Y and being bounded away from 0 such that [y,yly = d(y)||y||? for
yeY. Then h: X XY — K has a unique representation

h(z,y) = [F(z), yly
if and only if the function h has the following properties:
(a) [h(@,y)| <€l [lylly
forx e X andy € Y, where € is a positive number.
(b) Fory €Y, there exists z € Y such that
hz,y) = [z,yly
for any x € X.

s

Proof. The ”only if” part is obvious. To prove ”if” part, define F(x) = z with
F(0) =0. F is well-defined since for x1 = 2,
hz1,y) = [z, yly = h22,y)

and thus F(z1) = F(x2) = z. Further, for F # 0, F' € B(X,Y) because there exists
c1 > 0 such that

FllBx,yy
F 2
. IF @)l
2#0,2€X,F(x)#0 ||| x [|F'(z)]]y
F F
<o s @ F@
w20,2eX,F ()20 | [Tl [x [[F(2)]]y
F
c o sy F@y
z#0,x€X,y#0,ycY [l x [lylly
< cicC.

To prove the uniqueness of F, let h(z,y) = [F(z),yly = [G(x),y]y for x € X and
y € Y. Then by the properties of the quasi-product,

[F(z),yly — [G(2),yly| = e2|[[F(x) — G(z), y]y]
implies [F(z) — G(z),y]ly =0 for any y € Y and thus
cs||[F(z) = G(2)|ly < [F(x) = G(x), F(z) = G(2)]y =0,
where ¢y depending on y and c3 depending on x are both positive numbers. There-

fore, F(z) = G(z). O

3. GENERALIZED REAL DEFINITE OPERATORS

The goal of this section is to formulate the spectral resolutions of some class
of possibly nonlinear operators. In this section and the following subsection, i.e.,
Section 3 and Section 4.1, suppose that the operator F' : X — X of interest satisfies
F(0) = 0 and the quasi-products on X exist. For F : X — X with F(0) # 0,

the corresponding spectral resolution can be obtained by the shift F(z) = F(z) +
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s(z),z € X, where s : X — X satisfies 5(0) = £(0), for example, s(z) = F(0) (also
see Remark 4.10 in Section 4.1).

The spectral resolution of bounded symmetric linear operators, due to Hilbert,
is a limit of Riemann-Stieltjes sums in the sense of operator convergence (also see
[6], Chapter 31), i.e., having the form of Riemann-Stieltjes integral. The spectral
resolutions of the generalized real definite operators defined in this section also have
the form of Riemann-Stieltjes integral in terms of the quasi-product or in the sense
of operator convergence as certain classes of quasi-products are employed. For the
bounded symmetric linear operators, the spectral resolution involves both linear
projection operators and positive linear operators. The nonlinear counterparts of
the positive linear operators and the linear projection operators are defined and
their basic properties are given in the first two subsections. Then, the spectral
resolutions are given in the last subsection.

3.1. G-positive operators. Linear spectral theory for the symmetric operators
involves the positive operators. Similarly, for the nonlinear operators with real
spectrums, the spectral theorems also involve the positive operators. The main
theorem in this subsection, Theorem 3.7, indicates that the multiplication of two
positive operators remains positive given some sufficient conditions imposed on the
quasi-product. Based on the theorem, two corollaries give the existence and the
uniqueness of the square root of the positive operator. Furthermore, the spectral
theorem in Section 3.3 can be proved by using the theorem. Note that the proofs
of Theorem 3.7, Corollary 3.8, and Corollary 3.9 in this subsection are delegated to
Section 6.
The positive operator, possibly nonlinear, is defined as follows.

Definition 3.1. Let X be a normed space. An operator F : X — X is generalized
real definite if and only if there exist a quasi-product [-,-]x and an operator g :
X — X satisfying g(z) # 0 for  # 0 and

[F(x), g(z)lx € R
for x € X. Furthermore, F' is g-positive, denoted by F' > 0, if and only if
[F(x),9(x)]x =0
for x € X. For two operators F; : X — X and Fy: X — X,
F > F
if and only if
Fy—F, > 0.

If X is a normed algebra, a g-positive operator F' has a square root if and only if
there exists an operator G : X — X such that [G(2)]? = G(z)G(z) = F(x) for
x € X. G is then called a square root of F'.

If F =0, F is g-positive. G = 0 is the square root of F' = 0 defined on the
normed algebra X.
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Remark 3.2. The generalized real definiteness of the operator F' relies on both the
operator g and the quasi-product. If F'is a symmetric linear operator on a Hilbert
space, the operator g is the identity map, and the quasi-product is the inner product
on the Hilbert space, F' is generalized real definite and F being positive implies F'
being g-positive. Therefore, the g-positivity extends the notion of the positivity.

If F: D(F) - Y and g : D(F) — Y satisfies g(z) # 0 for z # 0 and
x € D(F), the above definition can be modified and the associated expressions
are [F(z),g9(z)]y € R and [F(x),g(z)]y > 0 for € D(F), where D(F) is a subset
of X.

Some basic properties of the positive operators are given by the following lemma.
The routine proofs are not presented.

Lemma 3.3. Let X be a normed space and Fy, F5, Gy, Gy be the operators from X
into X.

) Fy > Fy if and only if [F1(x),g(x)]x > [F2(x),9(x)]x for z € X.
) Ifa € R, « >0, and Fy >0, then aF; > 0.

) If F1 >0 and Fy > 0, then Fy + F» > 0.

(d) If F < Gy and Fy < G, then F1 + Fy < Gy + Gs.

(a
(b
(c

For a symmetric linear operator F' on a Hilbert space X, the normed value of F'(x)
and the associated inner product satisfy the equation < (FoF)(z),z >x= ||F(z)||%-
It turns out that the analogous equation (inequality) defined below plays a key role
in the development of the spectral resolutions of the possibly nonlinear operators.

Definition 3.4. Let X be a normed space and g : X — X satisfy g(x) # 0 for
x # 0. For z,y € X, a quasi-product has a left integral domain if and only if for
g(z) # 0, [y,9(x)]x = 0 implies y = 0. Further, if X is a normed algebra with
a unit 1, for z,y;,y2 € X, a quasi-product preserves the positivity if and only if
[y1y2,9(x)]x > 0 as [y1,9(x)]x > 0 and [y2,9(z)]x > 0. In addition, a quasi-
product is square bounded below if and only if for x,y € X, there exists a positive
number k such that [y, g()]x > kllyl% llg()l[x as y = 1 o [y, g(x)]x € R.

The properties of the quasi-product in Definition 3.4 rely on the operator g and g
is assumed to be the same as the one corresponding to the generalized real definite
operators of interest (see Definition 3.1) hereafter. Note that the quasi-product has
these properties on the set X x R(g) by the above definition and thus another way is
to define these properties on the subsets of X x X. However, only the set X x R(g)
is of interest in this article and hence Definition 3.4 serves the purpose.

In the following, the operators involved in the spectral theorems of the generalized
real definite operators, the positive and negative parts of the operator, are defined.

Definition 3.5. Let X be a normed space and F' be a generalized real definite
operator. The operator |F| is defined by

|F| (x) = F(z)
if [F(x),g(x)]x > 0 and
IF| (2) = —F(2)
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if [F(x),g(x)]x <0 for z € X. The positive part of F' is

2
and the negative part of F' is
oo FI=F
5

A direct check gives the following lemma.

Lemma 3.6. Let F' be generalized real definite.

(a) Let X be a normed space.
Then |F| > 0.

(b) Let X be a unital normed algebra. Then |F|?> = F?, where forx € X, |F|? is
defined by |F|*(z) = |F|(2)|F|(z) and F? is defined by F?(x) = F(x)F(x).
Furthermore, if the quasi-product is square bounded below or preserves the
positivity, then |F| is a square root of F2.

The above lemma implies that the quasi-product being square bounded below
or preserving the positivity is a sensible condition. Since otherwise, the square
of a generalized real definite operator or even a g-positive operator might not be
g-positive.

It is natural to ask when the g-positive operator has a square root. It turns out
that the quasi-product having a left integral domain or preserving the positivity is
a key sufficient condition. The following theorem indicates that the pointwise mul-
tiplication of two g-positive operators is g-positive given some sufficient condition.

Theorem 3.7. Let X be a unital Banach algebra, F' > 0 and H > 0. If there exists
a quasi-product (not necessarily square bounded below) preserving the positivity with
X being not necessarily commutative or a square bounded below quasi-product having
a left integral domain with X being commutative, then FH > 0, where (FH)(x) =
F(x)H(x) forx € X.

For a positive symmetric linear operator, the positive square root of the operator
is uniquely determined. In the following, the sufficient conditions for the existence
and the uniqueness of the positive square root of the g-positive operator are given.

Corollary 3.8. Let X be a unital Banach algebra.

(a) If G, the square root of the g-positive operator F, exists and G > 0, the
commutative unital Banach algebra X is an integral domain, and the quasi-
pro/duct has a left integral domain, then G is unique and is denoted by G =
F1/2,

(b) If there exists a square bounded below quasi-product preserving the positivity
on X (not necessarily commutative) or a square bounded below quasi-product
having a left integral domain with X being commutative, 0 < F < 1x, then
F has a square root G > 0 and G commutes with any operator W € V (X, X)
which commutes with F, where 1x(x) =1 for x € X.

Corollary 3.9. Let X be a unital Banach algebra and B(X) be the Banach algebra
with the multiplication operation given in Theorem 2.7.
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(a) If G € B(X) satisfying G*> = G * G = F exists and F,G > 0, the commu-
tative unital Banach algebra X is an integral domain, and the quasi-product
has a left integral domain, then G is unique.

(b) Suppose that there exists a square bounded below quasi-product preserving
the positivity on X (not necessarily commutative) or a square bounded below
quasi-product having a left integral domain with X being commutative. For
a g-positive operator F' € B(X), there exists a g-positive operator G € B(X)
such that G**> = GG = F and G commutes with any operator W € V (X, X)
which commutes with F'.

Remark 3.10. Let F > 0 and H > 0 with F(0) # 0 or H(0) # 0, and g(0) #
0. Then given the sufficient conditions in Theorem 3.7 and Corollary 3.8, the
results also hold for F and H. Furthermore, given the sufficient conditions in
Corollary 3.9 and F € B(X), the g-positive operator G € B(X) defined by G(x) =
(1| px)/k)Y?|2]| x G(z) for © # 0 and G(0) = k~Y/2G(0) satisfies G x G = F,
where G2 = F and F(z) = kﬁ(x)/(HFHB(X)HxHX) for z # 0, F(0) = kF(0), and

where k is some number.

3.2. Projection operators. The spectral resolution of a bounded symmetric lin-
ear operator involves both the projection operator and the spectrum of the operator.
The counterparts of these quantities for a generalized real definite operator are de-
fined and some basic facts about these quantities are given in this subsection. The
first two lemmas, Lemma 3.12 and Lemma 3.13, can be used to prove Lemma 3.18,
the main result of this subsection. Lemma 3.18 can be applied to prove the spectral
theorem in next subsection. Note that the proofs of Lemma 3.12, Lemma 3.13,
Lemma 3.16, and Lemma 3.17 in this subsection are delegated to Section 6.

The nonlinear projection operator involved in the spectral resolution of the gen-
eralized real definite operator is defined first.

Definition 3.11. For a subset S containing 0 of a normed space X, the corre-
sponding projection operator Eg : X — X is defined by Eg(x) = z if z € S and
Egs(z) = 0 otherwise. If X is a unital normed algebra, the projection indicator
lg: X — X is defined by 1g(z) =1 if x € S and 1g(z) = 0 otherwise.

Denote N(F') as the null space (set) of an operator F, i.e., N(F) = {z: F(z) =
0,2 € X}. The following two lemmas give the basic properties of the projection
operator (indicator) and the positive and negative parts of F. Let S3\S; denote
the intersection of the set Sy and the complement of the set S.

Lemma 3.12. Let S1 and Sy both containing 0 be the subsets of a normed space
X.

(a) ||Es||lpx)y < 1.
(b) The following are equivalent.

(i)
Eg, o Eg, = Eg, o Eg, = Es, .

(ii) S1 C Ss.
(iii) N(ESQ) C N(Esl).
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(iv) ||Es, (2)||lx < [|Es,(2)||x for z € X.
If X is a unital normed algebra, the following are equivalent.
(i)*

1lg,1g, = 15,15, = 1g,.
(ii)* S; C Ss.
(iii)* N(ls,) C N(1lg,).
(iv)* [ILs, (2)[|x < |15, (2)l|x for z € X.
(c) Let Sy C Ss.
Then Es,_s, = Es, — Eg, is idempotent, i.e., Es,_g, o Eg,_g, = Es,_g,, and
the range of Eg,_g, is S — S1 = (52\51) U{0}. If X is a unital normed algebra,
ls,—s, =1g, — 1g, satisfies 1g,—5,15,—5, = 1g,—5, -
Lemma 3.13. Let X be a unital normed algebra, F' be generalized real definite, and
S = N(FT).
(a) |F|, F*, and F~ commute with every operator W € V (X, X) which com-
mutes with F.
(b) FtTF- =F F* =0.
(c) Fflg=1sFT =0 and F"1g=1gF~ = F~.
(d) Flg=1sF =—F and F(1x —1g) = (1x — 15)F:F+.
(e) FT >0 and F~ > 0.

The spectrum corresponding to the quasi-product and the g-positivity is defined
as follows.

Definition 3.14. Let F' : D(F) — X, where D(F) C X and X is a normed
space. Let v : D(F) — X be a g-positive operator (see Remark 3.2) satisfying
[v(@), 9(x)]x = k1(2)||z|[x|lg(z)||x and [|y(z)[|x = k2(2)||z]|x for z € D(F), where
both k1 and ko are positive bounded functions and are bounded away from 0. The
g-resolvent set of F', denoted by p(F') and p(F') C C, consists of the scalars A such
that Ry = (F — \y)~! exists (see [5], A1.2), is bounded, and D(R,) is a dense set of
X. The set o(F) = C\p(F) is referred to as the g-spectrum of F. If F'(z) = Ay(z)
for some x # 0, = is referred to as the g-eigenvector of F corresponding to the
g-eigenvalue \.

In this article, the generalized real definite operators of interest and the g-positive
operator « are in relation to the same quasi-product and the same operator g.

Remark 3.15. The above definition can be also used for the operator F with
F(0) # 0. Moreover, if X and Y are Banach spaces and G,.J are in the space of
continuous operators from X into Y, the classical eigenvalue A of the pair (G, J)
corresponding to the eigenvector x # 0 satisfies the equation G(z) = AJ(x) (see [2],
Chapter 9.5, Chapter 10). If X and Y are normed spaces, the g-eigenvalue A and
the g-eigenvector = # 0 can be defined similarly for the operators F' : D(F) — Y
and v : D(F) — Y (also see Remark 3.2), i.e.,, F(x) = Ay(x), where D(F) is a
subset of X.

The following two lemmas, Lemma 3.16 and Lemma 3.17, give the results for

values of the quasi-product of the bounded operators in B(X) and the g-eigenvalues
of the bounded generalized real definite operators, respectively.
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Lemma 3.16. Let I € B(X), where X is a normed space. There exists a positive
number k such that

[F(2), g(2)l x| < kllzllx [lg(x)]]x
forx e X.

Lemma 3.17. Let F' be generalized real definite defined on X, where X is a normed
space. Then all g-eigenvalues of F, if exist, are real. Further, if F € B(X), all g-
eigenvalues, if exist, lie in some bounded interval of R.

Note that the results in Lemma 3.17 also hold for the generalized real definite
operator F with F (0) # 0, i.e., all g-eigenvalues of F, if exist, are real and lie in
some bounded interval of R if F € B(X).

Hereafter denote F) = F' — Ay and let 1) and E) be the projection indicator
and the projection operator corresponding to N (F;r ), respectively, where A\ € R. In
addition, let A =y — A, EA = E, — E), and 1po =1, — 1), where X\ < p.

Lemma 3.18. Let X be a unital normed algebra. Suppose that F € B(X) is
generalized real definite, u, A € R, and A\ < u.

(a) |[Ix(2)[|x < |1u(@)l|x forz € X.
(b) Hmy— o SUpP,20 zex Ia(®) = 0. Further, limy, o Ex = 0, limy 00 1 =
Lx, and limy o E\ = I with respect to the norm topology || - ||p(x), where
I is the identity operator defined on X, i.e., I(x) = x for x € X.
(¢c) M yo EA < F1a < pyo Ea.
Proof. (a): If x # 0 and 1\(z) = 1, ie., z € N(FY), [FA(z),g(x)]x < 0 then
and thus [F(z),g(x)]x < [M(z),g(z )]X Since [M( ); g(ﬂg)]x < (@), g(@)x,
x

[F(2),9(x)]x < [py(x),9(x)]x and [Fu(z),g(2)]lx = [F( (@), 9(x)]x < 0
thus. The last inequality implies F) (m) 0 and 1 u(z) = 1 then. Therefore,

IA(@)]|x < [[1u(2)]|x for z € X. ~
(b): By Lemma 3.16, there exist positive numbers k, ki, and k2 such that
[Fx(z), 9(x)] x
ki {[F (), 9(2)]x — [My(2), 9(2)] x }
ki(=k = ko) [l x llg(2)]] x
> 0
for A < —k/ky and x # 0. This gives that 1)(z) = 0 for A\ < —k/ky. Similarly,
there exist positive numbers k7 and k3 such that
[Fa(x), g(z)] x
FiAlE(2), 9(2)] x = [My(2), 9(2)] x }
ki (k= k) (| x [lg(2)]] x
0

for A > k/k} and x # 0. This gives that 1 = 1x for A\ > k/k}. The results for E)
follow because E)(z) = 1)(x)z for z € X.

(c): Since Flp = FIAo—pyoEa and —F, 1A = —F,1,(1,—1)) = Py (1,—1,) >0
by Lemma 3.12 (b), Lemma 3.13 (d), and Lemma 3.13 (e ) hence FlA < pyo En.

AVANLY]

VAN VANVAN
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Similarly, because Fy\1ao = F1a — Ayo Ea and Fyla = Fy(1x —1))(1, — 1)) =
Fi (1, —1,) > 0 by Lemma 3.12 (b), Lemma 3.13 (d), and Lemma 3.13 (e), hence
F1a > Ay o Ea holds. O

3.3. Spectral theorems. In this subsection, the spectral resolutions of the gen-
eralized real definite operators in terms of the quasi-product and with respect to
some topology are stated in Theorem 3.21 and Theorem 3.23, respectively. Let X
be a unital Banach algebra in the subsection.

The spectral resolution of interest can be defined based on the lemma below.

Lemma 3.19. Let F' € B(X) be generalized real definite. There exists a bounded
interval [m, M) with any partition {s;} satisfying m = sy < s1 < --- < s, = M and
Aj = s; —sj_1 < €, such that F,, = 2?21 Aj(y o Ea;) converges to an operator in
B(X) with respect to the norm topology ||-||p(x) and the convergence is independent
of the choice of \j € (sj—1,sj] as n — oo, where 1y(x) =0 for x # 0 as A = m,
Iy=1x as A=M, and 0 < e, — O.

n—oo

Proof. By Lemma 3.12 (b) and Lemma 3.18 (b), there exist m and M such that
Ix(z) =0for z #0as A < mand 1y, = 1x as A > M. Since for fixed x # 0,
Im(z) =0, 1p(z) =1, and 15(z), considered as a function of A, is right-continuous,
there exists Ay € [m, M] such that 15 (z) =1 and 1)(x) = 0 for A < A;. Define
the operator F(z) = A,v(z) as 2 # 0 and F(0) = 0. Then F € B(X). Because
Az € (sj—1, s;] for some j and A; < €, hence

Jeuer- P

(A = Ay (@)l
< kenllallx

for € X, where k is some positive number. O

The following definition gives the spectral resolution in terms of operator conver-
gence.

Definition 3.20. Let X be a unital Banach algebra, F' € B(X) be generalized real

definite, and {s;} be any partition of a bounded interval [m, M| with m = so < s1 <

- < 8, =M and Aj = sj — sj_1 < €, where 0 < ¢, — 0. If Z;‘Zl Aj(7 0 En;)
n—o0

converges to an operator in the sense of operator convergence, i.e., with respect to

the norm topology || - ||g(x), and the convergence is independent of the choice of

Aj for \j € (sj_1,5;] as n — oo, the limit operator is denoted as frﬁb/‘[ Ad(7y o Ejy).
Furthermore, if f(A1)ls, + 27 5 f(Aj)1a; converges to an operator in the sense
of operator convergence and the convergence is independent of the choice of A; as
n — oo, the limit operator is denoted as fn]y f(A)dly, where f: R — V(X,X) is a
mapping from R into V (X, X).

The following two theorems give the spectral representations of the generalized
real definite operators in terms of the quasi-product and with respect to the norm
topology || - || p(x), respectively. Moreover, [F'(x), g(x)]x,> € X, can be expressed
as an ordinary Riemann-Stieltjes integral in terms of a certain equivalence relation.
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The involved equivalence relation = for two functionals G; and G5 from X into K
is denoted as G1 = G2 (or G1(x) = Ga(z) for convenience) if and only if there exist
positive numbers k£ and k£ such that

k|Ga(@)] < |Gi(@)] < k|G ()]
for all z € X.
Theorem 3.21. Let F' € B(X) be generalized real definite. Then

wwywu:{Umewmhmm@

m X

and
M

F@) gl = [ M)

m

for x € X, where [m, M] is some bounded interval depending on F, wzy(\) = [(y o
E))(x),9(x)]x, and the second integral is the ordinary Riemann-Stieltjes integral.

Proof. f:f Ad(7y o E)) exists by Lemma 3.19, where 1,,(z) = 0 for z # 0 and
1y = 1x. Note that 377 Ay = M —m and 37, 1a,() = 1 for z # 0. Then
F=F37 11a; =35 Fla;. By Lemma 3.18 (c) and Lemma 3.3 (b), (c), and
(d),

|
—

n

n
Sj(’yo EAJ‘+1) SF< ZS]'(’)/O EAj)
j=1

<.
Il
o

and hence
n

n n
0< Zsj(’yoEAj)—FS ZAj(’YOEAj) < eanyoEAj.
j=1 j=1 =1

Then by Lemma 3.3 (a),

tvj:

sj(v0 Ea;)(z) — F(z),9(x)
j:l

[vj:

(v 0 Ea;)(x), g(x)

j=1
= [eav(2),9(2)]x
< kenllzllx llg(@)lx

for x € X, where k is some positive number. f Ad(yo Ey)—F]

(x), 9(x)]x = 0 by
the continuity of the quasi-product and [[fm Ad(yo E))|(x), g9(x)]x = [F(z), g(z)]
thus. By property (c) of the quasi-product,

>~

> Ni(yo Ea))(@), g(=) 2) (vo Ea,)(@), 9(x)]
Jj=1

X
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for x € X and
M
/ Aduw,(\)
= Jlim D7 [0 Ba,)(@), g(x)]
j=1
= nh_>1r101o Z i(vo Ea;)(z),9(x)
J=1 X
= [F(2),9(z)]x
thus. -

In the following, the spectral resolution of the generalized real definite operator in
terms of operator convergence is given. The key sufficient condition for the operator
convergence in this subsection and in Section 4.1 is defined below.

Definition 3.22. The uniform spectral representation condition on a unital Banach
algebra X is as follows: There exists a quasi-product which

(a) is square bounded below and preserves the positivity
or
(b) has the left integral domain.

Theorem 3.23. Let F' € B(X) be generalized real definite. If the uniform spectral
representation condition on X holds, then F' has the spectral representation

M
F:/ /\d(’}/OE)\),

m

where [m, M| is some bounded interval depending on F.

Proof. fn]y Ad(yoE)) exists by Lemma 3.19. If the quasi-product has the left integral
domain, i.e., the uniform spectral representation condition (b) satisfied, the equation
[[fnjy Ad(yoE\)—F](x),g(z)]x = 0 implies that F(x) = [fi/[ Ad(yoE))](x) for every
x € X. Then by Lemma 3.19, F = fT]y Ad(vy o Ey).

Next, assume that the uniform spectral representation condition (a) holds. Let
Fy =371 1 5i(y0 En;). Then

n

0<F,—F<en» voEa,
j=1

and thus
2

n
0< (Fp—F)?<e [ > yoEa,
j=1
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by Theorem 3.7. Because the quasi-product is square bounded below, there exist
positive numbers k; and ko such that for x € X,

(| Fa(@) = F@)l i llg(@)llx
< [(F-FP@)g@)]
2

n
< (& (D voEa | (2).9(2)
j=

X
< kaep Il llg(@)llx -
Hence ||Fy, — F|gx) n:;o holds. O

Remark 3.24. Theorem 3.21 and Theorem 3.23 under only the uniform spectral
representation condition (b) also hold as X is a Banach space, i.e., the condition for
X being relaxed. The key is to use F'o Eg in place of F'lg in the associated results,
where S containing 0 is a subset of X.

4. EXTENSIONS

In this section, the operational calculus of the bounded generalized real definite
operators is given in the first subsection. Furthermore, the bounded generalized
real definite operators with the spectral representation in the sense of operator
convergence turns out to be associated with a class of operators defined in the
second subsection.

4.1. Operational calculus. In this subsection, the extensions of the spectral the-
orem in the previous subsection to polynomial functions and continuous functions
are stated in two theorems, Theorem 4.3 and Theorem 4.9, respectively. Let X
be a unital Banach algebra as in Section 3.3. The polynomial of the generalized
real definite operator is defined below. Note that the proofs of the lemmas in this
subsection are delegated to Section 6.

Definition 4.1. Let B(X) be a unital Banach algebra with the multiplication
operation * given in Theorem 2.7. Let p(\) = > I, a;A\" be a polynomial in A with
real coefficients a;, i.e., p being over the real field. Then p(F) = Y7, a;F*', where
F e B(X)and F*' =e.

Lemma 4.2. Let Fy,, Fi, Fy,, F5 € B(X) If F1,, — F1 and Fy, — F5 in the
n—00 n—00

sense of operator convergence, then Iy, x Fo, — F| x F5 in the sense of operator
n—oo
convergence.

Theorem 4.3. Let ' € B(X) be generalized real definite. Then p(F') has the
spectral representation

M
p(F) = / p(y)dL

m

if the uniform spectral representation condition on X holds.
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Proof. Because for k > j,
Iajla, = (18]' - 18j—1) (1Sk - 151%1) =15 —1s; =15, + 15, =0
by Lemma 3.12 (b) and thus (y o Ea;)(y o Ea,) = v%*1a,1a, = 0. Therefore,

n

*k
n n
S Ao Ea)| =D MyoEa)"=> (N4,
j=1 j=1 j=1
where k is a nonnegative integer. By the condition imposed on the quasi-product
and then using Theorem 3.23, Z?Zl Aj(v o Ea;) — F in the sense of operator
n—oo

convergence. By Lemma 4.2,

*k
n

n
k _ . k
Z;(Aﬂ)* Ia; = Z;AJ(VOEAj) o
J= J=

and hence

PO Ly + ) p(A)la, =2 | D Ai(vo Ba,)| — p(F),
=2 j=1

ie., p(F) = f;‘f p(Ay)dly in the sense of operator convergence. O

For a bounded self-adjoint linear operator T, the normed value of p(T) is not
greater than the normed value of p(\), where p(\) is considered as an element
in the space of all continuous functions defined on some compact interval. The
following lemma can be considered as the counterpart of the one for the bounded
self-adjoint linear operator. Let C([m, M] be the Banach space of all real-valued
continuous functions defined on [m, M| with the supremum norm.

Lemma 4.4. Let F' € B(X) be generalized real definite. If the uniform spectral
representation condition (a) holds or the uniform spectral representation condition
(b) holds with X being commutative and the quasi-product being square bounded
below, then there exist a positive number k and a bounded interval [m, M| depending
on F such that for any polynomial function p with real coefficients,

Pl p(xy < b e PN = Ellpll e, -

For any f € C([m,M]), the operator f(F) and its spectral theorem can be
defined and established based on Lemma 4.4. The following theorem gives the
existence of the limit operator of a sequence of polynomials of the generalized real
definite operator.

Theorem 4.5. Let F' € B(X) be generalized real definite. If the uniform spectral
representation condition (a) holds or the uniform spectral representation condition
(b) holds with X being commutative and the quasi-product being square bounded
below, then there exists a bounded interval [m, M| depending on F such that {p,(F)}
converges to an operator in B(X) in the norm ||-||g(x), where {p,} is any convergent
sequence of polynomial functions with real coefficients in the space C([m, M]).
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Proof. By Lemma 4.4, for any € > 0, there exists a positive number N such that
for n,l > N,

||lpn () _pl(F)HB(X) < k|lpn _leC([m,M]) <€

and thus {p,(F)} is a Cauchy sequence in the Banach space B(X), where k is some
positive number. O

According to the above theorem, the operator corresponding to any f € C([m, M])
and the generalized real definite operator F' € B(X) can be defined as follows.

Definition 4.6. Let B(X) be a unital Banach algebra. If there exists a sequence of
polynomial functions {p, } defined on [m, M] over the real field converging uniformly
to f in C([m, M]), i.e., the convergence being in the norm || - [|c(m,n1), and the
limit of the sequence of operators {p,(F)} in the norm || - [|g.x) corresponding to
the generalized real definite operator F' € B(X) exists, then the limit in B(X) is
denoted by f(F).

As the above condition on X holds, f(F') exists and is unique, i.e., f(F') being
the limit corresponding to any sequence of polynomial functions converging to f in
C([m, M]), as indicated by the corollary below.

Corollary 4.7. Let F € B(X) be generalized real definite. If the uniform spectral
representation condition (a) holds or the uniform spectral representation condition
(b) holds with X being commutative and the quasi-product being square bounded
below, then f(F) exists for any f € C([m,M]) and is independent of the choice of
the sequence of polynomial functions in C([m, M)), i.e., f(F) being the limit of any
sequence of operators {pn(F)} satisfying that {p,} defined on [m,M] over the real
field converges uniformly to f in C([m, M]), where [m, M] is some bounded interval
depending on F.

Proof. Because there exists a sequence of polynomial functions converging uniformly
to f in C([m, M]) by Weierstrass theorem, f(F') exists by Theorem 4.5 and Defini-
tion 4.6. Next, let {p,} and {p}} be the sequences of polynomial functions both con-
verging uniformly to f in C([m, M]). Then p,(F) — f(F) and p}(F) — f*(F)

n—oo n—oo
by Theorem 4.5. Furthermore, because

FE) = () xy
< () = pu(F)llpxy + n(F) = oo ()l gy + P (F) = 77 (E)l x)
and
P (F) = 07 (F)l| gy < K llpn = 23l moar) -
letting n — oo gives f(F) = f*(F) . O

The following lemma is an extension of Lemma 4.4 to continuous functions and
can be used to prove the spectral theorem corresponding to the continuous functions.

Lemma 4.8. Let F' € B(X) be generalized real definite. If the uniform spectral
representation condition (a) holds or the uniform spectral representation condition
(b) holds with X being commutative and the quasi-product being square bounded
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below, then there exist a positive number k and a bounded interval [m, M| depending
on F such that for any f € C(m, M]),
F <k N =k .
()| pex) < \hax LF = Ko,

Theorem 4.9. If the uniform spectral representation condition (a) holds or the
uniform spectral representation condition (b) holds with X being commutative and
the quasi-product being square bounded below, then for a generalized real definite
operator F' € B(X) and any f € C([m,M)]), f(F) has the spectral representation

M
- / FOW)dly,

where [m, M| is some bounded interval depending on F'.

Proof. There exist a bounded interval [m, M] and a positive number k& such that
I1f M) Bx)y < kllfllc(m,an) for any f € C([m, M]) and A € [m*, M*]| by Lemma 4.8
with 1« (z) = 0 for x # 0, 15« = 1, and [m*, M*] C [m, M]. Let {p;} be a sequence
of polynomial functions defined on [m, M| over the real field converging uniformly to
f in C([m, M]). By Definition 4.6, Theorem 4.3, Corollary 2.3, and Lemma 4.8, for
every € > 0, there exist positive numbers N and N; such that for n > Ny and [ > N
Np(F) — f(F)HB(X) < ¢/3, [lp(My)ls; + Z?:Qpl(/\jy)lﬁj _pl(F)HB(X) < €/3,
and

n

FONLe + > FyNa, — pa)ls, = D pi(A)1a,

=2 j=2

B(X)
< —
< | Jmex FOY) =)y
< EIf = oilloman)
< €/3.
Therefore,
FOMNLsy + D0 FOy)1a; — f(F)
j=2 B(X)
< |[fa)ls +Zf iNa; — (M)l sz i1
j=2 B(X)
+ ) Lle + ) p(M)1a, — pi(F) +p(F) = ()l gexy
i=2 B(X)
< €
and the result holds. O

Remark 4.10. For the generalized real definite operator F' € B(X) with F(0) # 0,
ie., F = F + F(0)e and the projection indicator 1) corresponding to the null
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space of F' ;L , the spectral resolution of the polynomial p(ﬁ‘ ) given the condition in

Theorem 4.3 is
M

p(F) = / D [)\74— F(O)e} dly.

m

Similarly, the spectral integral of the operator f (F’ ) given the condition in Theo-
rem 4.9 is

F(F) = /M f [M + F(O)e} dl,.

m

4.2. Nonlinear spectral operators. In [4], the theory of the linear spectral op-
erators has been discussed thoroughly. In this subsection, the nonlinear spectral
operators based on the projection operator given in Definition 3.11 are defined and
a basic result, Theorem 4.14, is given.

Definition 4.11. Let X be a normed space. A spectral projection E on (m, M]
is an operator-valued function from the subsets U}, (a;, b;] of (m, M] into B(X),
m, M € R, (a;,b;] C (m, M], with the following properties.

(a) E{(a;,b;]} is a projection operator, i.e., E{(a;,b;]}(z) = = if x € S and
E{(a;, Z]}( ) = 0 otherwise, where S containing 0 is some subset of X.
((b; E(¢) =0 and E{(m,M]} = 1.
E{(a1,01] N (ag, bo]} = E{(a1, 1]} 0 E{(az, ba]} = E{(ag, bo]} o E{(a1,b1]}.
In addition, if (a1, b1] N (ag, ba] = ¢, then
E{(a1,01] U (ag, bo]} = E{(a1,b1]} + E{(az, ba]}-

The existence of the spectral operators of interest is due to the following lemma.
The proof of this lemma is analogous to Lemma 3.19 and is not presented.

Lemma 4.12. Let X be a Banach space and {s;} be a partition of a bounded
interval [m, M| with m = sop < s1 < -+ < s, =M, sj —sj_1 < €, and €, —> 0.

n—oo
Then, > 7%y f(Aj)E{(sj-1,55]} converges to an operator in B(X) with respect to
the norm topology || - || p(x) and the convergence is independent of the choice of the

points \j € (sj_1, ;] as n — oo, where f € C([m, M]).
Based on the above lemma, the resulting limit operator can be defined.

Definition 4.13. Let X be a Banach space and {s;} be a partition of a bounded

interval [m, M] with m = sop < s1 < -+ < s, = M, sj — sj_1 < €, and ¢, — 0.
n—oo

Then, the limit operator F' of >°7_; f(A;)E{(sj—1,8;]} as n — oo with respect to
the norm topology || - [|p(x) is denoted as

/ I

where \; € (sj_1,s;] and f € C([m,M]). The operator F' is referred to as the
nonhnear spectral operator with respect to the spectral projection E on (m, M]
and the function f. The class of the nonlinear spectral operators with respect to
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the spectral projection E on (m, M] and any function f € C([m, M]) is denoted as
SE,C(fm,m])(X).

Theorem 4.14. Sg c(jm,m))(X) is a subspace of B(X), where X is a Banach space.
Further, If E{(m,\]} — E{(m,A]} # 0 for any A,A € (m,M] and A\ < A, then
Sk.c(mm)(X) is a Banach space.

Proof. Sk c(jm,m))(X) is a subspace of B(X) because for two operators F1, I €
SE,c(jm,m))(X) corresponding to f1 and fa in C([m, M], respectively, and a € K,

(OéFl + FQ)

n

= nlgroloz afi(X)E{(sj-1, 5]}

J=1

+ Jim Y | f2(0)E {(s5-1, 51}
j=1

n

= lim Y [afi(A) + f200)] B {(sj-1, 51}
j=1

M
- / afi(\) + V] dE,

m

and af1 + fa € C([m, M]).
To prove the completeness of Sg c(jm,a)(X), let F, —— F, where {F,} C
n o

Sg.o(mm)(X) and F' € B(X). Then {F,} is Cauchy. Further, if the required
condition holds, there exists x) depending on A such that for any A € (m, M] ,

D AN = Fn O E{(s5-1, 51} p (2)
Jj=1 X

HLAA) = fm(N)] 22l x
[f1(A) = Fm N el 5

where f; and f,, lie in C([m, M]) corresponding to the spectral operators F; and
F,,, respectively. Then by letting n — oo in the above equation, for any € > 0,
there exists a positive integer N such that for [,m > N,

Lfe = fmll e pm,am) < €

Hence { f,,} is Cauchy and there exists a function f € C([m, M]) such that f, — f
n—oo
with respect to || - ||¢(m,m)) owing to the completeness of C([m,M]). Then,
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F, — fri\;[ fdE because for z # 0,

|7 [ sovae] |,
- |{/ U0 - 1) B} @

< Ao = Flleman 2l x -

Therefore, F = fqﬁ/[ fdE and F € Sg c(pm,m)(X), i-e., Sg c(jm,m))(X) being closed.
Il

‘ X

A

Remark 4.15. If v+ = I, the bounded generalized real definite operators with
the spectral representation lie in Sg o ((m,n) (X ). Note that a more general class of
nonlinear spectral operators can be defined as the limiting operators of the operators
> iy F(A)(vo E{(sj-1,5;]}) as n — oo with respect to the norm topology ||| p(x)
and can be denoted as

M
F:/ FONd(y 0 E).

Moreover, Lemma 4.12 and Theorem 4.14 can be generalized for the class of the
nonlinear spectral operators.

If X is a Hilbert space, a class of projection operators other than the ones give
in Definition 3.11 and in Definition 4.11 (a) can be defined as follows. For a subset
S containing 0 of a closed subspace Y of a Hilbert space X, the corresponding
projection operator Eg : X — X is defined by Eg(z) =y if y € S and Eg(x) =0
otherwise, where z = y +y*, y € Y, y- € Y+, and where Y is the orthogonal
complement of Y. Then the spectral representation of a bounded symmetric linear
operator defined on X is a special case of the corresponding nonlinear spectral
operator given in the previous paragraph.

5. EXAMPLES

In this section, the nonlinear generalizations of two classes of linear operators,
including linear operators on finite dimensional spaces and compact linear opera-
tors, and nonlinear counterparts of the linear multiplication operator and the linear
differentiation operator are given via examples. In addition, some associated appli-
cations are given.

5.1. Operators on finite dimensional spaces. In this subsection, let X be an
m dimensional vector space. Note that any linear operator T on X is bounded,
ie., T € B(X). Further, let {T; : i = 1,...,m?} be a basis of the space of all
linear operators on X. Then the linear operator T' has the form T = Zi"fl a;1;,
where a; € K. The following examples can be considered as different nonlinear
generalizations of T'.

Example 5.1. Let F' = Y " | a;F;, where F; € V(X,X). If F; € B(X), then
F € B(X). F is generalized real definite if F; are generalized real definite and
a; € R. F; can be nonlinear, for example, F; = z/||z|,z # 0 or F; = 2% for X
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being a Banach algebra. If F; is the projection operators given in Definition 3.11,
U R(F;) = X, R(F;) N R(F}) = {0},i # j, and + is the identity operator, then a;
are the g-eigenvalues of F' corresponding to the g-eigenvectors lying in R(F;)\{0},
the g-resolvent set of F'is p(F') = C\{a; : i =1,...,n}, i.e., the set of g-eigenvalues
being the g-spectrum, and F' is a nonlinear spectral operator for a; € R, i.e., F €
SE,c(im,m)(X)-

The possibly nonlinear operator equation F(z) = y for xz,y € X, can be solved
by the nonlinear spectral resolution. If F' has the nonlinear spectral representation
F =3"",ai(yoEy,), the nontrivial solution zj, # 0 for the homogeneous equation
F(z) = 0is any vector in the union of the projected sets corresponding to a; = 0, i.e.,
xy, lying in the union of the sets R(FEx ;) corresponding to a; = 0. On the other hand,
for the nonhomogeneous equation, i.e., y # 0, the solution exists if y € U}, R[a;(yo
EA,)] and the nonhomogeneous equation has no solution if y & U" ; R[a;( o En,)].
Unlike a solution in a linear system, 5, 4+ 2, might not be the solution for F(z) = y.
Note that the operator v can be the ones other than the identity operator, for
example, for z # 0, v(z) = x/|z||x and v(z) = 2?/||z|x,2? # 0, along with X
being a Banach space or a Banach algebra, respectively, and thus more operator
equations corresponding to the nonlinear spectral operators can be solved. If 7 is the
identity operator and for y € R(a;Ena;)\{0},a; # 0, then x;, = aj_ly is a solution
of the nonhomogeneous equation F'(z) = y, i.e., the equation being solvable for any
y € [Ua,zoR(a:Ea,)\{0}.

Example 5.2. Let F' defined by F(z) = >/, Ai(x)T;(z),x € X, where A4; €
V(X,K). If R(A;) is bounded, i.e., |4;(x)| < ¢,z € X, for example, for z # 0,
Ai(z) = ¢;min{||z| x, 1/||z]|x} or Ai(z) = cil|z?| x/||z||% with X being a Banach
algebra, and ¢; are some positive numbers, then F' € B(X). F is generalized real
definite if T; are generalized real definite and A; are real valued functionals, i.e.,
K = R. If T; are linear projection operators, and R(T;) N R(Tj) = {0},4 # j, then
A;(z) is the g-eigenvalues of F' corresponding to the g-eigenvectors x € R(T;)\{0}
and the identity operator .

The possibly nonlinear equation of interest is F'(z) = Y i | A;j(x)Ti(xz) = y for
z,y € X. If y does not lie in the space spanned by U}, R(T;), then the operator
equation has no solution. On the other hand, any nonzero vector lies in the set
{(NP_{z : A;j(x) = 0}) U [N, N(T;)]} is a nontrivial solution of the homogeneous
equation F'(z) = 0. In addition, if 7; are the linear projection operators with
R(T;) orthogonal to R(T;), i # j, A; = A; oT;, A; is homogeneous of degree 1
fori =1,...,n, e, Aij(ax) = adi(z),a € C, Aij(x) # 0 for x € R(T;)\{0}, and
K = C, then the solutions exist for the nonhomogeneous equation F'(x) = y with
any nonzero vector y lying in the space spanned by U}'; R(T;) and the solutions are
S ciyi, where y = Y0 v, i € R(T;), and ¢; satisfy that ¢24;(y;) = 1 for y; # 0
and ¢; =0 for y; =0 .

The other operator equation F(z) = Y " | A;(z)(yoEg,)(z) = y for z,y € X, can
be solved under some sufficient conditions, where Eg, is the projection operators
given in Definition 3.11, S; contain not only the zero vector, and S; N .S; = {0},7 #
j. If y € U R[Ai(y o Eg,)], then at least one solution exists and no solution
exists otherwise. Specifically, if + is the identity operator, then the results are
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given as follows. Any nonzero vector lies in the set {(N];{z : Ai(z) = 0}) U
(U_15;)¢} is a nontrivial solution of the homogeneous equation F(x) = 0, while for
y € (U {R(A;Es,;)]\{0}, there exists at least one solution with the form cy,c € K,
for the nonhomogeneous equation F(x) = y.

5.2. Compact operators. A compact operator, possibly nonlinear, maps a
bounded set in a normed space X into a precompact (or relatively compact) set
in X. The following are two classes of compact operators on normed spaces and
Hilbert spaces, respectively.

Example 5.3. Suppose the operator v give in Definition 3.14 is the identity opera-
tor. Let F defined by F(z) = >/ | Ai(x)T;(z),z € X, where T; are compact linear
operators on X, A; € V(X,K), and R(A;) are bounded. F € B(X) and F is a
compact operator. In addition, F' is generalized real definite if T; are all generalized
real definite and A; are all real valued functionals. If n =1, i.e., F = ATy, and A
is the eigenvalue of T3 corresponding the eigenvector x in X, then AA;(z) is the
g-eigenvalue of F' corresponding to the g-eigenvector xy, but AA;(x) might not be
the g-eigenvalue for the vector cxy, where ¢ € K.

Example 5.4. If X is a Hilbert space with the inner product < -,- >x, any
compact linear operator T has the representation 7' =y :°, s;T;, where the singu-
lar values {s;} converging to 0 is a decreasing sequence, s; > 0, and the linear
operators Tj(z) =< =z,e; >x fi, and where both {e;} and {f;} are orthonor-
mal sequences in X. Therefore, a possibly nonlinear operator F' can be defined
by F(z) = Y72, Ai(z)T;(z), where A; € V(X,K) and Y .2, [|Aillsup < 00, ie.,
{1l A; || sup} lying in I* space (see [6], Chapter 5), and where || A; || sup = supzex|A4i(x)].
F € B(X) and F is a compact operator. Furthermore, F' is generalized real definite
if T; are all generalized real definite and A; are all real valued functionals. For
1 < i < mn, Aj(z) are the g-eigenvalues of F' corresponding to the g-eigenvectors
x # 0 lying in the one dimensional space spanned by e; and v = >""" | T; + P, where
P is the linear projection operator with R(P) being the orthogonal complement of
the space spanned by {ej,...,e,}. On the other hand, any nonzero vector lying
in the orthogonal complement of the closure of the space spanned by {e;} is the
g-eigenvector corresponding to the g-eigenvalue 0.

By replacing the compact linear operators 7; in Example 5.3 and Example 5.4
with some operators depending on the projection operator Eg and imposing some
condition on S, two classes of compact operators are given as follows.

Example 5.5. Let Fy =) ;" | Aj;(F o Eg,,) and F> = > 2, As;(F o Eg,,), where
F € BC(X,X), Si; and S; all containing 0 are precompact sets in the normed
space X, Ay; and Ag; are the functionals A; given in Example 5.3 and Example 5.4,
respectively. Fy, Fo € B(X) and both F} and F; are compact operators.

If the operator v give in Definition 3.14 is equal to F', R(S1;) N R(S1;) = {0} and
R(S2;) N R(S25) = {0} for i # j, Ai;(x) are the g-eigenvalues of Fy corresponding
to the g-eigenvectors x lying in S1;\{0}, while Ay;(x) are the g-eigenvalues of F»
corresponding to the g-eigenvectors z lying in So;\{0}.

5.3. Multiplication operator and differentiation operator. In this subsec-
tion, two examples of nonlinear operators associated with the linear multiplication
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operator and the linear differentiation operator (see [5], Chapter 10.7) which are
related to the position operator and the momentum operator (see [5], Chapter 11),
respectively, in quantum mechanics are given. Some facts about the spectrums of
these operators are proved in Theorem 5.9.

Let L,(—00,00),1 < p < oo, be the spaces of all complex-valued functions x
defined on (—o00, 00) satisfying that |z|P is integrable with respect to the Lebesgue
measure.

Example 5.6. Let the linear operator 1), : S7,, — La2(—00, c0) defined by T, (z) =
xox for x € St,,, where zy(t) =t for t € (—o0,00) and S7,,, a subset of La(—00, 00),
consists of all functions satisfying zoz € La(—00,00). The relevant nonlinear oper-
ator F, : Sp, — L1(—00,00) defined by Fy,(x) = zg|z|? for x € Sk, where Sf, , a
subset of Ly(—00,00), consists of all functions satisfying xq|z|?> € Li(—o00,00). Note
that St,, C SF,,.

Example 5.7. Let the linear operator Ty : S, — La(—00,00) defined by Ty(x) =
iz’ for x € Sr,, where 2’ is the derivative of  and Sr,, a subset of Ly(—o0,00),
consists of all functions satisfying 2’ € Ly(—00,00). The relevant nonlinear operator
Fy: Sp, — Li(—00,00) defined by Fy(x) = iz'Z for « € Sg,, where Sg,, a subset
of Ly(—00,00), consists of all functions satisfying 2 Z € Li(—o0,o0), and where &
is the conjugate function of . Note that S7, C Sp,.

Remark 5.8. In the above examples,

< Tm(e)> € >L2(—oo,oo): [Fm(e)a |€|2] L1 (—00,00)

for any unit vector e € St and

< Td(e)7 € >L2(foo,oo): [Fd(e)7 |6’2]

L1 (—00,00)
for any unit vector e € Sr,, where < -+ >p,_ ) is the inner product on
La(—00,00) and for x1,z9 € L1(—00,00) the quasi-product is defined by

(71, 72] 1, (—00,00) :/ xl(t)dt/ xo(t)dt.

—00 —00
e € St,, or e € St, is referred to as the state function (or the wave function) and 75,

and T, are the operators corresponding to the observables (see [5], Chapter 11.1)
in quantum mechanics.

The linear operator Ty, is self-adjoint with the spectrum being all of R and has
no eigenvalue (see [5], Chapter 10.7). Similarly, the properties of the nonlinear
operators given in above examples are as follows.

Theorem 5.9. If Sg,, = St,, N L1(—00,00) and Sp, = S1,NLi(—00,00), i.e., both
D(F,,) C Li(—o00,00) and D(Fy) C Li(—00,00), the quasi-product is

[1'1,33'2][,1(,00’00) = / a:l(t)dt/ xg(t)dt

for a1.ws € Li(=00,00), g(x) = [af%, ¥(2) = [lelliy(oome) 2217} o) l2f? for
x # 0 and x € Sg,, or x € Sg,, then F,, is generalized real definite but Fy is not
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generalized real definite, and both have C as their g-spectrums. However, F,, has
no g-eigenvalue but any pure imaginary number is a g-eigenvalue of Fy.
Proof. The proof for F,, is given first. Let e, be any unit vector in Sg,,. Then
2
[Fm(ez), lex| ]Ll(_oqoo) =< Tin(ex), €x >Ly(—o0,00)€E R

since T, is self-adjoint. For any = € Sg,, x # 0,

7= 112l o) (27 191114 (om0 ) = ol a0 €
and thus
[Fm(.T), ’CC|2] L1 (—00,00) = HxHil(—oo,oo) [Fm(ex)’ ’€x|2] L1(—00,00) €k,

i.e., F, being generalized real definite. Next is to prove that F, has no g-eigenvalue
with respect to the operator . For any A € C, there does not exist  # 0 on a set
of measure greater than 0 satisfying

1@y ey = | [t~ Akl o112 | 2O =0

i.e., F, having no g-eigenvalue, where F,\ = F,;, — \y. Because F),)\(x) = F,\(T)
for any = € Sp,, satisfying x # Z, Fy,) is not injective and F%)l\ does not exist for
any A € C, i.e., p(Fy,) being an empty set.

Next, Fy is not generalized real definite because

[Fd(xu)vg(xu)]Ll(foo,oo) = %W ¢ R,

where p > 0 and z,(t) = p!/?exp[(—ut)/2] for t > 0 and z,(t) = 0 elsewhere.
Furthermore,

—i 3/2
Fulay) = [()4“] )

and
. 3/2
Fd(x,u) = [ 4 ]7(‘%#)7

i.e., any pure imaginary number being a g-eigenvalue, where the functions z7},(t) =

p/? exp((ut)/2] for t < 0 and z},(t) = 0 elsewhere. Finally, because Fyy is not
injective for any A € C, p(F) is an empty set, where Fg\ = Fg — 7.
O

Remark 5.10. If S, given in Theorem 5.9 consists of all functions x € Ly(—00, 00)
satisfying z Lo(—00,00) and being absolutely continuous on every compact in-
terval of R, then T; and Fy have the following properties.

o T, is self-adjoint and Fj is generalized real definite on S, .

e The spectrum of T} is all of R but F,; has C' as its g-spectrum.

e T, has no eigenvalue and Fy has no g-eigenvalue.
The above results imply that the self-adjointness or the generalized real definiteness
relies on the domain of the operator of interest.
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6. PROOFS OF ANCILLARY RESULTS

The proofs of some lemmas, theorems, and corollaries in Section 2.1, Section 3.1,
Section 3.2, and Section 4.1, are given in this section.

6.1. Proofs: Section 2.1. The proofs of Theorem 2.2, Corollary 2.3, Theorem
2.4, Corollary 2.5, and Theorem 2.7 are given in the subsection.

6.1.1. Proof of Theorem 2.2. First, for F € B(X,Y), p(F) > 0. Secondly p(F) =0
gives max(supy so gex | F(@)ly /I2]x, IF©)y) = 0. Hence F(z) = 0 for 2 # 0
and F'(0) =0, i.e., F = 0. Thirdly, for o € K,

leF(2)

plaF) = max( sup ”Y,HaF(O)Hy)

z#£0,0€X HxHX
F(x
— Jafmax [ sup W g,
z#0,2€X ||$HX
= |a|p(F).
Finally, for Fy, F; € B(X,Y),

F F.
p(F1 +F,) = max|( sup [F1(x) + Fo(z)|ly
AR Tllx

 [1#1(0) +F2(0)HY>

F F:
< max | 1(=76)||YJr | Fo(z) |y
s£0zex  |lZllx c20zcex  Tlx
|F1(0)[ly + || F2(0)]]y)
< |1 () ||y

max sup ————— [|[F1(0)|ly
z#£0,2eX HxHX

+max< sup HF2($)HY,IIF2(0)HY>

z#£0,z€X ] x
= p(F1) + p(F).
6.1.2. Proof of Corollary 2.3. If x # 0,
1By _ o IB@ly
lzllx 7 sxozex  lzlx
and hence [|F1(2)|ly < [|Fil|px,y)ll#l[x- In addition, if F1(0) = F2(0) =0,

|(F2 o F1)(z)| 2

< [[F1llBx,y)

[Fao Fillpx,zy =  sup
£0,2€X H$HX
- 1E2 v,z | F1(2)lly
o r#0,2€X ‘xHX

Fi(x
= ||F2||B(Y,Z)< sup ”1()”Y>

20,2 X ||x||X

= Byl Fillsx,y)-
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6.1.3. Proof of Theorem 2.4. Let {F,} be a Cauchy sequence in the space B(X,Y).
Then for every positive €, there exists a positive integer N such that for m,n > N,
||Fn — Fm||B(X7Y) < €. Then if x 7é 0,
[Fn(z) = Foo(@)|ly < [ Fn = Fallsix vy l2llx < ellz]lx
by Corollary 2.3 and
[1F0(0) = FnO)lly < [1Fn = Emllpx,y) <€
Thus, {F,(x)} is Cauchy in Y for z € X and F,(z) — y,y € Y, owing to the
n—o0
completeness of Y. Define an operator F': X — Y by F(z) =y. For x # 0, by the
continuity of the norm,
[Fn(z) = F(z)ly = [Fo(z) = lim F,(z)lly = lim [[Fy(z) = Fu(o)|y
m—ro0 m—00
< eflwfx.
In addition,
[Fn(0) = F(O)[y = lim [[F(0) = Fr(0)[ly <.
m—ro0

Thus, F,, — F € B(X,Y) and F' € B(X,Y). Finally, because ||F}, — F||px,y) < €,
{F,} converges to F.

Let {F,} be a Cauchy sequence in the space BC(X,Y’). There exists an oper-
ator F' € B(X,Y) such that F, n:;F by the completeness of B(X,Y). Then as

Ty — T,
m—0o0

[F(zm) = F(@)ly < [[Fa(@m) = F@m)lly + [[Fn(zm) — Fa(@)|ly
[ Fn(z) = F(2)lly
and hence F(z,,) — F(x), i.e., F € BC(X,Y), by Corollary 2.3 and the conti-

m—00

nuity of Fj,.
6.1.4. Proof of Corollary 2.5. By condition (b), there exist positive numbers § and
M; such that ||F(z)||y/||z||x < M for ||z||x < 0. By condition (a),

sup [E @)y /llzllx < M6,
{z:]|z|| x >d,ze X }NKe

Let 6* = max(d, sup,¢x |||l x). Thus,

sup 1 (@) ly /ll]lx < Ma
{z:6<]||z|| x <é*,zeXINK

since the continuous function ||F'(-)||y /| - || x is bounded over the compact set {z :
d <|lz|lx <%,z € X} NK, where My > 0. Finally,

r F
IFllpx,y) = max| sup IE@)ly. sup £ ()l
lallx<seex 21X feocieix<omwexyne lllx

sp 1@y \|F<o>uy>

{z:||z|| x >d,x€ X }NKe ]| x

M
max <J\417 Mo, R ||F(0)HY>

IN
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and hence F' € B(X,Y).

477

6.1.5. Proof of Theorem 2.7. Let Fy, Fy, F3 € B(X). First, if x # 0,

[(Fy x Fy) = F3] ()

Besides,

[(F1 + Fo) * 3] (0) =

Secondly, if x # 0,

[P+ (Fy + F3)] () =

In addition,

[Fl * (F2 + Fg)] (0) =

(F1 x ) (z) F3(x)
2]l x

Fi(z)Fy(x) F3(2)
|5

Fy(z)(Fy * F3)(z)
2]l x

= [F1x(Fy* F3)] ().

(F1 = F2)(0)F3(0)
= Fi(0)F2(0)F5(0)
= F1(0)(Fy * F3)(0)
= [F1 = (Fyx F3)](0).

Fi(z)(F2 + F3)(2)
] x
Fi(z)Fy(z) + Fi(z) F3(v)
[E41PY
(F1 * FQ)(CL‘) + (F1 * F3)(l')

F1(0)(F> + F3)(0)
F1(0)F2(0) + F1(0)F3(0)
(£ * F2)(0) + (F1 = F3)(0).

[(F1+Fy)«Fs](z) = (F1%F3)(2)+ (FoxF3)(x) and [a(Fr«Fy)|(x) = [(aFy)« Fy(x) =
[F1 % (aFy)](x) for x € X and a € K, can be proved analogously. Further,

£ * Fol (x)
Fi(z)Fy(x
— max [ sup JO@RE@IX b gm0
z#0,2€X Hx”X
Fi(z Fy(x
< max | sup I (@)llx £ )HX,HF1(0)HXHF2(0)HX
e20zex  Zllx  azozex  [7lx
F'
< max( sup PO@IX g gy
z#0,0€ X ||1'HX
F
max | sup 12X g gy
z#0,0e X ||1'HX

= [[Fllsx)llF2llBx)-
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If 1 is the unit element in X, the unit element e in B(X) is given by e(z) = ||z| x1
for © # 0 and e(0) = 1. Then

(Fxe)(x) = Fla)e(x) = F(x)l = F(x)
]l x
= 1F(z) = ew)F(@) _ (e x F)(x)
]l x
for x # 0,
(Fxe)(0) = F(0)e(0)=F(0)1 = F(0)
= 1F(0) =e(0)F(0) = (e F)(0),
and

el = max( swp XL gy
z#£0,0eX H-’L'HX
Itlx
- 1,

where the last 1 is the unit element in the scalar field.

6.2. Proofs: Section 3.1. In this subsection, the proofs Theorem 3.7, Corollary
3.8, and Corollary 3.9 in Section 3.1 are given.

6.2.1. Proof of Theorem 3.7. If the quasi-product preserves the positivity,
[(FH)(z),g(x)]x > 0 for z € X given that both [F(z),¢9(z)]x > 0 and
[H(x),g9(x)]x > 0. On the other hand, consider that the square bounded below
quasi-product has a left integral domain on the commutative unital Banach algebra
X. For F =0 or H = 0, the result holds. If F(z) # 0 and = # 0, there exists a
positive function a; : X — R such that [F(z), g(z)]x > [a1(z)F?(x), g(z)]x by the
properties of the quasi-product, i.e., F — a1 F? > 0. Define a sequence of g-positive
operators {F,} by Fy1 = F,, — a, F2 and F} = F, where a,, : X — R are positive
functions. Thus, F; = 1", aiFf + F4+1. Similarly, define a sequence of g-positive
operators {H,} by H, 41 = H, — 3,H2 and H; = H, where 3, : X — R are positive
functions. Because the quasi-product is square bounded below, by property (c) of
the quasi-product, there exists a positive number ¢ such that

e |2 Fy @[ ol < [Z<aiF3><x>7g<x>] < [P(e), g(@)
=1 X

=1

and thus H(a}/2Fn)(x)||X — 0. This gives F,(x) — 0 since otherwise

n(x) _ [Fn(x)? g(x)]X

k[F3(z),9(2)] x
converges to a nonzero positive number by the left integral domain property of

the quasi-product and H(a,l/QFn)(x)HX does not converge to 0, i.e., a contra-

diction, where k is some positive number. Then Y1  (a;F?)(z) — F(x) and
n—oo
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2?21(@]{12)(@ — H(x). Finally,
n—0o0
(FH)(x),g(z)]x

-n n
_ : 2 2
=l | (@@ 2 (5 H) @), o)
_i 1 j=1

= Jim | 373 (i FPH) (@), ()

i=1 j=1

X

>k lim SO (i FPH) (@), 9()]

i=1 j=1
>0

by the properties of the quasi-product and the commutativity of X, where k is some
positive number.

6.2.2. Proof of Corollary 3.8. (a): Let G> = G2 = F. Then G?—G? = (G+G)(G -
G) = 0 by the commutativity of X. Thus, G(z) = G(z) or G(z) = —G(z) for z € X
because X is an integral domain. If G(z) = —G(z) holds, 0 < [G(z),g(z)]x =
[—G(2),9(x)]x <0 and thus G(z) = G(z) = 0 by the left integral domain property
of the quasi-product.

(b): Define a sequence of operators {S,,} by Sp41 = S1+S52/2 and let R, = 1y —S,,
where S = (1x — F)/2. 0< S; < 1x, Ry >0, and S, 11 = (251 + 52)/2 > 0 for
every n by Lemma 3.3 (b), (¢) and by induction. Also, by induction, S,, > S,, for
n > m. Further, R,4+1 = 1x — Spy1 = F/2+4+ R,(1x + Sp)/2 > 0 for every n by
Theorem 3.7 and by induction. Then R2, — R2 = (S, — Sp)(Ry + Ry) > 0 by
Theorem 3.7 and hence [R2,(z), g(z)]x > [R%(x),g(z)]x for z € X by Lemma 3.3
(a). Note that {[R2(z),g(x)]} is a decreasing convergent sequence. Since

(R — Rp)?
= R2 +R’-2R.,.R,
R2 — R?

IN

and hence

|| Ron () — Ry ()5 [19(2)]|x

E1[(Rm — Rn)*(2), g(z)] x

Ei[Ry,(z) — Ry (z), g(z)]x

Eiks {[R},(2), g(2)]x — [Ra(2),9(z)]x },

both {R,,(x)} and {S,(z)} are Cauchy sequences, where k; and ko are some positive
numbers. Define the operator S by S(x) = lim,_ Sn(x). Because

0 < [Su(z),9(x)]x < [1x(z),9(x)]x,

ININ A

0 < S < 1x by the continuity of the quasi-product. Then lim, oo Spt1(z) =
S1(x) + limy, 00 S2(x)/2 gives (1x — S)?(x) = F(x),ie, G=1x —S.
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Because 5, is a polynomial of F'; WS, =S, W and
lim W(z)S,(z) = W(z)S(x) = S(x)W(z) = lim S,(x)W(zx).

n—o0 n—oo

6.2.3. Proof of Corollary 3.9. (a): The proof follows the lines given in the one of
Corollary 3.8 (a).

(b): For F € B(X) and F # 0, there exists a positive number k such that the oper-
ator F' defined by F(z) = kF(z)/(||F||px)l|z]|x) for = # 0 and F(0) = 0 satisfying
0< F<ly. By Corollary 3.8, there exists a positive operator G satisfying G2=F.
Then the operator G defined by G(z) = (|]F|\B(X)/k)1/2|]w\lxé(x) for x € X is the
g-positive operator in B(X) satisfying G « G = F. Finally, the community of G
follows directly by the community of G.

6.3. Proofs: Section 3.2. In this subsection, the proofs of Lemma 3.12, Lemma
3.13, Lemma 3.16, and Lemma 3.17 in Section 3.2 are given.

6.3.1. Proof of Lemma 3.12. Because ||Es, (z)||x < [|z|[y, ||Es,|[p(x) < 1. Because
the proof of (b) for the projection operators is very similar to the one for the
projection indicators, only the one for the projection indicators is given.

(i)* implies (iv)*: If z € N(1g,), ||1s,(2)]|x =0 < [|1s,(2)||x. On the other hand,
if ¢ N(lg,), lg,(x) = 1 and thus 1 = 1g,(x) = 1g,(z)1ls,(z) = 1g,(x), ie.,
15, @)llx = 15, () |-

(iv)* implies (iii)*: If x € N(1g,), then ||1s,(2)||x < ||1s,(z)||x = 0 and hence
151(1') =0,ie., x € N(15’1)-

(iii)* implies (ii)*: If z € S; and = # 0, 1g,(z) = 1 and = ¢ N(lg,). Thus,
T ¢ N(152), 152(3}) =1, and xz € Ss.

(ii)* implies ()*: If z & S1, 0 = 1g,(x) = 1g,(x)1lg,(z) = 1g,(z)1g,(z). On the
other hand, if x € Sj, then z € Sy and thus 1 = 1g,(x) = 1g,(z) = 1g,(x)1g,(z) =
15, (2)1s, (1)

To prove (c), there are 3 cases: © € S1, * € S9\S1, or x € X\Sy. If x € Sy,
Esy—s,(x) = 2 —2 = 0 and Eg,_g, 0 Eg,—5,(z) = Es,-5,(0) = 0 = Eg,_g, ().
If z € 52\51, ESQ—S1(33) =x—0 =2 and E52_51 o E52_51 ({L‘) = ESQ—Sl(m)' If
xr € X\Sg, E52_51 ({L‘) =0—-—0=0and ES2_51 o E52_51 (LL‘) = E52_51 (0) =0=
ESQ—S1 (:L') Finally, by (b)’ (1)*>

lsy—s,15,-5,
= 1%‘2 + 1?91 - 151 152 - 152151
152 + 151 - 151 - 151

lg, — 1g,
152_51.
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6.3.2. Proof of Lemma 3.13. (a): Because W commutes with F' and —F, W com-
mutes with |F|. Further,
FW 4+ |F|W = WF+ W |F|

w 5 > w

and
\F|W — FW _ WI|F|—WF
2 B 2
(b): By (a) and Lemma 3.6 (b),
(|F|+F)(\F|—F) _|FP-F? 4 FIF| - |F|F
4

() fze S, Ff(z)=0and 1 ( ) =1. Then F*(2)1s(z) = 1g(z)F*(z) = 0 and

F~(2)1g(x) = 1g(x)F ( ) = F~(z). On the other hand, if z € S, then F*(z) =
F(z) #0,ie., |F|(x) = F(x), F~(z) = [|F|(x)—F(z)]/2 =0, and 1g(x) = 0. Hence

FH (2)15(2) = 1s(x) F* (z) = 0 and F~(2)15(z) = Lg(x)F~(z) = 0 = F~(x).

F~W =

F Ft=FtF = =0.

(d): 1gF = FlsZ(F F ) F+15—F715:0—F7:—F7 by(c) and
thuS(lx—ls)F—F(l ) Flx — Fls—F+F_—F+.
() F- =(F~ +FT)lg = |F|15>Oand0<|F|(1X—1S) |F| — F~ =FT by

().

6.3.3. Proof of Lemma 3.16. By property (b) of the quasi-product and Corollary
2.3,

|[F(2), 9(2)] x| < €[|Fl[p(x) 2]l x lg(2)]x
for x € X and k can be || F'||p(x) thus, where ¢ is some positive number.

6.3.4. Proof of Lemma 3.17. For any g-eigenvalue A corresponding to the g-eigenvector

x# 0, [F(x), g(x)]lx = M(2),9(z)]x = k(x)Al[z][x||lg(x)||x € R by property (c) of
the quasi-product and thus A € R, where k is a positive bounded function defined
on X and is bounded away from 0. Further, if ' € B(X), there exists a positive

number k such that

k@) A 2] x [lg(@)lx = [[M(2), 9(2)]x| < Kkl x [ llg(@)llx

by Lemma 3.16 and thus |\ < k/|k(x)|, i.e., |A| lying in a bounded interval of R
due to k being bounded away from 0.

6.4. Proofs: Section 4.1. In this subsection, the proofs of three lemmas, Lemma
4.2, Lemma 4.4, and Lemma 4.8 in Section 4.1, are given.

6.4.1. Proof of Lemma 4.2.

|| Fin * Fon — F1 * Fo|| g x)

(Fin = F1) * Fonll gy + 11 % (Fon — F2)l gy

< 1Fin = Fillpe (11 = Ballse + 1Pl o))
+ 1Pl pxy [ F2n = Follpx)

then ||(F1p, * Fon) — (F1 * F2)||p(x) n;z().

IN

AN
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6.4.2. Proof of Lemma 4.4. p(\) > 0 for A € [m, M] implying p(F) > 0 is proved
first. If p is over the real field and p(A) > 0 for A € [m, M|, then p has the form

p(N) =a [ =a) [T =N [T [ =w)* + 7],
i=1 j=1 k=1

where n1, no, and n3 are nonnegative integers, the associated product is equal to 1
asny =0,0=1,2,3,a >0, v,k € R, oy <m, and 8; > M. Then by Lemma 3.16
and the properties of the quasi-product, there exist positive numbers k1, ko, and k3
such that for m < —ko/ks and z € X

[(F — aie)(z), g(x)] x

> ki ([F(2), 9(2)]x — [evie(z), g(2)]x)

> ki (=k2|lzllx llg(@)llx — aiks |lz][x [lg()]] x)

> 0.

Similarly, there exists a number M > 0 such that [(8;e — F)(x),g(z)]x > 0 for
B; > M and x € X. Because F—a;e > 0, Bje—F > 0, and (F—ve)*2+ (kre)*2 > 0
by the properties of the quasi-product, thus p(F') > 0 by Theorem 3.7.

Let ¢ = maxyg[m,a [P(A)]. Because ¢ —p(A) > 0 and €+p(A) > 0 for A € [m, M],
ce — p(F) > 0 and ¢e + p(F) > 0. Therefore, ¢?e? > p*(F) by Theorem 3.7. By the
square bounded below property of the quasi-product,

kllp(F) (@)% [l9@@)lx < [PP(F) (@), ()] < ke |le()][% llg(@)l]x

for z € X and hence |[p(F)||px) < (k/k)'/%¢, where k and k are some positive
numbers.

6.4.3. Proof of Lemma 4.8. Because

L x
LF(F) = pn(E)llgx) + llon(F)l g x)

F(F) = pu(F)llpex) + F <||pn — fllemoan) + HfHC([m,M]))

by Lemma 4.4, the result holds by letting n — oo, where p, is a sequence of
polynomial functions defined on [m, M] over the real field converging uniformly to
f in C([m, M]).

IN

IN

REFERENCES

[1] Y. A. Abramovich and C. D. Aliprantis, An invitation to operator theory, American Mathe-
matical Society, Rhode Island, 2002.

[2] J. Appell, E. D. Pascale, and A. Vignoli, Nonlinear spectral theory, Walter De Gruyter, Berlin,
2004.

[3] N. Dunford and J. T. Schwartz, Linear operators, part II, Wiley, New York, 1988.

[4] N. Dunford and J. T. Schwartz, Linear operators, part III, Wiley, New York, 1988.

[5] E. Kreyszig, Introductory functional analysis with applications, Wiley, New York, 1978.

[6] P. D. Lax, Functional analysis, Wiley, New York, 2002.

[7] J. W. Neuberger, Review: G. Pilz, Near-rings, the theory and its application, Bull. Amer.
Math. Soc. 84 (1978), 934-937.

[8] J.-P. Pier, Mathematical analysis during the 20th century, Oxford, New York, 2001.



NONLINEAR SPECTRAL RESOLUTION 483

[9] A. E. Taylor and D. C. Lay, Introduction to functional analysis, 2nd ed., Wiley, New York,
1980.
[10] E. Zeidler, Applied functional analysis: Applications to mathematical physics, Springer-Verlag,
New York, 1995.

Manuscript received February 4 2020
revised August 17 2020

WEN HsianG WEI
Department of Statistics, Tung Hai University, Taiwan
E-mail address: wenwei@thu.edu.tw



