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decomposition of the possibly nonlinear operator on a normed space, a ”product”
which is referred to as the quasi-product and plays the role analogous to the inner
product in the inner product space is proposed in next section. Section 3 defines a
generalized real definite operator which can be considered as the generalization of
the symmetric linear operator on the Hilbert space. Furthermore, the generalized
eigenvalue which can be considered as the generalized version of the eigenvalue in
the linear case is also defined. Spectral theorems of the bounded generalized real
definite operator are given in the section. Extensions of the results in Section 3,
including the operational calculus of the generalized real definite operator and non-
linear spectral operators (see [4]), are given in Section 4. Finally, several nonlinear
operators along with their applications are given for illustrations in Section 5. For
readability, only proofs of main results are given in these sections. Proofs of other
results are delegated to Section 6. Note that the results in this article can be used
to prove spectral theorems for a more general class of possibly nonlinear opera-
tors which includes bounded normal linear operators as special cases. In addition,
the spectral representations for unbounded nonlinear operators can be also proved
based on these results.

HereafterD(F ) and R(F ) are denoted as the domain and the range of an operator
F , respectively, and the notation || · ||Z is denoted as the norm of the normed
space Z. The spaces of interest are normed spaces implicitly. On the other hand,
Banach spaces or normed algebras will be indicated explicitly. Note that the vector
spaces and the normed spaces of interest in this article are not trivial, i.e., not only
including the zero element.

2. Nonlinear functional spaces

2.1. Basics. Let X and Y be normed spaces over a field K with some sensible
norms, where K is either the real field R or the complex field C. Let V (X,Y )
be the set of all operators from X into Y , i.e., the set of arbitrary maps of X
into Y . Let the algebraic operations of F1, F2 ∈ V (X,Y ) be the operators with
(F1 + F2)(x) = F1(x) + F2(x) and (αF1)(x) = αF1(x) for x ∈ X, where α ∈ K is a
scalar. Also let the zero element in V (X,Y ) be the operator with the image equal
to the zero element in Y .

In this subsection, basic properties of the nonlinear functional spaces are given.
The proofs of several theorems and corollaries, including Theorem 2.2, Corollary 2.3,
Theorem 2.4, Corollary 2.5, and Theorem 2.7, are quite routine and are delegated
to Section 6.

Theorem 2.1. V (X,Y ) is a vector space over the field K.

The routine proof of the above theorem is not presented. Define a non-negative
extended real-valued function p, i.e., the range of p including ∞, on V (X,Y ) by

p(F ) = max

(
sup

x ̸=0,x∈X

∥F (x)∥Y
∥x∥X

, ∥F (0)∥Y

)
for F ∈ V (X,Y ). The non-negative extended real-valued function p is a generaliza-
tion of the norm for linear operators. Let B(X,Y ), the subset of V (X,Y ), consist
of all operators with p(F ) being finite.
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Theorem 2.2. p is a norm on B(X,Y ) and [B(X,Y ), p] is a normed space.

Hereafter the norm p is used, i.e., ||F ||B(X,Y ) = p(F ) for F ∈ B(X,Y ). Note that
bounded linear operators lie in B(X,Y ). As X = Y , the notation B(X) = B(X,X)
is used.

Let the notation of the composition of two operators be ◦ hereafter.

Corollary 2.3. Let F1 ∈ B(X,Y ) and F2 ∈ B(Y, Z), where Z is a normed space.
Then

∥F1(x)∥Y ≤ ∥F1∥B(X,Y )∥x∥X , x ̸= 0.

If F1(0) = F2(0) = 0, then

∥F2 ◦ F1∥B(X,Z) ≤ ∥F1∥B(X,Y )∥F2∥B(Y,Z).

LetBC(X,Y ), the subspace of B(X,Y ), consist of bounded continuous operators.
It is well known that the space of all bounded linear operators from a normed space
X to a Banach space Y is complete. The analogous results also hold for the spaces
B(X,Y ) and BC(X,Y ).

Theorem 2.4. If Y is a Banach space, then B(X,Y ) and BC(X,Y ) are Banach
spaces.

Unlike a linear operator, a continuous nonlinear operator F might not be bounded.
The following corollary gives sufficient conditions for the boundedness of a contin-
uous operator.

Corollary 2.5. Let K be a compact subset of X. Let F : X → Y be continuous on
K. F ∈ B(X,Y ) if the following conditions hold:

(a) ∥F (Kc)∥B(X,Y ) ≤ M , where Kc is the complement of the set K and M is a
positive number.

(b) limx→0 ∥F (x)∥Y /∥x∥X exists and is finite.

The linear functionals in the dual space of a normed space can distinguish the
points of the normed space. Since the dual space of the normed space X is a
subspace of B(X,K), the results hold for the nonlinear functionals in B(X,K).
Further, the following theorem gives the counterpart of the one for the bounded
linear functionals in the second dual space.

Theorem 2.6. Let x ̸= 0 and gx : B(X,K) → K be defined by gx(F ) = F (x) for
F ∈ B(X,K). Then gx ∈ B[B(X,K),K] and

||x||X = sup
F ̸=0,F∈B(X,K)

|F (x)|
∥F∥B(X,K)

= ||gx||B[B(X,K),K] .

Proof. For any x ̸= 0, there exists a bounded linear functional Fx ∈ B(X,K) such
that Fx(x) = ||x||X and ||Fx||B(X,K) = 1. Thus,

sup
F ̸=0,F∈B(X,K)

|F (x)|
∥F∥B(X,K)

≥ |Fx(x)|
∥Fx∥B(X,K)

= ∥x∥X .
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On the other hand, ||x||X ≥ supF ̸=0,F∈B(X,K) |F (x)| /∥F∥B(X,K) because by Corol-

lary 2.3, |F (x)| ≤ ||F ||B(X,K)||x||X . Finally,

||gx||B[B(X,K),K] = sup
F ̸=0,F∈B(X,K)

|F (x)|
∥F∥B(X,K)

= ||x||X

because gx(0) = 0. □

The Banach space of all bounded linear operators on a Banach space X is a
Banach algebra with the multiplication being the composition of the operators.
The Banach space B(X) is not a Banach algebra with the multiplication being the
composition of the operators and X being a Banach space. However, B(X) can be
a normed algebra or a Banach algebra depending on X being a normed algebra or a
Banach algebra (see Theorem 2.4) as the multiplication of the operators is defined
properly.

Theorem 2.7. Let X be a normed (Banach) algebra. Define the multiplication of
F1 and F2 in V (X,X) by

(F1 ∗ F2)(x) =
F1(x)F2(x)

∥x∥X
, x ̸= 0, x ∈ X,

and

(F1 ∗ F2)(0) = F1(0)F2(0).

Then B(X) is a normed (Banach) algebra. If X has a unit, B(X) is a normed
(Banach) algebra with a unit e.

2.2. Quasi-product.

Definition 2.8. Let X be a normed space and S be a subset of X. A quasi-product
[·, ·]S on S is a mapping (or a map) of S×S into the scalar field K with the following
properties:

(a)

[x, x]S ≥ 0

for x ∈ S.
(b)

|[x, y]S | ≤ c ||x||X ||y||X
for x, y ∈ S, where c is a positive number.

(c) [
n∑

i=1

αixi, y

]
S

= c(y)
n∑

i=1

αi [xi, y]S

for any n ≥ 1, x1, . . . , xn, y,
∑n

i=1 αixi ∈ S and α1, . . . , αn ∈ K, where
c : S → R is a positive bounded function and is bounded away from 0.
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A quasi-product is quasi-symmetric if and only if [x, y]S = q(x, y)[y, x]S , where
z is the conjugate of the complex number z and q : S × S → R is a positive
bounded function and is bounded away from 0. A quasi-symmetric quasi-product
is symmetric if and only if [x, y]S is equal to the conjugate of [x, y]S , i.e., [x, y]S =

[y, x]S .

Remark 2.9. If S = X, c(y) = c = 1, [x, x]X = 0 implies x = 0, and the quasi-
product is symmetric, X is an inner product space with the inner product being the
quasi-product. On the other hand, an inner product < ·, · >X on the inner product
space X can be a symmetric quasi-product by setting < x, y >X= [x, y]X .

The following are examples of the quasi-products on some normed spaces or the
subset of some normed space.

Example 2.10. Let X be an inner product space with an inner product < ·, · >X

and the norm induced by the inner product. Then

[x, y]X = c(y) < x, y >X

for x, y ∈ X, where c is a positive bounded function on X and is bounded away
from 0, for example,

c(y) =
||y||X

||y||X + 1
+ k

and k > 0.

Example 2.11. Let X be the real normed space of real-valued Lebesgue integrable
functions on the measurable set Ω ⊂ R with the norm ||x||X =

∫
Ω |x|dµ for x ∈ X,

where µ is the Lebesgue measure. Let the symmetric quasi-product defined by

[x, y]X =

∫
Ω
xdµ

∫
Ω
ydµ

for x, y ∈ X.

Example 2.12. Let X be the real normed space of real-valued bounded functions
on the compact domain Ω ∈ R with the supremum norm and the subset S of X
consist of bounded Lebesgue integrable functions with positive integrals. Define the
non-symmetric quasi-product on S by

[x, y]S =

∫
Ω
xdµ sup

t∈Ω
y(t),

where µ is the Lebesgue measure.

Note that the quasi-product function [x, y]X = fy(x), considered as a function of
x, is continuous on X. In addition, if the quasi-product is symmetric, it is jointly
continuous.

The bilinear form on a Hilbert space has a representation associated with a unique
continuous linear operator (see [5], Theorem 3.8-4; [9], Chapter VI, Theorem 1.2).
The following theorem can be considered as the nonlinear counterpart of the linear
case.
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Theorem 2.13. Let F ∈ B(X,Y ) with F (0) = 0 and there exists a positive function
d defined on Y and being bounded away from 0 such that [y, y]Y = d(y)||y||2Y for
y ∈ Y . Then h : X × Y → K has a unique representation

h(x, y) = [F (x), y]Y

if and only if the function h has the following properties:

(a) |h(x, y)| ≤ c ||x||X ||y||Y
for x ∈ X and y ∈ Y , where c is a positive number.

(b) For y ∈ Y , there exists z ∈ Y such that

h(x, y) = [z, y]Y

for any x ∈ X.

Proof. The ”only if” part is obvious. To prove ”if” part, define F (x) = z with
F (0) = 0. F is well-defined since for x1 = x2,

h(x1, y) = [z, y]Y = h(x2, y)

and thus F (x1) = F (x2) = z. Further, for F ̸= 0, F ∈ B(X,Y ) because there exists
c1 > 0 such that

||F ||B(X,Y )

= sup
x ̸=0,x∈X,F (x) ̸=0

||F (x)||2Y
||x||X ||F (x)||Y

≤ c1 sup
x ̸=0,x∈X,F (x) ̸=0

|[F (x), F (x)]Y |
||x||X ||F (x)||Y

≤ c1 sup
x ̸=0,x∈X,y ̸=0,y∈Y

|[F (x), y]Y |
||x||X ||y||Y

≤ c1c.

To prove the uniqueness of F , let h(x, y) = [F (x), y]Y = [G(x), y]Y for x ∈ X and
y ∈ Y . Then by the properties of the quasi-product,

|[F (x), y]Y − [G(x), y]Y | ≥ c2 |[F (x)−G(x), y]Y |

implies [F (x)−G(x), y]Y = 0 for any y ∈ Y and thus

c3 ||F (x)−G(x)||2Y ≤ [F (x)−G(x), F (x)−G(x)]Y = 0,

where c2 depending on y and c3 depending on x are both positive numbers. There-
fore, F (x) = G(x). □

3. Generalized real definite operators

The goal of this section is to formulate the spectral resolutions of some class
of possibly nonlinear operators. In this section and the following subsection, i.e.,
Section 3 and Section 4.1, suppose that the operator F : X → X of interest satisfies
F (0) = 0 and the quasi-products on X exist. For F̃ : X → X with F̃ (0) ̸= 0,

the corresponding spectral resolution can be obtained by the shift F̃ (x) = F (x) +
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s(x), x ∈ X, where s : X → X satisfies s(0) = F̃ (0), for example, s(x) = F̃ (0) (also
see Remark 4.10 in Section 4.1).

The spectral resolution of bounded symmetric linear operators, due to Hilbert,
is a limit of Riemann-Stieltjes sums in the sense of operator convergence (also see
[6], Chapter 31), i.e., having the form of Riemann-Stieltjes integral. The spectral
resolutions of the generalized real definite operators defined in this section also have
the form of Riemann-Stieltjes integral in terms of the quasi-product or in the sense
of operator convergence as certain classes of quasi-products are employed. For the
bounded symmetric linear operators, the spectral resolution involves both linear
projection operators and positive linear operators. The nonlinear counterparts of
the positive linear operators and the linear projection operators are defined and
their basic properties are given in the first two subsections. Then, the spectral
resolutions are given in the last subsection.

3.1. G-positive operators. Linear spectral theory for the symmetric operators
involves the positive operators. Similarly, for the nonlinear operators with real
spectrums, the spectral theorems also involve the positive operators. The main
theorem in this subsection, Theorem 3.7, indicates that the multiplication of two
positive operators remains positive given some sufficient conditions imposed on the
quasi-product. Based on the theorem, two corollaries give the existence and the
uniqueness of the square root of the positive operator. Furthermore, the spectral
theorem in Section 3.3 can be proved by using the theorem. Note that the proofs
of Theorem 3.7, Corollary 3.8, and Corollary 3.9 in this subsection are delegated to
Section 6.

The positive operator, possibly nonlinear, is defined as follows.

Definition 3.1. Let X be a normed space. An operator F : X → X is generalized
real definite if and only if there exist a quasi-product [·, ·]X and an operator g :
X → X satisfying g(x) ̸= 0 for x ̸= 0 and

[F (x), g(x)]X ∈ R

for x ∈ X. Furthermore, F is g-positive, denoted by F ≥ 0, if and only if

[F (x), g(x)]X ≥ 0

for x ∈ X. For two operators F1 : X → X and F2 : X → X,

F1 ≥ F2

if and only if

F1 − F2 ≥ 0.

If X is a normed algebra, a g-positive operator F has a square root if and only if
there exists an operator G : X → X such that [G(x)]2 = G(x)G(x) = F (x) for
x ∈ X. G is then called a square root of F .

If F = 0, F is g-positive. G = 0 is the square root of F = 0 defined on the
normed algebra X.
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Remark 3.2. The generalized real definiteness of the operator F relies on both the
operator g and the quasi-product. If F is a symmetric linear operator on a Hilbert
space, the operator g is the identity map, and the quasi-product is the inner product
on the Hilbert space, F is generalized real definite and F being positive implies F
being g-positive. Therefore, the g-positivity extends the notion of the positivity.

If F : D(F ) → Y and g : D(F ) → Y satisfies g(x) ̸= 0 for x ̸= 0 and
x ∈ D(F ), the above definition can be modified and the associated expressions
are [F (x), g(x)]Y ∈ R and [F (x), g(x)]Y ≥ 0 for x ∈ D(F ), where D(F ) is a subset
of X.

Some basic properties of the positive operators are given by the following lemma.
The routine proofs are not presented.

Lemma 3.3. Let X be a normed space and F1, F2, G1, G2 be the operators from X
into X.

(a) F1 ≥ F2 if and only if [F1(x), g(x)]X ≥ [F2(x), g(x)]X for x ∈ X.
(b) If α ∈ R, α ≥ 0, and F1 ≥ 0, then αF1 ≥ 0.
(c) If F1 ≥ 0 and F2 ≥ 0, then F1 + F2 ≥ 0.
(d) If F1 ≤ G1 and F2 ≤ G2, then F1 + F2 ≤ G1 +G2.

For a symmetric linear operator F on a Hilbert spaceX, the normed value of F (x)
and the associated inner product satisfy the equation < (F◦F )(x), x >X= ||F (x)||2X .
It turns out that the analogous equation (inequality) defined below plays a key role
in the development of the spectral resolutions of the possibly nonlinear operators.

Definition 3.4. Let X be a normed space and g : X → X satisfy g(x) ̸= 0 for
x ̸= 0. For x, y ∈ X, a quasi-product has a left integral domain if and only if for
g(x) ̸= 0, [y, g(x)]X = 0 implies y = 0. Further, if X is a normed algebra with
a unit 1, for x, y1, y2 ∈ X, a quasi-product preserves the positivity if and only if
[y1y2, g(x)]X ≥ 0 as [y1, g(x)]X ≥ 0 and [y2, g(x)]X ≥ 0. In addition, a quasi-
product is square bounded below if and only if for x, y ∈ X, there exists a positive
number k such that [y2, g(x)]X ≥ k||y||2X ||g(x)||X as y = 1 or [y, g(x)]X ∈ R.

The properties of the quasi-product in Definition 3.4 rely on the operator g and g
is assumed to be the same as the one corresponding to the generalized real definite
operators of interest (see Definition 3.1) hereafter. Note that the quasi-product has
these properties on the set X×R(g) by the above definition and thus another way is
to define these properties on the subsets of X ×X. However, only the set X ×R(g)
is of interest in this article and hence Definition 3.4 serves the purpose.

In the following, the operators involved in the spectral theorems of the generalized
real definite operators, the positive and negative parts of the operator, are defined.

Definition 3.5. Let X be a normed space and F be a generalized real definite
operator. The operator |F | is defined by

|F | (x) = F (x)

if [F (x), g(x)]X ≥ 0 and

|F | (x) = −F (x)
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if [F (x), g(x)]X < 0 for x ∈ X. The positive part of F is

F+ =
|F |+ F

2
and the negative part of F is

F− =
|F | − F

2
.

A direct check gives the following lemma.

Lemma 3.6. Let F be generalized real definite.

(a) Let X be a normed space.
Then |F | ≥ 0.

(b) Let X be a unital normed algebra. Then |F |2 = F 2, where for x ∈ X, |F |2 is
defined by |F |2(x) = |F |(x)|F |(x) and F 2 is defined by F 2(x) = F (x)F (x).
Furthermore, if the quasi-product is square bounded below or preserves the
positivity, then |F | is a square root of F 2.

The above lemma implies that the quasi-product being square bounded below
or preserving the positivity is a sensible condition. Since otherwise, the square
of a generalized real definite operator or even a g-positive operator might not be
g-positive.

It is natural to ask when the g-positive operator has a square root. It turns out
that the quasi-product having a left integral domain or preserving the positivity is
a key sufficient condition. The following theorem indicates that the pointwise mul-
tiplication of two g-positive operators is g-positive given some sufficient condition.

Theorem 3.7. Let X be a unital Banach algebra, F ≥ 0 and H ≥ 0. If there exists
a quasi-product (not necessarily square bounded below) preserving the positivity with
X being not necessarily commutative or a square bounded below quasi-product having
a left integral domain with X being commutative, then FH ≥ 0, where (FH)(x) =
F (x)H(x) for x ∈ X.

For a positive symmetric linear operator, the positive square root of the operator
is uniquely determined. In the following, the sufficient conditions for the existence
and the uniqueness of the positive square root of the g-positive operator are given.

Corollary 3.8. Let X be a unital Banach algebra.

(a) If G, the square root of the g-positive operator F , exists and G ≥ 0, the
commutative unital Banach algebra X is an integral domain, and the quasi-
product has a left integral domain, then G is unique and is denoted by G =
F 1/2.

(b) If there exists a square bounded below quasi-product preserving the positivity
on X (not necessarily commutative) or a square bounded below quasi-product
having a left integral domain with X being commutative, 0 ≤ F ≤ 1X , then
F has a square root G ≥ 0 and G commutes with any operator W ∈ V (X,X)
which commutes with F , where 1X(x) = 1 for x ∈ X.

Corollary 3.9. Let X be a unital Banach algebra and B(X) be the Banach algebra
with the multiplication operation given in Theorem 2.7.
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(a) If G ∈ B(X) satisfying G∗2 = G ∗G = F exists and F,G ≥ 0, the commu-
tative unital Banach algebra X is an integral domain, and the quasi-product
has a left integral domain, then G is unique.

(b) Suppose that there exists a square bounded below quasi-product preserving
the positivity on X (not necessarily commutative) or a square bounded below
quasi-product having a left integral domain with X being commutative. For
a g-positive operator F ∈ B(X), there exists a g-positive operator G ∈ B(X)
such that G∗2 = G∗G = F and G commutes with any operator W ∈ V (X,X)
which commutes with F .

Remark 3.10. Let F̃ ≥ 0 and H̃ ≥ 0 with F̃ (0) ̸= 0 or H̃(0) ̸= 0, and g(0) ̸=
0. Then given the sufficient conditions in Theorem 3.7 and Corollary 3.8, the
results also hold for F̃ and H̃. Furthermore, given the sufficient conditions in
Corollary 3.9 and F̃ ∈ B(X), the g-positive operator G ∈ B(X) defined by G(x) =

(||F̃ ||B(X)/k)
1/2||x||XĜ(x) for x ̸= 0 and G(0) = k−1/2Ĝ(0) satisfies G ∗ G = F̃ ,

where Ĝ2 = F̂ and F̂ (x) = kF̃ (x)/(||F̃ ||B(X)||x||X) for x ̸= 0, F̂ (0) = kF̃ (0), and
where k is some number.

3.2. Projection operators. The spectral resolution of a bounded symmetric lin-
ear operator involves both the projection operator and the spectrum of the operator.
The counterparts of these quantities for a generalized real definite operator are de-
fined and some basic facts about these quantities are given in this subsection. The
first two lemmas, Lemma 3.12 and Lemma 3.13, can be used to prove Lemma 3.18,
the main result of this subsection. Lemma 3.18 can be applied to prove the spectral
theorem in next subsection. Note that the proofs of Lemma 3.12, Lemma 3.13,
Lemma 3.16, and Lemma 3.17 in this subsection are delegated to Section 6.

The nonlinear projection operator involved in the spectral resolution of the gen-
eralized real definite operator is defined first.

Definition 3.11. For a subset S containing 0 of a normed space X, the corre-
sponding projection operator ES : X → X is defined by ES(x) = x if x ∈ S and
ES(x) = 0 otherwise. If X is a unital normed algebra, the projection indicator
1S : X → X is defined by 1S(x) = 1 if x ∈ S and 1S(x) = 0 otherwise.

Denote N(F ) as the null space (set) of an operator F , i.e., N(F ) = {x : F (x) =
0, x ∈ X}. The following two lemmas give the basic properties of the projection
operator (indicator) and the positive and negative parts of F . Let S2\S1 denote
the intersection of the set S2 and the complement of the set S1.

Lemma 3.12. Let S1 and S2 both containing 0 be the subsets of a normed space
X.

(a) ||ES1 ||B(X) ≤ 1.
(b) The following are equivalent.

(i)

ES1 ◦ ES2 = ES2 ◦ ES1 = ES1 .

(ii) S1 ⊂ S2.
(iii) N(ES2) ⊂ N(ES1).
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(iv) ||ES1(x)||X ≤ ||ES2(x)||X for x ∈ X.
If X is a unital normed algebra, the following are equivalent.

(i)*

1S11S2 = 1S21S1 = 1S1 .

(ii)* S1 ⊂ S2.
(iii)* N(1S2) ⊂ N(1S1).
(iv)* ||1S1(x)||X ≤ ||1S2(x)||X for x ∈ X.

(c) Let S1 ⊂ S2.

Then ES2−S1 = ES2 − ES1 is idempotent, i.e., ES2−S1 ◦ ES2−S1 = ES2−S1, and
the range of ES2−S1 is S2 − S1 = (S2\S1) ∪ {0}. If X is a unital normed algebra,
1S2−S1 = 1S2 − 1S1 satisfies 1S2−S11S2−S1 = 1S2−S1.

Lemma 3.13. Let X be a unital normed algebra, F be generalized real definite, and
S = N(F+).

(a) |F |, F+, and F− commute with every operator W ∈ V (X,X) which com-
mutes with F .

(b) F+F− = F−F+ = 0.
(c) F+1S = 1SF

+ = 0 and F−1S = 1SF
− = F−.

(d) F1S = 1SF = −F− and F (1X − 1S) = (1X − 1S)F = F+.
(e) F+ ≥ 0 and F− ≥ 0.

The spectrum corresponding to the quasi-product and the g-positivity is defined
as follows.

Definition 3.14. Let F : D(F ) → X, where D(F ) ⊂ X and X is a normed
space. Let γ : D(F ) → X be a g-positive operator (see Remark 3.2) satisfying
[γ(x), g(x)]X = k1(x)||x||X ||g(x)||X and ||γ(x)||X = k2(x)||x||X for x ∈ D(F ), where
both k1 and k2 are positive bounded functions and are bounded away from 0. The
g-resolvent set of F , denoted by ρ(F ) and ρ(F ) ⊂ C, consists of the scalars λ such
that Rλ = (F −λγ)−1 exists (see [5], A1.2), is bounded, and D(Rλ) is a dense set of
X. The set σ(F ) = C\ρ(F ) is referred to as the g-spectrum of F . If F (x) = λγ(x)
for some x ̸= 0, x is referred to as the g-eigenvector of F corresponding to the
g-eigenvalue λ.

In this article, the generalized real definite operators of interest and the g-positive
operator γ are in relation to the same quasi-product and the same operator g.

Remark 3.15. The above definition can be also used for the operator F̃ with
F̃ (0) ̸= 0. Moreover, if X and Y are Banach spaces and G, J are in the space of
continuous operators from X into Y , the classical eigenvalue λ of the pair (G, J)
corresponding to the eigenvector x ̸= 0 satisfies the equation G(x) = λJ(x) (see [2],
Chapter 9.5, Chapter 10). If X and Y are normed spaces, the g-eigenvalue λ and
the g-eigenvector x ̸= 0 can be defined similarly for the operators F : D(F ) → Y
and γ : D(F ) → Y (also see Remark 3.2), i.e., F (x) = λγ(x), where D(F ) is a
subset of X.

The following two lemmas, Lemma 3.16 and Lemma 3.17, give the results for
values of the quasi-product of the bounded operators in B(X) and the g-eigenvalues
of the bounded generalized real definite operators, respectively.
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Lemma 3.16. Let F ∈ B(X), where X is a normed space. There exists a positive
number k such that

|[F (x), g(x)]X | ≤ k ||x||X ||g(x)||X
for x ∈ X.

Lemma 3.17. Let F be generalized real definite defined on X, where X is a normed
space. Then all g-eigenvalues of F , if exist, are real. Further, if F ∈ B(X), all g-
eigenvalues, if exist, lie in some bounded interval of R.

Note that the results in Lemma 3.17 also hold for the generalized real definite
operator F̃ with F̃ (0) ̸= 0, i.e., all g-eigenvalues of F̃ , if exist, are real and lie in

some bounded interval of R if F̃ ∈ B(X).
Hereafter denote Fλ = F − λγ and let 1λ and Eλ be the projection indicator

and the projection operator corresponding to N(F+
λ ), respectively, where λ ∈ R. In

addition, let ∆ = µ− λ, E∆ = Eµ − Eλ, and 1∆ = 1µ − 1λ, where λ < µ.

Lemma 3.18. Let X be a unital normed algebra. Suppose that F ∈ B(X) is
generalized real definite, µ, λ ∈ R, and λ < µ.

(a) ||1λ(x)||X ≤ ||1µ(x)||X for x ∈ X.
(b) limλ→−∞ supx ̸=0,x∈X 1λ(x) = 0. Further, limλ→−∞Eλ = 0, limλ→∞ 1λ =

1X , and limλ→∞Eλ = I with respect to the norm topology || · ||B(X), where
I is the identity operator defined on X, i.e., I(x) = x for x ∈ X.

(c) λγ ◦ E∆ ≤ F1∆ ≤ µγ ◦ E∆.

Proof. (a): If x ̸= 0 and 1λ(x) = 1, i.e., x ∈ N(F+
λ ), [Fλ(x), g(x)]X ≤ 0 then

and thus [F (x), g(x)]X ≤ [λγ(x), g(x)]X . Since [λγ(x), g(x)]X < [µγ(x), g(x)]X ,
[F (x), g(x)]X < [µγ(x), g(x)]X and [Fµ(x), g(x)]X = [F (x) − µγ(x), g(x)]X < 0
thus. The last inequality implies F+

µ (x) = 0 and 1µ(x) = 1 then. Therefore,
||1λ(x)||X ≤ ||1µ(x)||X for x ∈ X.

(b): By Lemma 3.16, there exist positive numbers k, k1, and k2 such that

[Fλ(x), g(x)]X
≥ k1 {[F (x), g(x)]X − [λγ(x), g(x)]X}
≥ k1(−k − k2λ) ||x||X ||g(x)||X
> 0

for λ < −k/k2 and x ̸= 0. This gives that 1λ(x) = 0 for λ < −k/k2. Similarly,
there exist positive numbers k∗1 and k∗2 such that

[Fλ(x), g(x)]X
≤ k∗1 {[F (x), g(x)]X − [λγ(x), g(x)]X}
≤ k∗1(k − k∗2λ) ||x||X ||g(x)||X
< 0

for λ > k/k∗2 and x ̸= 0. This gives that 1λ = 1X for λ > k/k∗2. The results for Eλ

follow because Eλ(x) = 1λ(x)x for x ∈ X.
(c): Since Fµ1∆ = F1∆−µγ ◦E∆ and −Fµ1∆ = −Fµ1µ(1µ−1λ) = F−

µ (1µ−1λ) ≥ 0
by Lemma 3.12 (b), Lemma 3.13 (d), and Lemma 3.13 (e), hence F1∆ ≤ µγ ◦ E∆.
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Similarly, because Fλ1∆ = F1∆ − λγ ◦ E∆ and Fλ1∆ = Fλ(1X − 1λ)(1µ − 1λ) =
F+
λ (1µ − 1λ) ≥ 0 by Lemma 3.12 (b), Lemma 3.13 (d), and Lemma 3.13 (e), hence

F1∆ ≥ λγ ◦ E∆ holds. □

3.3. Spectral theorems. In this subsection, the spectral resolutions of the gen-
eralized real definite operators in terms of the quasi-product and with respect to
some topology are stated in Theorem 3.21 and Theorem 3.23, respectively. Let X
be a unital Banach algebra in the subsection.

The spectral resolution of interest can be defined based on the lemma below.

Lemma 3.19. Let F ∈ B(X) be generalized real definite. There exists a bounded
interval [m,M ] with any partition {sj} satisfying m = s0 < s1 < · · · < sn = M and
∆j = sj − sj−1 < ϵn such that Fn =

∑n
j=1 λj(γ ◦ E∆j ) converges to an operator in

B(X) with respect to the norm topology || · ||B(X) and the convergence is independent
of the choice of λj ∈ (sj−1, sj ] as n → ∞, where 1λ(x) = 0 for x ̸= 0 as λ = m,
1λ = 1X as λ = M , and 0 < ϵn −→

n→∞
0.

Proof. By Lemma 3.12 (b) and Lemma 3.18 (b), there exist m and M such that
1λ(x) = 0 for x ̸= 0 as λ ≤ m and 1λ = 1X as λ ≥ M . Since for fixed x ̸= 0,
1m(x) = 0, 1M (x) = 1, and 1λ(x), considered as a function of λ, is right-continuous,
there exists λx ∈ [m,M ] such that 1λx(x) = 1 and 1λ(x) = 0 for λ < λx. Define

the operator F̃ (x) = λxγ(x) as x ̸= 0 and F̃ (0) = 0. Then F̃ ∈ B(X). Because
λx ∈ (sj−1, sj ] for some j and ∆j < ϵn, hence∣∣∣∣∣∣Fn(x)− F̃ (x)

∣∣∣∣∣∣
X

= ||(λj − λx)γ(x)||X
≤ kϵn ||x||X

for x ∈ X, where k is some positive number. □
The following definition gives the spectral resolution in terms of operator conver-

gence.

Definition 3.20. Let X be a unital Banach algebra, F ∈ B(X) be generalized real
definite, and {sj} be any partition of a bounded interval [m,M ] with m = s0 < s1 <
· · · < sn = M and ∆j = sj − sj−1 < ϵn, where 0 < ϵn −→

n→∞
0. If

∑n
j=1 λj(γ ◦ E∆j )

converges to an operator in the sense of operator convergence, i.e., with respect to
the norm topology || · ||B(X), and the convergence is independent of the choice of

λj for λj ∈ (sj−1, sj ] as n → ∞, the limit operator is denoted as
∫M
m λd(γ ◦ Eλ).

Furthermore, if f(λ1)1s1 +
∑n

j=2 f(λj)1∆j converges to an operator in the sense
of operator convergence and the convergence is independent of the choice of λj as

n → ∞, the limit operator is denoted as
∫M
m f(λ)d1λ, where f : R → V (X,X) is a

mapping from R into V (X,X).

The following two theorems give the spectral representations of the generalized
real definite operators in terms of the quasi-product and with respect to the norm
topology || · ||B(X), respectively. Moreover, [F (x), g(x)]X , x ∈ X, can be expressed
as an ordinary Riemann-Stieltjes integral in terms of a certain equivalence relation.
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The involved equivalence relation ≡ for two functionals G1 and G2 from X into K
is denoted as G1 ≡ G2 (or G1(x) ≡ G2(x) for convenience) if and only if there exist
positive numbers k and k such that

k |G2(x)| ≤ |G1(x)| ≤ k |G2(x)|
for all x ∈ X.

Theorem 3.21. Let F ∈ B(X) be generalized real definite. Then

[F (x), g(x)]X =

[[∫ M

m
λd(γ ◦ Eλ)

]
(x), g(x)

]
X

and

[F (x), g(x)]X ≡
∫ M

m
λdwx(λ)

for x ∈ X, where [m,M ] is some bounded interval depending on F , wx(λ) = [(γ ◦
Eλ)(x), g(x)]X , and the second integral is the ordinary Riemann-Stieltjes integral.

Proof.
∫M
m λd(γ ◦ Eλ) exists by Lemma 3.19, where 1m(x) = 0 for x ̸= 0 and

1M = 1X . Note that
∑n

j=1∆j = M − m and
∑n

j=1 1∆j (x) = 1 for x ̸= 0. Then

F = F
∑n

j=1 1∆j =
∑n

j=1 F1∆j . By Lemma 3.18 (c) and Lemma 3.3 (b), (c), and

(d),

n−1∑
j=0

sj(γ ◦ E∆j+1) ≤ F ≤
n∑

j=1

sj(γ ◦ E∆j )

and hence

0 ≤
n∑

j=1

sj(γ ◦ E∆j )− F ≤
n∑

j=1

∆j(γ ◦ E∆j ) ≤ ϵn

n∑
j=1

γ ◦ E∆j .

Then by Lemma 3.3 (a),  n∑
j=1

sj(γ ◦ E∆j )(x)− F (x), g(x)


X

≤

ϵn n∑
j=1

(γ ◦ E∆j )(x), g(x)


X

= [ϵnγ(x), g(x)]X

≤ kϵn ||x||X ||g(x)||X
for x ∈ X, where k is some positive number. [[

∫M
m λd(γ ◦Eλ)−F ](x), g(x)]X = 0 by

the continuity of the quasi-product and [[
∫M
m λd(γ ◦Eλ)](x), g(x)]X = [F (x), g(x)]X

thus. By property (c) of the quasi-product, n∑
j=1

λj(γ ◦ E∆j )(x), g(x)


X

≡
n∑

j=1

λj

[
(γ ◦ E∆j )(x), g(x)

]
X
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for x ∈ X and ∫ M

m
λdwx(λ)

≡ lim
n→∞

n∑
j=1

λj

[
(γ ◦ E∆j )(x), g(x)

]
X

≡ lim
n→∞

 n∑
j=1

λj(γ ◦ E∆j )(x), g(x)


X

= [F (x), g(x)]X

thus. □

In the following, the spectral resolution of the generalized real definite operator in
terms of operator convergence is given. The key sufficient condition for the operator
convergence in this subsection and in Section 4.1 is defined below.

Definition 3.22. The uniform spectral representation condition on a unital Banach
algebra X is as follows: There exists a quasi-product which

(a) is square bounded below and preserves the positivity
or

(b) has the left integral domain.

Theorem 3.23. Let F ∈ B(X) be generalized real definite. If the uniform spectral
representation condition on X holds, then F has the spectral representation

F =

∫ M

m
λd(γ ◦ Eλ),

where [m,M ] is some bounded interval depending on F .

Proof.
∫M
m λd(γ◦Eλ) exists by Lemma 3.19. If the quasi-product has the left integral

domain, i.e., the uniform spectral representation condition (b) satisfied, the equation

[[
∫M
m λd(γ◦Eλ)−F ](x), g(x)]X = 0 implies that F (x) = [

∫M
m λd(γ◦Eλ)](x) for every

x ∈ X. Then by Lemma 3.19, F =
∫M
m λd(γ ◦ Eλ).

Next, assume that the uniform spectral representation condition (a) holds. Let
Fn =

∑n
j=1 sj(γ ◦ E∆j ). Then

0 ≤ Fn − F ≤ ϵn

n∑
j=1

γ ◦ E∆j

and thus

0 ≤ (Fn − F )2 ≤ ϵ2n

 n∑
j=1

γ ◦ E∆j

2
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by Theorem 3.7. Because the quasi-product is square bounded below, there exist
positive numbers k1 and k2 such that for x ∈ X,

k1 ||Fn(x)− F (x)||2X ||g(x)||X
≤

[
(Fn − F )2 (x), g(x)

]
X

≤

ϵ2n
 n∑

j=1

γ ◦ E∆j

2

(x), g(x)


X

≤ k2ϵ
2
n ||x||

2
X ||g(x)||X .

Hence ||Fn − F ||B(X) −→
n→∞

0 holds. □

Remark 3.24. Theorem 3.21 and Theorem 3.23 under only the uniform spectral
representation condition (b) also hold as X is a Banach space, i.e., the condition for
X being relaxed. The key is to use F ◦ES in place of F1S in the associated results,
where S containing 0 is a subset of X.

4. Extensions

In this section, the operational calculus of the bounded generalized real definite
operators is given in the first subsection. Furthermore, the bounded generalized
real definite operators with the spectral representation in the sense of operator
convergence turns out to be associated with a class of operators defined in the
second subsection.

4.1. Operational calculus. In this subsection, the extensions of the spectral the-
orem in the previous subsection to polynomial functions and continuous functions
are stated in two theorems, Theorem 4.3 and Theorem 4.9, respectively. Let X
be a unital Banach algebra as in Section 3.3. The polynomial of the generalized
real definite operator is defined below. Note that the proofs of the lemmas in this
subsection are delegated to Section 6.

Definition 4.1. Let B(X) be a unital Banach algebra with the multiplication
operation ∗ given in Theorem 2.7. Let p(λ) =

∑n
i=0 aiλ

i be a polynomial in λ with
real coefficients ai, i.e., p being over the real field. Then p(F ) =

∑n
i=0 aiF

∗i, where
F ∈ B(X) and F ∗0 = e.

Lemma 4.2. Let F1n, F1, F2n, F2 ∈ B(X). If F1n −→
n→∞

F1 and F2n −→
n→∞

F2 in the

sense of operator convergence, then F1n ∗ F2n −→
n→∞

F1 ∗ F2 in the sense of operator
convergence.

Theorem 4.3. Let F ∈ B(X) be generalized real definite. Then p(F ) has the
spectral representation

p(F ) =

∫ M

m
p(λγ)d1λ

if the uniform spectral representation condition on X holds.
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Proof. Because for k > j,

1∆j1∆k
=
(
1sj − 1sj−1

) (
1sk − 1sk−1

)
= 1sj − 1sj − 1sj−1 + 1sj−1 = 0

by Lemma 3.12 (b) and thus (γ ◦ E∆j )(γ ◦ E∆k
) = γ21∆j1∆k

= 0. Therefore, n∑
j=1

λj(γ ◦ E∆j )

∗k

=

n∑
j=1

λk
j (γ ◦ E∆j )

∗k =

n∑
j=1

(λjγ)
∗k1∆j ,

where k is a nonnegative integer. By the condition imposed on the quasi-product
and then using Theorem 3.23,

∑n
j=1 λj(γ ◦ E∆j ) −→

n→∞
F in the sense of operator

convergence. By Lemma 4.2,

n∑
j=1

(λjγ)
∗k1∆j =

 n∑
j=1

λj(γ ◦ E∆j )

∗k

−→
n→∞

F ∗k

and hence

p(λ1γ)1s1 +
n∑

j=2

p(λjγ)1∆j = p

 n∑
j=1

λj(γ ◦ E∆j )

 −→
n→∞

p(F ),

i.e., p(F ) =
∫M
m p(λγ)d1λ in the sense of operator convergence. □

For a bounded self-adjoint linear operator T , the normed value of p(T ) is not
greater than the normed value of p(λ), where p(λ) is considered as an element
in the space of all continuous functions defined on some compact interval. The
following lemma can be considered as the counterpart of the one for the bounded
self-adjoint linear operator. Let C([m,M ] be the Banach space of all real-valued
continuous functions defined on [m,M ] with the supremum norm.

Lemma 4.4. Let F ∈ B(X) be generalized real definite. If the uniform spectral
representation condition (a) holds or the uniform spectral representation condition
(b) holds with X being commutative and the quasi-product being square bounded
below, then there exist a positive number k and a bounded interval [m,M ] depending
on F such that for any polynomial function p with real coefficients,

||p(F )||B(X) ≤ k max
λ∈[m,M ]

|p(λ)| = k ||p||C([m,M ]) .

For any f ∈ C([m,M ]), the operator f(F ) and its spectral theorem can be
defined and established based on Lemma 4.4. The following theorem gives the
existence of the limit operator of a sequence of polynomials of the generalized real
definite operator.

Theorem 4.5. Let F ∈ B(X) be generalized real definite. If the uniform spectral
representation condition (a) holds or the uniform spectral representation condition
(b) holds with X being commutative and the quasi-product being square bounded
below, then there exists a bounded interval [m,M ] depending on F such that {pn(F )}
converges to an operator in B(X) in the norm ||·||B(X), where {pn} is any convergent
sequence of polynomial functions with real coefficients in the space C([m,M ]).
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Proof. By Lemma 4.4, for any ϵ > 0, there exists a positive number N such that
for n, l > N ,

||pn(F )− pl(F )||B(X) ≤ k ||pn − pl||C([m,M ]) < ϵ

and thus {pn(F )} is a Cauchy sequence in the Banach space B(X), where k is some
positive number. □

According to the above theorem, the operator corresponding to any f ∈ C([m,M ])
and the generalized real definite operator F ∈ B(X) can be defined as follows.

Definition 4.6. Let B(X) be a unital Banach algebra. If there exists a sequence of
polynomial functions {pn} defined on [m,M ] over the real field converging uniformly
to f in C([m,M ]), i.e., the convergence being in the norm || · ||C([m,M ]), and the
limit of the sequence of operators {pn(F )} in the norm || · ||B(X) corresponding to
the generalized real definite operator F ∈ B(X) exists, then the limit in B(X) is
denoted by f(F ).

As the above condition on X holds, f(F ) exists and is unique, i.e., f(F ) being
the limit corresponding to any sequence of polynomial functions converging to f in
C([m,M ]), as indicated by the corollary below.

Corollary 4.7. Let F ∈ B(X) be generalized real definite. If the uniform spectral
representation condition (a) holds or the uniform spectral representation condition
(b) holds with X being commutative and the quasi-product being square bounded
below, then f(F ) exists for any f ∈ C([m,M ]) and is independent of the choice of
the sequence of polynomial functions in C([m,M ]), i.e., f(F ) being the limit of any
sequence of operators {pn(F )} satisfying that {pn} defined on [m,M ] over the real
field converges uniformly to f in C([m,M ]), where [m,M ] is some bounded interval
depending on F .

Proof. Because there exists a sequence of polynomial functions converging uniformly
to f in C([m,M ]) by Weierstrass theorem, f(F ) exists by Theorem 4.5 and Defini-
tion 4.6. Next, let {pn} and {p∗n} be the sequences of polynomial functions both con-
verging uniformly to f in C([m,M ]). Then pn(F ) −→

n→∞
f(F ) and p∗n(F ) −→

n→∞
f∗(F )

by Theorem 4.5. Furthermore, because

||f(F )− f∗(F )||B(X)

≤ ||f(F )− pn(F )||B(X) + ||pn(F )− p∗n(F )||B(X) + ||p∗n(F )− f∗(F )||B(X)

and

||pn(F )− p∗n(F )||B(X) ≤ k ||pn − p∗n||C([m,M ]) ,

letting n → ∞ gives f(F ) = f∗(F ) . □

The following lemma is an extension of Lemma 4.4 to continuous functions and
can be used to prove the spectral theorem corresponding to the continuous functions.

Lemma 4.8. Let F ∈ B(X) be generalized real definite. If the uniform spectral
representation condition (a) holds or the uniform spectral representation condition
(b) holds with X being commutative and the quasi-product being square bounded
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below, then there exist a positive number k and a bounded interval [m,M ] depending
on F such that for any f ∈ C([m,M ]),

||f(F )||B(X) ≤ k max
λ∈[m,M ]

|f(λ)| = k ||f ||C([m,M ]) .

Theorem 4.9. If the uniform spectral representation condition (a) holds or the
uniform spectral representation condition (b) holds with X being commutative and
the quasi-product being square bounded below, then for a generalized real definite
operator F ∈ B(X) and any f ∈ C([m,M ]), f(F ) has the spectral representation

f(F ) =

∫ M

m
f(λγ)d1λ,

where [m,M ] is some bounded interval depending on F .

Proof. There exist a bounded interval [m,M ] and a positive number k̄ such that
||f(λγ)||B(X) ≤ k||f ||C([m,M ]) for any f ∈ C([m,M ]) and λ ∈ [m∗,M∗] by Lemma 4.8
with 1m∗(x) = 0 for x ̸= 0, 1M∗ = 1, and [m∗,M∗] ⊂ [m,M ]. Let {pl} be a sequence
of polynomial functions defined on [m,M ] over the real field converging uniformly to
f in C([m,M ]). By Definition 4.6, Theorem 4.3, Corollary 2.3, and Lemma 4.8, for
every ϵ > 0, there exist positive numbers N and Nl such that for n > Nl and l > N
, ||pl(F ) − f(F )||B(X) ≤ ϵ/3, ||pl(λ1γ)1s1 +

∑n
j=2 pl(λjγ)1∆j − pl(F )||B(X) ≤ ϵ/3,

and ∣∣∣∣∣∣
∣∣∣∣∣∣f(λ1γ)1s1 +

n∑
j=2

f(λjγ)1∆j − pl(λ1γ)1s1 −
n∑

j=2

pl(λjγ)1∆j

∣∣∣∣∣∣
∣∣∣∣∣∣
B(X)

≤ max
m∗≤λ≤M∗

||f(λγ)− pl(λγ)||B(X)

≤ k ||f − pl||C([m,M ])

≤ ϵ/3.

Therefore, ∣∣∣∣∣∣
∣∣∣∣∣∣f(λ1γ)1s1 +

n∑
j=2

f(λjγ)1∆j − f(F )

∣∣∣∣∣∣
∣∣∣∣∣∣
B(X)

≤

∣∣∣∣∣∣
∣∣∣∣∣∣f(λ1γ)1s1 +

n∑
j=2

f(λjγ)1∆j − pl(λ1γ)1s1 −
n∑

j=2

pl(λjγ)1∆j

∣∣∣∣∣∣
∣∣∣∣∣∣
B(X)

+

∣∣∣∣∣∣
∣∣∣∣∣∣pl(λ1γ)1s1 +

n∑
j=2

pl(λjγ)1∆j − pl(F )

∣∣∣∣∣∣
∣∣∣∣∣∣
B(X)

+ ||pl(F )− f(F )||B(X)

≤ ϵ

and the result holds. □

Remark 4.10. For the generalized real definite operator F̃ ∈ B(X) with F̃ (0) ̸= 0,

i.e., F̃ = F + F̃ (0)e and the projection indicator 1λ corresponding to the null
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space of F+
λ , the spectral resolution of the polynomial p(F̃ ) given the condition in

Theorem 4.3 is

p(F̃ ) =

∫ M

m
p
[
λγ + F̃ (0)e

]
d1λ.

Similarly, the spectral integral of the operator f(F̃ ) given the condition in Theo-
rem 4.9 is

f(F̃ ) =

∫ M

m
f
[
λγ + F̃ (0)e

]
d1λ.

4.2. Nonlinear spectral operators. In [4], the theory of the linear spectral op-
erators has been discussed thoroughly. In this subsection, the nonlinear spectral
operators based on the projection operator given in Definition 3.11 are defined and
a basic result, Theorem 4.14, is given.

Definition 4.11. Let X be a normed space. A spectral projection E on (m,M ]
is an operator-valued function from the subsets ∪n

i=1(ai, bi] of (m,M ] into B(X),
m,M ∈ R, (ai, bi] ⊂ (m,M ], with the following properties.

(a) E{(ai, bi]} is a projection operator, i.e., E{(ai, bi]}(x) = x if x ∈ S and
E{(ai, bi]}(x) = 0 otherwise, where S containing 0 is some subset of X.

(b) E(ϕ) = 0 and E{(m,M ]} = I.
(c)

E{(a1, b1] ∩ (a2, b2]} = E{(a1, b1]} ◦ E{(a2, b2]} = E{(a2, b2]} ◦ E{(a1, b1]}.
In addition, if (a1, b1] ∩ (a2, b2] = ϕ, then

E{(a1, b1] ∪ (a2, b2]} = E{(a1, b1]}+ E{(a2, b2]}.

The existence of the spectral operators of interest is due to the following lemma.
The proof of this lemma is analogous to Lemma 3.19 and is not presented.

Lemma 4.12. Let X be a Banach space and {sj} be a partition of a bounded
interval [m,M ] with m = s0 < s1 < · · · < sn = M , sj − sj−1 < ϵn and ϵn −→

n→∞
0.

Then,
∑n

j=1 f(λj)E{(sj−1, sj ]} converges to an operator in B(X) with respect to

the norm topology || · ||B(X) and the convergence is independent of the choice of the
points λj ∈ (sj−1, sj ] as n → ∞, where f ∈ C([m,M ]).

Based on the above lemma, the resulting limit operator can be defined.

Definition 4.13. Let X be a Banach space and {sj} be a partition of a bounded
interval [m,M ] with m = s0 < s1 < · · · < sn = M , sj − sj−1 < ϵn and ϵn −→

n→∞
0.

Then, the limit operator F of
∑n

j=1 f(λj)E{(sj−1, sj ]} as n → ∞ with respect to

the norm topology || · ||B(X) is denoted as

F =

∫ M

m
f(λ)dE,

where λj ∈ (sj−1, sj ] and f ∈ C([m,M ]). The operator F is referred to as the
nonlinear spectral operator with respect to the spectral projection E on (m,M ]
and the function f . The class of the nonlinear spectral operators with respect to
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the spectral projection E on (m,M ] and any function f ∈ C([m,M ]) is denoted as
SE,C([m,M ])(X).

Theorem 4.14. SE,C([m,M ])(X) is a subspace of B(X), where X is a Banach space.

Further, If E{(m, λ̄]} − E{(m,λ]} ̸= 0 for any λ, λ̄ ∈ (m,M ] and λ < λ̄, then
SE,C([m,M ])(X) is a Banach space.

Proof. SE,C([m,M ])(X) is a subspace of B(X) because for two operators F1, F2 ∈
SE,C([m,M ])(X) corresponding to f1 and f2 in C([m,M ], respectively, and α ∈ K,

(αF1 + F2)

= lim
n→∞

n∑
j=1

αf1(λj)E {(sj−1, sj ]}

+ lim
n→∞

n∑
j=1

f2(λj)E {(sj−1, sj ]}

= lim
n→∞

n∑
j=1

[αf1(λj) + f2(λj)]E {(sj−1, sj ]}

=

∫ M

m
[αf1(λ) + f1(λ)] dE,

and αf1 + f2 ∈ C([m,M ]).
To prove the completeness of SE,C([m,M ])(X), let Fn −→

n→∞
F , where {Fn} ⊂

SE,C([m,M ])(X) and F ∈ B(X). Then {Fn} is Cauchy. Further, if the required
condition holds, there exists xλ depending on λ such that for any λ ∈ (m,M ] ,

∣∣∣∣∣∣
∣∣∣∣∣∣


n∑
j=1

[fl(λj)− fm(λj)]E {(sj−1, sj ]}

 (xλ)

∣∣∣∣∣∣
∣∣∣∣∣∣
X

= ||[fl(λ)− fm(λ)]xλ||X
= |fl(λ)− fm(λ)| ||xλ||X ,

where fl and fm lie in C([m,M ]) corresponding to the spectral operators Fl and
Fm, respectively. Then by letting n → ∞ in the above equation, for any ϵ > 0,
there exists a positive integer N such that for l,m > N ,

||fl − fm||C([m,M ]) ≤ ϵ.

Hence {fn} is Cauchy and there exists a function f ∈ C([m,M ]) such that fn −→
n→∞

f

with respect to || · ||C([m,M ]) owing to the completeness of C([m,M ]). Then,
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Fn −→
n→∞

∫M
m fdE because for x ̸= 0,∣∣∣∣∣∣∣∣[Fn −

∫ M

m
f(λ)dE

]
(x)

∣∣∣∣∣∣∣∣
X

=

∣∣∣∣∣∣∣∣{∫ M

m
[fn(λ)− f(λ)] dE

}
(x)

∣∣∣∣∣∣∣∣
X

≤ ||fn − f ||C([m,M ]) ||x||X .

Therefore, F =
∫M
m fdE and F ∈ SE,C([m,M ])(X), i.e., SE,C([m,M ])(X) being closed.

□
Remark 4.15. If γ = I, the bounded generalized real definite operators with
the spectral representation lie in SE,C([m,M ])(X). Note that a more general class of
nonlinear spectral operators can be defined as the limiting operators of the operators∑n

j=1 f(λj)(γ ◦E{(sj−1, sj ]}) as n → ∞ with respect to the norm topology || · ||B(X)

and can be denoted as

F =

∫ M

m
f(λ)d(γ ◦ E).

Moreover, Lemma 4.12 and Theorem 4.14 can be generalized for the class of the
nonlinear spectral operators.

If X is a Hilbert space, a class of projection operators other than the ones give
in Definition 3.11 and in Definition 4.11 (a) can be defined as follows. For a subset
S containing 0 of a closed subspace Y of a Hilbert space X, the corresponding
projection operator ES : X → X is defined by ES(x) = y if y ∈ S and ES(x) = 0
otherwise, where x = y + y⊥, y ∈ Y , y⊥ ∈ Y ⊥, and where Y ⊥ is the orthogonal
complement of Y . Then the spectral representation of a bounded symmetric linear
operator defined on X is a special case of the corresponding nonlinear spectral
operator given in the previous paragraph.

5. Examples

In this section, the nonlinear generalizations of two classes of linear operators,
including linear operators on finite dimensional spaces and compact linear opera-
tors, and nonlinear counterparts of the linear multiplication operator and the linear
differentiation operator are given via examples. In addition, some associated appli-
cations are given.

5.1. Operators on finite dimensional spaces. In this subsection, let X be an
m dimensional vector space. Note that any linear operator T on X is bounded,
i.e., T ∈ B(X). Further, let {Ti : i = 1, . . . ,m2} be a basis of the space of all

linear operators on X. Then the linear operator T has the form T =
∑m2

i=1 aiTi,
where ai ∈ K. The following examples can be considered as different nonlinear
generalizations of T .

Example 5.1. Let F =
∑n

i=1 aiFi, where Fi ∈ V (X,X). If Fi ∈ B(X), then
F ∈ B(X). F is generalized real definite if Fi are generalized real definite and
ai ∈ R. Fi can be nonlinear, for example, Fi = x/∥x∥, x ̸= 0 or Fi = x2 for X
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being a Banach algebra. If Fi is the projection operators given in Definition 3.11,
∪n
i=1R(Fi) = X, R(Fi) ∩R(Fj) = {0}, i ̸= j, and γ is the identity operator, then ai

are the g-eigenvalues of F corresponding to the g-eigenvectors lying in R(Fi)\{0},
the g-resolvent set of F is ρ(F ) = C\{ai : i = 1, . . . , n}, i.e., the set of g-eigenvalues
being the g-spectrum, and F is a nonlinear spectral operator for ai ∈ R, i.e., F ∈
SE,C([m,M ])(X).

The possibly nonlinear operator equation F (x) = y for x, y ∈ X, can be solved
by the nonlinear spectral resolution. If F has the nonlinear spectral representation
F =

∑n
i=1 ai(γ ◦E∆i), the nontrivial solution xh ≠ 0 for the homogeneous equation

F (x) = 0 is any vector in the union of the projected sets corresponding to aj = 0, i.e.,
xh lying in the union of the sets R(E∆j ) corresponding to aj = 0. On the other hand,
for the nonhomogeneous equation, i.e., y ̸= 0, the solution exists if y ∈ ∪n

i=1R[ai(γ ◦
E∆i)] and the nonhomogeneous equation has no solution if y ̸∈ ∪n

i=1R[ai(γ ◦E∆i)].
Unlike a solution in a linear system, xh+xp might not be the solution for F (x) = y.
Note that the operator γ can be the ones other than the identity operator, for
example, for x ̸= 0, γ(x) = x/∥x∥X and γ(x) = x2/∥x∥X , x2 ̸= 0, along with X
being a Banach space or a Banach algebra, respectively, and thus more operator
equations corresponding to the nonlinear spectral operators can be solved. If γ is the
identity operator and for y ∈ R(ajE∆j )\{0}, aj ̸= 0, then xp = a−1

j y is a solution

of the nonhomogeneous equation F (x) = y, i.e., the equation being solvable for any
y ∈ [∪ai ̸=0R(aiE∆i)]\{0}.

Example 5.2. Let F defined by F (x) =
∑n

i=1Ai(x)Ti(x), x ∈ X, where Ai ∈
V (X,K). If R(Ai) is bounded, i.e., |Ai(x)| ≤ ci, x ∈ X, for example, for x ̸= 0,
Ai(x) = cimin{∥x∥X , 1/∥x∥X} or Ai(x) = ci∥x2∥X/∥x∥2X with X being a Banach
algebra, and ci are some positive numbers, then F ∈ B(X). F is generalized real
definite if Ti are generalized real definite and Ai are real valued functionals, i.e.,
K = R. If Ti are linear projection operators, and R(Ti) ∩ R(Tj) = {0}, i ̸= j, then
Ai(x) is the g-eigenvalues of F corresponding to the g-eigenvectors x ∈ R(Ti)\{0}
and the identity operator γ.

The possibly nonlinear equation of interest is F (x) =
∑n

i=1Ai(x)Ti(x) = y for
x, y ∈ X. If y does not lie in the space spanned by ∪n

i=1R(Ti), then the operator
equation has no solution. On the other hand, any nonzero vector lies in the set
{(∩n

i=1{x : Ai(x) = 0}) ∪ [∩n
i=1N(Ti)]} is a nontrivial solution of the homogeneous

equation F (x) = 0. In addition, if Ti are the linear projection operators with
R(Ti) orthogonal to R(Ti), i ̸= j, Ai = Ai ◦ Ti, Ai is homogeneous of degree 1
for i = 1, . . . , n, i.e., Ai(αx) = αAi(x), α ∈ C, Ai(x) ̸= 0 for x ∈ R(Ti)\{0}, and
K = C, then the solutions exist for the nonhomogeneous equation F (x) = y with
any nonzero vector y lying in the space spanned by ∪n

i=1R(Ti) and the solutions are∑n
i=1 ciyi, where y =

∑n
i=1 yi, yi ∈ R(Ti), and ci satisfy that c2iAi(yi) = 1 for yi ̸= 0

and ci = 0 for yi = 0 .
The other operator equation F (x) =

∑n
i=1Ai(x)(γ◦ESi)(x) = y for x, y ∈ X, can

be solved under some sufficient conditions, where ESi is the projection operators
given in Definition 3.11, Si contain not only the zero vector, and Si ∩ Sj = {0}, i ̸=
j. If y ∈ ∪n

i=1R[Ai(γ ◦ ESi)], then at least one solution exists and no solution
exists otherwise. Specifically, if γ is the identity operator, then the results are
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given as follows. Any nonzero vector lies in the set {(∩n
i=1{x : Ai(x) = 0}) ∪

(∪n
i=1Si)

c} is a nontrivial solution of the homogeneous equation F (x) = 0, while for
y ∈ [∪n

i=1R(AiESi)]\{0}, there exists at least one solution with the form cy, c ∈ K,
for the nonhomogeneous equation F (x) = y.

5.2. Compact operators. A compact operator, possibly nonlinear, maps a
bounded set in a normed space X into a precompact (or relatively compact) set
in X. The following are two classes of compact operators on normed spaces and
Hilbert spaces, respectively.

Example 5.3. Suppose the operator γ give in Definition 3.14 is the identity opera-
tor. Let F defined by F (x) =

∑n
i=1Ai(x)Ti(x), x ∈ X, where Ti are compact linear

operators on X, Ai ∈ V (X,K), and R(Ai) are bounded. F ∈ B(X) and F is a
compact operator. In addition, F is generalized real definite if Ti are all generalized
real definite and Ai are all real valued functionals. If n = 1, i.e., F = A1T1, and λ
is the eigenvalue of T1 corresponding the eigenvector xλ in X, then λA1(x) is the
g-eigenvalue of F corresponding to the g-eigenvector xλ, but λA1(x) might not be
the g-eigenvalue for the vector cxλ, where c ∈ K.

Example 5.4. If X is a Hilbert space with the inner product < ·, · >X , any
compact linear operator T has the representation T =

∑∞
i=1 siTi, where the singu-

lar values {si} converging to 0 is a decreasing sequence, si ≥ 0, and the linear
operators Ti(x) =< x, ei >X fi, and where both {ei} and {fi} are orthonor-
mal sequences in X. Therefore, a possibly nonlinear operator F can be defined
by F (x) =

∑∞
i=1Ai(x)Ti(x), where Ai ∈ V (X,K) and

∑∞
i=1 ∥Ai∥sup < ∞, i.e.,

{∥Ai∥sup} lying in l1 space (see [6], Chapter 5), and where ∥Ai∥sup = supx∈X |Ai(x)|.
F ∈ B(X) and F is a compact operator. Furthermore, F is generalized real definite
if Ti are all generalized real definite and Ai are all real valued functionals. For
1 ≤ i ≤ n, Ai(x) are the g-eigenvalues of F corresponding to the g-eigenvectors
x ̸= 0 lying in the one dimensional space spanned by ei and γ =

∑n
i=1 Ti+P , where

P is the linear projection operator with R(P ) being the orthogonal complement of
the space spanned by {e1, . . . , en}. On the other hand, any nonzero vector lying
in the orthogonal complement of the closure of the space spanned by {ei} is the
g-eigenvector corresponding to the g-eigenvalue 0.

By replacing the compact linear operators Ti in Example 5.3 and Example 5.4
with some operators depending on the projection operator ES and imposing some
condition on S, two classes of compact operators are given as follows.

Example 5.5. Let F1 =
∑n

i=1A1i(F ◦ ES1i) and F2 =
∑∞

i=1A2i(F ◦ ES2i), where
F ∈ BC(X,X), S1i and S2i all containing 0 are precompact sets in the normed
space X, A1i and A2i are the functionals Ai given in Example 5.3 and Example 5.4,
respectively. F1, F2 ∈ B(X) and both F1 and F1 are compact operators.

If the operator γ give in Definition 3.14 is equal to F , R(S1i)∩R(S1j) = {0} and
R(S2i) ∩ R(S2j) = {0} for i ̸= j, A1i(x) are the g-eigenvalues of F1 corresponding
to the g-eigenvectors x lying in S1i\{0}, while A2i(x) are the g-eigenvalues of F2

corresponding to the g-eigenvectors x lying in S2i\{0}.
5.3. Multiplication operator and differentiation operator. In this subsec-
tion, two examples of nonlinear operators associated with the linear multiplication
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operator and the linear differentiation operator (see [5], Chapter 10.7) which are
related to the position operator and the momentum operator (see [5], Chapter 11),
respectively, in quantum mechanics are given. Some facts about the spectrums of
these operators are proved in Theorem 5.9.

Let Lp(−∞,∞), 1 ≤ p < ∞, be the spaces of all complex-valued functions x
defined on (−∞,∞) satisfying that |x|p is integrable with respect to the Lebesgue
measure.

Example 5.6. Let the linear operator Tm : STm → L2(−∞,∞) defined by Tm(x) =
x0x for x ∈ STm , where x0(t) = t for t ∈ (−∞,∞) and STm , a subset of L2(−∞,∞),
consists of all functions satisfying x0x ∈ L2(−∞,∞). The relevant nonlinear oper-
ator Fm : SFm → L1(−∞,∞) defined by Fm(x) = x0|x|2 for x ∈ SFm , where SFm , a
subset of L2(−∞,∞), consists of all functions satisfying x0|x|2 ∈ L1(−∞,∞). Note
that STm ⊂ SFm .

Example 5.7. Let the linear operator Td : STd
→ L2(−∞,∞) defined by Td(x) =

ix
′
for x ∈ STd

, where x
′
is the derivative of x and STd

, a subset of L2(−∞,∞),

consists of all functions satisfying x
′ ∈ L2(−∞,∞). The relevant nonlinear operator

Fd : SFd
→ L1(−∞,∞) defined by Fd(x) = ix

′
x̄ for x ∈ SFd

, where SFd
, a subset

of L2(−∞,∞), consists of all functions satisfying x
′
x̄ ∈ L1(−∞,∞), and where x̄

is the conjugate function of x. Note that STd
⊂ SFd

.

Remark 5.8. In the above examples,

< Tm(e), e >L2(−∞,∞)=
[
Fm(e), |e|2

]
L1(−∞,∞)

for any unit vector e ∈ STm and

< Td(e), e >L2(−∞,∞)=
[
Fd(e), |e|2

]
L1(−∞,∞)

for any unit vector e ∈ STd
, where < ·, · >L2(−∞,∞) is the inner product on

L2(−∞,∞) and for x1, x2 ∈ L1(−∞,∞) the quasi-product is defined by

[x1, x2]L1(−∞,∞) =

∫ ∞

−∞
x1(t)dt

∫ ∞

−∞
x2(t)dt.

e ∈ STm or e ∈ STd
is referred to as the state function (or the wave function) and Tm

and Td are the operators corresponding to the observables (see [5], Chapter 11.1)
in quantum mechanics.

The linear operator Tm is self-adjoint with the spectrum being all of R and has
no eigenvalue (see [5], Chapter 10.7). Similarly, the properties of the nonlinear
operators given in above examples are as follows.

Theorem 5.9. If SFm = STm ∩L1(−∞,∞) and SFd
= STd

∩L1(−∞,∞), i.e., both
D(Fm) ⊂ L1(−∞,∞) and D(Fd) ⊂ L1(−∞,∞), the quasi-product is

[x1, x2]L1(−∞,∞) =

∫ ∞

−∞
x1(t)dt

∫ ∞

−∞
x2(t)dt

for x1, x2 ∈ L1(−∞,∞), g(x) = |x|2, γ(x) = ||x||L1(−∞,∞)||x2||−1
L1(−∞,∞)|x|

2 for

x ̸= 0 and x ∈ SFm or x ∈ SFd
, then Fm is generalized real definite but Fd is not
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generalized real definite, and both have C as their g-spectrums. However, Fm has
no g-eigenvalue but any pure imaginary number is a g-eigenvalue of Fd.

Proof. The proof for Fm is given first. Let ex be any unit vector in SFm . Then[
Fm(ex), |ex|2

]
L1(−∞,∞)

=< Tm(ex), ex >L2(−∞,∞)∈ R

since Tm is self-adjoint. For any x ∈ SFm , x ̸= 0,

x = ||x||L1(−∞,∞)

(
x/ ||x||L1(−∞,∞)

)
= ||x||L1(−∞,∞) ex

and thus[
Fm(x), |x|2

]
L1(−∞,∞)

= ||x||4L1(−∞,∞)

[
Fm(ex), |ex|2

]
L1(−∞,∞)

∈ R,

i.e., Fm being generalized real definite. Next is to prove that Fm has no g-eigenvalue
with respect to the operator γ. For any λ ∈ C, there does not exist x ̸= 0 on a set
of measure greater than 0 satisfying

||Fmλ(x)||L1(−∞,∞) =

∫ ∞

−∞

∣∣∣t− λ||x||L1(−∞,∞)||x2||−1
L1(−∞,∞)

∣∣∣ |x(t)|2 dt = 0,

i.e., Fm having no g-eigenvalue, where Fmλ = Fm − λγ. Because Fmλ(x) = Fmλ(x̄)
for any x ∈ SFm satisfying x ̸= x̄, Fmλ is not injective and F−1

mλ does not exist for
any λ ∈ C, i.e., ρ(Fm) being an empty set.
Next, Fd is not generalized real definite because

[Fd(xµ), g(xµ)]L1(−∞,∞) =
−iµ

2
̸∈ R,

where µ > 0 and xµ(t) = µ1/2 exp[(−µt)/2] for t ≥ 0 and xµ(t) = 0 elsewhere.

Ḟurthermore,

Fd(xµ) =

[
(−i)µ3/2

4

]
γ(xµ)

and

Fd(x
∗
µ) =

[
iµ3/2

4

]
γ(x∗µ),

i.e., any pure imaginary number being a g-eigenvalue, where the functions x∗µ(t) =

µ1/2 exp[(µt)/2] for t ≤ 0 and x∗µ(t) = 0 elsewhere. Finally, because Fdλ is not
injective for any λ ∈ C, ρ(F ) is an empty set, where Fdλ = Fd − λγ.

□
Remark 5.10. If STd

given in Theorem 5.9 consists of all functions x ∈ L2(−∞,∞)

satisfying x
′ ∈ L2(−∞,∞) and being absolutely continuous on every compact in-

terval of R, then Td and Fd have the following properties.

• Td is self-adjoint and Fd is generalized real definite on SFd
.

• The spectrum of Td is all of R but Fd has C as its g-spectrum.
• Td has no eigenvalue and Fd has no g-eigenvalue.

The above results imply that the self-adjointness or the generalized real definiteness
relies on the domain of the operator of interest.
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6. Proofs of ancillary results

The proofs of some lemmas, theorems, and corollaries in Section 2.1, Section 3.1,
Section 3.2, and Section 4.1, are given in this section.

6.1. Proofs: Section 2.1. The proofs of Theorem 2.2, Corollary 2.3, Theorem
2.4, Corollary 2.5, and Theorem 2.7 are given in the subsection.

6.1.1. Proof of Theorem 2.2. First, for F ∈ B(X,Y ), p(F ) ≥ 0. Secondly p(F ) = 0
gives max(supx ̸=0,x∈X ∥F (x)∥Y /∥x∥X , ∥F (0)∥Y ) = 0. Hence F (x) = 0 for x ̸= 0
and F (0) = 0, i.e., F = 0. Thirdly, for α ∈ K,

p(αF ) = max

(
sup

x̸=0,x∈X

∥αF (x)∥Y
∥x∥X

, ∥αF (0)∥Y

)

= |α|max

(
sup

x ̸=0,x∈X

∥F (x)∥Y
∥x∥X

, ∥F (0)∥Y

)
= |α| p(F ).

Finally, for F1, F2 ∈ B(X,Y ),

p(F1 + F2) = max

(
sup

x ̸=0,x∈X

∥F1(x) + F2(x)∥Y
∥x∥X

, ∥F1(0) + F2(0)∥Y

)

≤ max

(
sup

x ̸=0,x∈X

∥F1(x)∥Y
∥x∥X

+ sup
x ̸=0,x∈X

∥F2(x)∥Y
∥x∥X

,

∥F1(0)∥Y + ∥F2(0)∥Y )

≤ max

(
sup

x ̸=0,x∈X

∥F1(x)∥Y
∥x∥X

, ∥F1(0)∥Y

)

+max

(
sup

x ̸=0,x∈X

∥F2(x)∥Y
∥x∥X

, ∥F2(0)∥Y

)
= p(F1) + p(F2).

6.1.2. Proof of Corollary 2.3. If x ≠ 0,

∥F1(x)∥Y
∥x∥X

≤ sup
x ̸=0,x∈X

∥F1(x)∥Y
∥x∥X

≤ ∥F1∥B(X,Y )

and hence ||F1(x)||Y ≤ ||F1||B(X,Y )||x||X . In addition, if F1(0) = F2(0) = 0,

∥F2 ◦ F1∥B(X,Z) = sup
x ̸=0,x∈X

∥(F2 ◦ F1)(x)∥Z
∥x∥X

≤ sup
x ̸=0,x∈X

∥F2∥B(Y,Z)∥F1(x)∥Y
∥x∥X

= ∥F2∥B(Y,Z)

(
sup

x ̸=0,x∈X

∥F1(x)∥Y
∥x∥X

)
= ∥F2∥B(Y,Z)∥F1∥B(X,Y ).
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6.1.3. Proof of Theorem 2.4. Let {Fn} be a Cauchy sequence in the space B(X,Y ).
Then for every positive ϵ, there exists a positive integer N such that for m,n > N ,
||Fn − Fm||B(X,Y ) < ϵ. Then if x ̸= 0,

∥Fn(x)− Fm(x)∥Y ≤ ∥Fn − Fm∥B(X,Y )∥x∥X < ϵ∥x∥X
by Corollary 2.3 and

∥Fn(0)− Fm(0)∥Y ≤ ∥Fn − Fm∥B(X,Y ) < ϵ.

Thus, {Fn(x)} is Cauchy in Y for x ∈ X and Fn(x) −→
n→∞

y, y ∈ Y , owing to the

completeness of Y . Define an operator F : X → Y by F (x) = y. For x ̸= 0, by the
continuity of the norm,

∥Fn(x)− F (x)∥Y = ∥Fn(x)− lim
m→∞

Fm(x)∥Y = lim
m→∞

∥Fn(x)− Fm(x)∥Y
≤ ϵ∥x∥X .

In addition,

∥Fn(0)− F (0)∥Y = lim
m→∞

∥Fn(0)− Fm(0)∥Y ≤ ϵ.

Thus, Fn − F ∈ B(X,Y ) and F ∈ B(X,Y ). Finally, because ||Fn − F ||B(X,Y ) ≤ ϵ,
{Fn} converges to F .

Let {Fn} be a Cauchy sequence in the space BC(X,Y ). There exists an oper-
ator F ∈ B(X,Y ) such that Fn −→

n→∞
F by the completeness of B(X,Y ). Then as

xm −→
m→∞

x,

∥F (xm)− F (x)∥Y ≤ ∥Fn(xm)− F (xm)∥Y + ∥Fn(xm)− Fn(x)∥Y
+∥Fn(x)− F (x)∥Y

and hence F (xm) −→
m→∞

F (x), i.e., F ∈ BC(X,Y ), by Corollary 2.3 and the conti-

nuity of Fn.

6.1.4. Proof of Corollary 2.5. By condition (b), there exist positive numbers δ and
M1 such that ∥F (x)∥Y /∥x∥X ≤ M1 for ||x||X < δ. By condition (a),

sup
{x:∥x∥X≥δ,x∈X}∩Kc

∥F (x)∥Y /∥x∥X ≤ M/δ.

Let δ∗ = max(δ, supx∈K ∥x∥X). Thus,

sup
{x:δ≤∥x∥X≤δ∗,x∈X}∩K

∥F (x)∥Y /∥x∥X ≤ M2

since the continuous function ∥F (·)∥Y /∥ · ∥X is bounded over the compact set {x :
δ ≤ ∥x∥X ≤ δ∗, x ∈ X} ∩ K, where M2 > 0. Finally,

∥F∥B(X,Y ) = max

(
sup

∥x∥X<δ,x∈X

∥F (x)∥Y
∥x∥X

, sup
{x:δ≤∥x∥X≤δ∗,x∈X}∩K

∥F (x)∥Y
∥x∥X

,

sup
{x:∥x∥X≥δ,x∈X}∩Kc

∥F (x)∥Y
∥x∥X

, ∥F (0)∥Y

)

≤ max

(
M1,M2,

M

δ
, ∥F (0)∥Y

)
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and hence F ∈ B(X,Y ).

6.1.5. Proof of Theorem 2.7. Let F1, F2, F3 ∈ B(X). First, if x ̸= 0,

[(F1 ∗ F2) ∗ F3] (x) =
(F1 ∗ F2)(x)F3(x)

∥x∥X

=
F1(x)F2(x)F3(x)

∥x∥2X

=
F1(x)(F2 ∗ F3)(x)

∥x∥X
= [F1 ∗ (F2 ∗ F3)] (x).

Besides,

[(F1 ∗ F2) ∗ F3] (0) = (F1 ∗ F2)(0)F3(0)

= F1(0)F2(0)F3(0)

= F1(0)(F2 ∗ F3)(0)

= [F1 ∗ (F2 ∗ F3)] (0).

Secondly, if x ̸= 0,

[F1 ∗ (F2 + F3)] (x) =
F1(x)(F2 + F3)(x)

∥x∥X

=
F1(x)F2(x) + F1(x)F3(x)

∥x∥X
= (F1 ∗ F2)(x) + (F1 ∗ F3)(x).

In addition,

[F1 ∗ (F2 + F3)] (0) = F1(0)(F2 + F3)(0)

= F1(0)F2(0) + F1(0)F3(0)

= (F1 ∗ F2)(0) + (F1 ∗ F3)(0).

[(F1+F2)∗F3](x) = (F1∗F3)(x)+(F2∗F3)(x) and [α(F1∗F2)](x) = [(αF1)∗F2](x) =
[F1 ∗ (αF2)](x) for x ∈ X and α ∈ K, can be proved analogously. Further,

∥F1 ∗ F2∥B(X)

= max

(
sup

x̸=0,x∈X

∥F1(x)F2(x)∥X
∥x∥2X

, ∥F1(0)F2(0)∥X

)

≤ max

(
sup

x ̸=0,x∈X

∥F1(x)∥X
∥x∥X

sup
x ̸=0,x∈X

∥F2(x)∥X
∥x∥X

, ∥F1(0)∥X∥F2(0)∥X

)

≤ max

(
sup

x ̸=0,x∈X

∥F1(x)∥X
∥x∥X

, ∥F1(0)∥X

)

max

(
sup

x ̸=0,x∈X

∥F2(x)∥X
∥x∥X

, ∥F2(0)∥X

)
= ∥F1∥B(X)∥F2∥B(X).
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If 1 is the unit element in X, the unit element e in B(X) is given by e(x) = ∥x∥X1
for x ̸= 0 and e(0) = 1. Then

(F ∗ e)(x) =
F (x)e(x)

∥x∥X
= F (x)1 = F (x)

= 1F (x) =
e(x)F (x)

∥x∥X
= (e ∗ F )(x)

for x ̸= 0,

(F ∗ e)(0) = F (0)e(0) = F (0)1 = F (0)

= 1F (0) = e(0)F (0) = (e ∗ F )(0),

and

∥e∥B(X) = max

(
sup

x ̸=0,x∈X

∥e(x)∥X
∥x∥X

, ∥e(0)∥X

)
= ∥1∥X
= 1,

where the last 1 is the unit element in the scalar field.

6.2. Proofs: Section 3.1. In this subsection, the proofs Theorem 3.7, Corollary
3.8, and Corollary 3.9 in Section 3.1 are given.

6.2.1. Proof of Theorem 3.7. If the quasi-product preserves the positivity,
[(FH)(x), g(x)]X ≥ 0 for x ∈ X given that both [F (x), g(x)]X ≥ 0 and
[H(x), g(x)]X ≥ 0. On the other hand, consider that the square bounded below
quasi-product has a left integral domain on the commutative unital Banach algebra
X. For F = 0 or H = 0, the result holds. If F (x) ̸= 0 and x ̸= 0, there exists a
positive function α1 : X → R such that [F (x), g(x)]X ≥ [α1(x)F

2(x), g(x)]X by the
properties of the quasi-product, i.e., F − α1F

2 ≥ 0. Define a sequence of g-positive
operators {Fn} by Fn+1 = Fn − αnF

2
n and F1 = F , where αn : X → R are positive

functions. Thus, F1 =
∑n

i=1 αiF
2
i +Fn+1. Similarly, define a sequence of g-positive

operators {Hn} by Hn+1 = Hn−βnH
2
n and H1 = H, where βn : X → R are positive

functions. Because the quasi-product is square bounded below, by property (c) of
the quasi-product, there exists a positive number c such that

c

n∑
i=1

∣∣∣∣∣∣(α1/2
i Fi)(x)

∣∣∣∣∣∣2
X
||g(x)||X ≤

[
n∑

i=1

(αiF
2
i )(x), g(x)

]
X

≤ [F (x), g(x)]X

and thus ||(α1/2
n Fn)(x)||X −→

n→∞
0. This gives Fn(x) −→

n→∞
0 since otherwise

αn(x) =
[Fn(x), g(x)]X
k [F 2

n(x), g(x)]X

converges to a nonzero positive number by the left integral domain property of

the quasi-product and
∣∣∣∣∣∣(α1/2

n Fn)(x)
∣∣∣∣∣∣
X

does not converge to 0, i.e., a contra-

diction, where k is some positive number. Then
∑n

i=1(αiF
2
i )(x) −→

n→∞
F (x) and
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i=1(βiH

2
i )(x) −→

n→∞
H(x). Finally,

[(FH)(x), g(x)]X

= lim
n→∞

 n∑
i=1

(αiF
2
i )(x)

n∑
j=1

(βjH
2
j )(x), g(x)


X

= lim
n→∞

 n∑
i=1

n∑
j=1

(αiβjF
2
i H

2
j )(x), g(x)


X

≥ k lim
n→∞

n∑
i=1

n∑
j=1

[
(αiβjF

2
i H

2
j )(x), g(x)

]
X

≥ 0

by the properties of the quasi-product and the commutativity of X, where k is some
positive number.

6.2.2. Proof of Corollary 3.8. (a): Let Ĝ2 = G2 = F . Then G2−Ĝ2 = (G+Ĝ)(G−
Ĝ) = 0 by the commutativity of X. Thus, Ĝ(x) = G(x) or Ĝ(x) = −G(x) for x ∈ X

because X is an integral domain. If Ĝ(x) = −G(x) holds, 0 ≤ [Ĝ(x), g(x)]X =

[−G(x), g(x)]X ≤ 0 and thus Ĝ(x) = G(x) = 0 by the left integral domain property
of the quasi-product.
(b): Define a sequence of operators {Sn} by Sn+1 = S1+S2

n/2 and let Rn = 1X−Sn,
where S1 = (1X − F )/2. 0 ≤ S1 ≤ 1X , R1 ≥ 0, and Sn+1 = (2S1 + S2

n)/2 ≥ 0 for
every n by Lemma 3.3 (b), (c) and by induction. Also, by induction, Sn ≥ Sm for
n > m. Further, Rn+1 = 1X − Sn+1 = F/2 + Rn(1X + Sn)/2 ≥ 0 for every n by
Theorem 3.7 and by induction. Then R2

m − R2
n = (Sn − Sm)(Rm + Rn) ≥ 0 by

Theorem 3.7 and hence [R2
m(x), g(x)]X ≥ [R2

n(x), g(x)]X for x ∈ X by Lemma 3.3
(a). Note that {[R2

n(x), g(x)]} is a decreasing convergent sequence. Since

(Rm −Rn)
2

= R2
m +R2

n − 2RmRn

≤ R2
m −R2

n

and hence

||Rm(x)−Rn(x)||2X ||g(x)||X
≤ k1[(Rm −Rn)

2(x), g(x)]X

≤ k1[R
2
m(x)−R2

n(x), g(x)]X

≤ k1k2
{
[R2

m(x), g(x)]X − [R2
n(x), g(x)]X

}
,

both {Rn(x)} and {Sn(x)} are Cauchy sequences, where k1 and k2 are some positive
numbers. Define the operator S by S(x) = limn→∞ Sn(x). Because

0 ≤ [Sn(x), g(x)]X ≤ [1X(x), g(x)]X ,

0 ≤ S ≤ 1X by the continuity of the quasi-product. Then limn→∞ Sn+1(x) =
S1(x) + limn→∞ S2

n(x)/2 gives (1X − S)2(x) = F (x), i.e., G = 1X − S.
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Because Sn is a polynomial of F , WSn = SnW and

lim
n→∞

W (x)Sn(x) = W (x)S(x) = S(x)W (x) = lim
n→∞

Sn(x)W (x).

Hence,

W (x)G(x) = W (x)−W (x)S(x) = W (x)− S(x)W (x) = G(x)W (x).

6.2.3. Proof of Corollary 3.9. (a): The proof follows the lines given in the one of
Corollary 3.8 (a).
(b): For F ∈ B(X) and F ̸= 0, there exists a positive number k such that the oper-

ator F̂ defined by F̂ (x) = kF (x)/(||F ||B(X)||x||X) for x ̸= 0 and F̂ (0) = 0 satisfying

0 ≤ F̂ ≤ 1X . By Corollary 3.8, there exists a positive operator Ĝ satisfying Ĝ2 = F̂ .
Then the operator G defined by G(x) = (||F ||B(X)/k)

1/2||x||XĜ(x) for x ∈ X is the
g-positive operator in B(X) satisfying G ∗ G = F . Finally, the community of G

follows directly by the community of Ĝ.

6.3. Proofs: Section 3.2. In this subsection, the proofs of Lemma 3.12, Lemma
3.13, Lemma 3.16, and Lemma 3.17 in Section 3.2 are given.

6.3.1. Proof of Lemma 3.12. Because ||ES1(x)||X ≤ ||x||X , ||ES1 ||B(X) ≤ 1. Because
the proof of (b) for the projection operators is very similar to the one for the
projection indicators, only the one for the projection indicators is given.
(i)* implies (iv)*: If x ∈ N(1S1), ||1S1(x)||X = 0 ≤ ||1S2(x)||X . On the other hand,
if x ̸∈ N(1S1), 1S1(x) = 1 and thus 1 = 1S1(x) = 1S1(x)1S2(x) = 1S2(x), i.e.,
||1S1(x)||X = ||1S2(x)||X .
(iv)* implies (iii)*: If x ∈ N(1S2), then ||1S1(x)||X ≤ ||1S2(x)||X = 0 and hence
1S1(x) = 0, i.e., x ∈ N(1S1).
(iii)* implies (ii)*: If x ∈ S1 and x ̸= 0, 1S1(x) = 1 and x ̸∈ N(1S1). Thus,
x ̸∈ N(1S2), 1S2(x) = 1, and x ∈ S2.
(ii)* implies (i)*: If x ̸∈ S1, 0 = 1S1(x) = 1S1(x)1S2(x) = 1S2(x)1S1(x). On the
other hand, if x ∈ S1, then x ∈ S2 and thus 1 = 1S1(x) = 1S2(x) = 1S1(x)1S2(x) =
1S2(x)1S1(x).
To prove (c), there are 3 cases: x ∈ S1, x ∈ S2\S1, or x ∈ X\S2. If x ∈ S1,
ES2−S1(x) = x − x = 0 and ES2−S1 ◦ ES2−S1(x) = ES2−S1(0) = 0 = ES2−S1(x).
If x ∈ S2\S1, ES2−S1(x) = x − 0 = x and ES2−S1 ◦ ES2−S1(x) = ES2−S1(x). If
x ∈ X\S2, ES2−S1(x) = 0 − 0 = 0 and ES2−S1 ◦ ES2−S1(x) = ES2−S1(0) = 0 =
ES2−S1(x). Finally, by (b), (i)*,

1S2−S11S2−S1

= 12S2
+ 12S1

− 1S11S2 − 1S21S1

= 1S2 + 1S1 − 1S1 − 1S1

= 1S2 − 1S1

= 1S2−S1 .
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6.3.2. Proof of Lemma 3.13. (a): Because W commutes with F and −F , W com-
mutes with |F |. Further,

F+W =
FW + |F |W

2
=

WF +W |F |
2

= WF+

and

F−W =
|F |W − FW

2
=

W |F | −WF

2
= WF−.

(b): By (a) and Lemma 3.6 (b),

F−F+ = F+F− =
(|F |+ F ) (|F | − F )

4
=

|F |2 − F 2 + F |F | − |F |F
4

= 0.

(c): If x ∈ S, F+(x) = 0 and 1S(x) = 1. Then F+(x)1S(x) = 1S(x)F
+(x) = 0 and

F−(x)1S(x) = 1S(x)F
−(x) = F−(x). On the other hand, if x ̸∈ S, then F+(x) =

F (x) ̸= 0, i.e., |F |(x) = F (x), F−(x) = [|F |(x)−F (x)]/2 = 0, and 1S(x) = 0. Hence
F+(x)1S(x) = 1S(x)F

+(x) = 0 and F−(x)1S(x) = 1S(x)F
−(x) = 0 = F−(x).

(d): 1SF = F1S = (F+ − F−)1S = F+1S − F−1S = 0 − F− = −F− by (c) and
thus (1X − 1S)F = F (1X − 1S) = F1X − F1S = F + F− = F+.
(e): F− = (F− + F+)1S = |F |1S ≥ 0 and 0 ≤ |F |(1X − 1S) = |F | − F− = F+ by
(c).

6.3.3. Proof of Lemma 3.16. By property (b) of the quasi-product and Corollary
2.3,

|[F (x), g(x)]X | ≤ c ||F ||B(X) ||x||X ||g(x)||X
for x ∈ X and k can be c||F ||B(X) thus, where c is some positive number.

6.3.4. Proof of Lemma 3.17. For any g-eigenvalue λ corresponding to the g-eigenvector
x ̸= 0, [F (x), g(x)]X = [λγ(x), g(x)]X = k(x)λ||x||X ||g(x)||X ∈ R by property (c) of
the quasi-product and thus λ ∈ R, where k is a positive bounded function defined
on X and is bounded away from 0. Further, if F ∈ B(X), there exists a positive
number k such that

|k(x)| |λ| ||x||X ||g(x)||X = |[λγ(x), g(x)]X | ≤ k ||x||X | ||g(x)||X
by Lemma 3.16 and thus |λ| ≤ k/|k(x)|, i.e., |λ| lying in a bounded interval of R
due to k being bounded away from 0.

6.4. Proofs: Section 4.1. In this subsection, the proofs of three lemmas, Lemma
4.2, Lemma 4.4, and Lemma 4.8 in Section 4.1, are given.

6.4.1. Proof of Lemma 4.2.

||F1n ∗ F2n − F1 ∗ F2||B(X)

≤ ||(F1n − F1) ∗ F2n||B(X) + ||F1 ∗ (F2n − F2)||B(X)

≤ ||F1n − F1||B(X)

(
||F2n − F2||B(X) + ||F2||B(X)

)
+ ||F1||B(X) ||F2n − F2||B(X) ,

then ||(F1n ∗ F2n)− (F1 ∗ F2)||B(X) −→
n→∞

0.
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6.4.2. Proof of Lemma 4.4. p(λ) ≥ 0 for λ ∈ [m,M ] implying p(F ) ≥ 0 is proved
first. If p is over the real field and p(λ) ≥ 0 for λ ∈ [m,M ], then p has the form

p(λ) = a

n1∏
i=1

(λ− αi)

n2∏
j=1

(βj − λ)

n3∏
k=1

[
(λ− γk)

2 + κ2k
]
,

where n1, n2, and n3 are nonnegative integers, the associated product is equal to 1
as nl = 0, l = 1, 2, 3, a ≥ 0, γk, κk ∈ R, αi ≤ m, and βj ≥ M . Then by Lemma 3.16
and the properties of the quasi-product, there exist positive numbers k1, k2, and k3
such that for m ≤ −k2/k3 and x ∈ X

[(F − αie)(x), g(x)]X
≥ k1 ([F (x), g(x)]X − [αie(x), g(x)]X)

≥ k1 (−k2 ||x||X ||g(x)||X − αik3 ||x||X ||g(x)||X)

≥ 0.

Similarly, there exists a number M > 0 such that [(βje − F )(x), g(x)]X ≥ 0 for
βj ≥ M and x ∈ X. Because F−αie ≥ 0, βje−F ≥ 0, and (F−γke)

∗2+(κke)
∗2 ≥ 0

by the properties of the quasi-product, thus p(F ) ≥ 0 by Theorem 3.7.
Let c = maxλ∈[m,M ] |p(λ)|. Because c−p(λ) ≥ 0 and c+p(λ) ≥ 0 for λ ∈ [m,M ],

ce− p(F ) ≥ 0 and ce+ p(F ) ≥ 0. Therefore, c2e2 ≥ p2(F ) by Theorem 3.7. By the
square bounded below property of the quasi-product,

k ||p(F )(x)||2X ||g(x)||X ≤
[
p2(F )(x), g(x)

]
X

≤ kc2 ||e(x)||2X ||g(x)||X
for x ∈ X and hence ||p(F )||B(X) ≤ (k/k)1/2c, where k and k are some positive
numbers.

6.4.3. Proof of Lemma 4.8. Because

||f(F )||B(X)

≤ ||f(F )− pn(F )||B(X) + ||pn(F )||B(X)

≤ ||f(F )− pn(F )||B(X) + k
(
||pn − f ||C([m,M ]) + ||f ||C([m,M ])

)
by Lemma 4.4, the result holds by letting n → ∞, where pn is a sequence of
polynomial functions defined on [m,M ] over the real field converging uniformly to
f in C([m,M ]).
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