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property if its image is closed, the dimension of its kernel and the codimension of
its image are finite. As a consequence, the problem Lu = f is solvable if and
only if ϕi(f) = 0 for a finite number of functionals ϕi from the dual space F ∗.
Elliptic equations in bounded domains with a sufficiently smooth boundary satisfy
the Fredholm property if the ellipticity condition, proper ellipticity and Lopatinskii
conditions are fulfilled (see e.g. [1], [9], [12]). This is the main result of the theory
of linear elliptic problems. In the case of unbounded domains, these conditions may
not be sufficient and the Fredholm property may not be satisfied. For example,
Laplace operator, Lu = ∆u, in Rd does not satisfy the Fredholm property when
considered in Hölder spaces, L : C2+α(Rd) → Cα(Rd), or in Sobolev spaces, L :
H2(Rd) → L2(Rd). Linear elliptic problems in unbounded domains satisfy the
Fredholm property if and only if, in addition to the conditions stated above, limiting
operators are invertible (see [14]).

In the case of non-Fredholm operators the usual solvability conditions may not
be applicable and solvability conditions are, in general, not known. In the case of
the operator Lu ≡ ∆u+ a(x)u = f, solvability conditions in R3 can be obtained by
a rather sophisticated application of the theory of self-adjoint operators (see [18]).
Similar to the case of Fredholm operators, solvability conditions are formulated in
terms of orthogonality to solutions of the homogeneous adjoint problem. There are
several other examples of linear elliptic operators without Fredholm property for
which solvability conditions can be obtained (see [14]- [21]). The bi-Laplacian is
relevant to the studies of the solvability conditions for a linearized Cahn-Hilliard
problem (see e.g. [15]). The boundedness of the gradient of a solution for the bihar-
monic equation was proved in [10]. The behavior near the boundary of solutions to
the Dirichlet problem for the biharmonic operator was investigated in [11]. Solv-
ability relations play a crucial role in the analysis of nonlinear elliptic problems.
In the case of non Fredholm operators, in spite of some progress in understanding
of linear equations, there exist only few examples where nonlinear non-Fredholm
operators are analyzed (see [4]- [6]).

In this work we continue to study nonlinear non-Fredholm elliptic operators in
the whole space. We formulate the main results in Section 2 and we prove them in
the following sections.

2. Formulation of the results

The nonlinear part of system (1.1) will satisfy the following regularity conditions.

Assumption 2.1. Functions Fk(u, x) : RN × Ω → R, 1 ≤ k ≤ N are such that

(2.1) |H(u, x)|RN ≤ K|u|RN + h(x) for u ∈ RN , x ∈ Ω

with a constant K > 0 and h(x) : Ω → R+, h(x) ∈ L2(Ω). Moreover, they are

Lipschitz continuous functions, such that for any u(1),(2) ∈ RN , x ∈ Ω

(2.2) |H(u(1), x)−H(u(2), x)|RN ≤ L|u(1) − u(2)|RN ,

with a constant L > 0.
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Here and below the norm of a vector function given by (1.2) is

|u|RN :=

√√√√ N∑
k=1

u2k.

Obviously, the stationary solutions of (1.1), if they exist, will satisfy the system of
nonlocal elliptic equations

−∆2uk +

∫
Ω
Gk(x− y)Fk(u1(y), u2(y), ..., uN (y), y)dy + a2kuk = 0,

where ak > 0, 1 ≤ k ≤ N . Let us introduce the auxiliary problem with ak > 0, 1 ≤
k ≤ N as

(2.3) ∆2uk − a2kuk =

∫
Ω
Gk(x− y)Fk(v1(y), v2(y), ..., vN (y), y)dy.

We denote

(2.4) (f1(x), f2(x))L2(Ω) :=

∫
Ω
f1(x)f̄2(x)dx,

with a slight abuse of notations when these functions are not square integrable, like
for instance those involved in orthogonality relations (2.5) and (2.6) below. Indeed,
if f1(x) ∈ L1(Ω) and f2(x) ∈ L∞(Ω), the integral in the right side of (2.4) makes
sense. In the first part of the article we consider the case of Ω = Rd, 1 ≤ d ≤ 3,
such that the appropriate Sobolev space is equipped with the norm

∥u∥2H4(Rd,RN ) :=
N∑
k=1

∥uk∥2H4(Rd) =
N∑
k=1

{∥uk∥2L2(Rd) + ∥∆2uk∥2L2(Rd)},

with u(x) : Rd → RN . In the present work we generalize the result of [22] obtained
in these lower dimensions. We believe that a similar statement can be established
when d ≥ 4 and leave it as an open question. The main issue for the problem above
is that the operators ∆2−a2k : H4(Rd) → L2(Rd), ak > 0, 1 ≤ k ≤ N fail to satisfy
the Fredholm property, which is the obstacle to solve problem (2.3). The similar sit-
uations but in linear problems, both self- adjoint and non self-adjoint involving non
Fredholm second or fourth order differential operators or even systems of equations
with non Fredholm operators have been studied extensively in recent years (see [13],
[14], [15], [16], [17], [18], [19], [20], [21] ). However, we manage to prove that system
(2.3) in this case defines a map Ta : H4(Rd,RN ) → H4(Rd,RN ), ak > 0, 1 ≤ k ≤ N ,
which is a strict contraction under the given technical conditions. Let us make the
following assumption on the integral kernels involved in the nonlocal parts of (2.3).

Assumption 2.2. Let 1 ≤ k ≤ N, N ≥ 2, Gk(x) : Rd → R, Gk(x) ∈ L1(Rd),
xGk(x) ∈ L1(Rd), 1 ≤ d ≤ 3 and all ak > 0. Let

(2.5)

(
Gk(x),

e±i
√
akx

√
2π

)
L2(R)

= 0, d = 1
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and

(2.6)

(
Gk(x),

eipx

(2π)
d
2

)
L2(Rd)

= 0, p ∈ Sd√
ak
, d = 2, 3.

Here Sd
r denotes the sphere in Rd of radius r centered at the origin.

Let us use the hat symbol to designate the standard Fourier transform

(2.7) Ĝk(p) :=
1

(2π)
d
2

∫
Rd

Gk(x)e
−ipxdx, p ∈ Rd,

such that

(2.8) ∥Ĝk(p)∥L∞(Rd) ≤
1

(2π)
d
2

∥Gk∥L1(Rd).

We define the following auxiliary quantities for 1 ≤ k ≤ N ,

(2.9) Mk := max
{∥∥∥ Ĝk(p)

|p|4 − a2k

∥∥∥
L∞(Rd)

,
∥∥∥ p4Ĝk(p)

|p|4 − a2k

∥∥∥
L∞(Rd)

}
,

where all ak > 0. Note that expressions (2.9) are finite by means of the first
lemma of the Appendix of [23] under our Assumption 2.2. This lemma is a trivial
generalization of Lemmas A1 and A2 of [19] when the standard Laplace operator
in the integro-differential equation is being replaced by the bi-Laplacian, under the
same orthogonality conditions (2.5) and (2.6). Thus, we define

(2.10) M = maxMk, 1 ≤ k ≤ N.

We have the following proposition.

Theorem 2.3. Let Ω=Rd, d≤ 3, Assumptions 2.1 and 2.2 hold and
√
2(2π)

d
2ML <

1.

Then the map Tav = u on H4(Rd,RN ) defined by the system of equations (2.3)

has a unique fixed point v(a) : Rd → RN , which is the only stationary solution of
problem (1.1) in H4(Rd,RN ).

This fixed point v(a) is nontrivial provided the intersection of supports of the Fourier

transforms of functions suppF̂k(0, x)(p) ∩ suppĜk(p) is a set of nonzero Lebesgue
measure in Rd for some 1 ≤ k ≤ N .

In the second part of the work we consider the analogous system on the finite
interval Ω = I := [0, 2π] with periodic boundary conditions for the solution vector
function and its first three derivatives. We assume the following about the integral
kernels involved in the nonlocal parts of system (2.3) in this case.

Assumption 2.4. Let Ω = I, 1 ≤ k ≤ N, N ≥ 2, Gk(x) : I → R, Gk(x) ∈ L1(I)
with Gk(0) = Gk(2π) and 1 ≤ m ≤ N − 1, m ∈ N.

I) Let ak > 0 and ak ̸= n2, n ∈ Z for 1 ≤ k ≤ m.
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II) Let ak = n2
k, nk ∈ N and

(2.11)

(
Gk(x),

e±inkx

√
2π

)
L2(I)

= 0, m+ 1 ≤ k ≤ N.

Let Fk(u, 0) = Fk(u, 2π) for u ∈ RN and k = 1, ..., N .

We introduce the Fourier transform for the functions on the [0, 2π] interval as

(2.12) Gk,n :=

∫ 2π

0
Gk(x)

e−inx

√
2π

dx, n ∈ Z.

Similarly to the whole space case we define

(2.13) Pk := max

{∥∥∥∥∥ Gk,n

n4 − a2k

∥∥∥∥∥
l∞

,

∥∥∥∥∥ n4Gk,n

n4 − a2k

∥∥∥∥∥
l∞

}
, 1 ≤ k ≤ N.

By means of the second lemma of the Appendix of [23] under Assumption 2.4 above
the quantities given by (2.13) are finite. This lemma is an easy generalization of
Lemma A3 of [19] when the standard Laplace operator considered on the interval I
with periodic boundary conditions is replaced by the bi-Laplacian, under the same
orthogonality relations (2.11). This allows us to define

(2.14) P := maxPk, 1 ≤ k ≤ N

with Pk defined in formula (2.13). For the studies of the existence of solutions of
our problem we use the corresponding function spaces

H4(I) = {u(x) : I → R | u(x), u′′′′(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π),

u′′(0) = u′′(2π), u′′′(0) = u′′′(2π)}.
When ak = n2

k, we introduce the following auxiliary constrained subspaces for
nk ∈ N, m+ 1 ≤ k ≤ N ,

(2.15) H4
k(I) := {u ∈ H4(I) |

(
u(x),

e±inkx

√
2π

)
L2(I)

= 0},

with the goal of having uk(x) ∈ H4
k(I), m+1 ≤ k ≤ N . The constrained subspaces

defined above are Hilbert spaces as well (see e.g. Chapter 2.1 of [8]). The resulting
space used for establishing the existence of solutions u(x) : I → RN of system (2.3)
will be the direct sum of the spaces mentioned above, namely

H4
c (I,RN ) := ⊕m

k=1H
4(I)⊕N

k=m+1 H
4
k(I),

such that the corresponding Sobolev norm is given by

∥u∥2H4
c (I,RN ) =

N∑
k=1

{∥uk∥2L2(I) + ∥u′′′′k ∥2L2(I)},

with u(x) : I → RN . Let us prove that the system of equations (2.3) in this case
defines a map τa on the above mentioned space which will be a strict contraction
under our assumptions.
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Theorem 2.5. Let Ω = I, Assumptions 2.1 and 2.4 hold and 2
√
πPL < 1.

Then the map τav = u on H4
c (I,RN ) defined by the system of equations (2.3) has

a unique fixed point v(a) : I → RN , the only stationary solution of problem (1.1) in
H4

c (I,RN ).

This fixed point v(a) is nontrivial provided the Fourier coefficients

Gk,nFk(0, x)n ̸= 0

for some k = 1, ..., N and some n ∈ Z.

Remark. We use the constrained subspaces H4
k(I), such that the operators

d4

dx4
− n4

k : H4
k(I) → L2(I)

which possess the Fredholm property, have trivial kernels.

We conclude the article with the studies of our system on the product of sets,
where one is the finite interval with periodic boundary conditions as before and
another is the whole space of dimension not exceeding two. Thus, in our notations
Ω = I ×Rd = [0, 2π]×Rd, d = 1, 2 and x = (x1, x⊥) with x1 ∈ I and x⊥ ∈ Rd. We
make the following assumption about the integral kernels involved in the nonlocal
parts of system (2.3) in such case.

Assumption 2.6. Let Ω = I × Rd, d = 1, 2, 1 ≤ k ≤ N, N ≥ 2, Gk(x) : Ω →
R, Gk(x) ∈ L1(Ω), Gk(0, x⊥) = Gk(2π, x⊥) for x⊥ ∈ Rd a.e. and 1 ≤ m ≤
N − 1, m ∈ N.

I) Let n2
k < ak < (nk + 1)2, nk ∈ Z+ = N ∪ {0}, x⊥Gk(x) ∈ L1(Ω),

(2.16)

(
Gk(x1, x⊥),

einx1

√
2π

e±i
√

ak−n2x⊥
√
2π

)
L2(Ω)

= 0, |n| ≤ nk, d = 1,

(2.17)

(
Gk(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)
L2(Ω)

= 0, p ∈ S2√
ak−n2

a.e.,

|n| ≤ nk, d = 2

for 1 ≤ k ≤ m.
II) Let ak = n2

k, nk ∈ N, x2⊥Gk(x) ∈ L1(Ω),

(2.18)

(
Gk(x1, x⊥),

einx1

√
2π

e±i
√

n2
k−n2x⊥

√
2π

)
L2(Ω)

= 0, |n| ≤ nk − 1, d = 1,

(2.19)

(
Gk(x1, x⊥),

einx1

√
2π

eipx⊥

2π

)
L2(Ω)

= 0, p ∈ S2√
n2
k−n2

a.e.,

|n| ≤ nk − 1, d = 2,

(2.20)

(
Gk(x1, x⊥),

e±inkx1

√
2π

)
L2(Ω)

= 0,

(
Gk(x1, x⊥),

e±inkx1

√
2π

x⊥, s

)
L2(Ω)
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= 0,

for 1 ≤ s ≤ d, m+1 ≤ k ≤ N . Let Fk(u, 0, x⊥) = Fk(u, 2π, x⊥) for x⊥ ∈ Rd

a.e., u ∈ RN and 1 ≤ k ≤ N .

Let Gk(x) be a function on our product of sets, Gk(x) : Ω = I × Rd → R, d =
1, 2, Gk(0, x⊥) = Gk(2π, x⊥) for x⊥ ∈ Rd a.e., such that its Fourier transform on
the product of sets is given by

(2.21) Ĝk,n(p) :=
1

(2π)
d+1
2

∫
Rd

dx⊥e
−ipx⊥

∫ 2π

0
Gk(x1, x⊥)e

−inx1dx1,

p ∈ Rd, n ∈ Z. The norm

(2.22) ∥Ĝk,n(p)∥L∞
n,p

:= sup{p∈Rd, n∈Z}|Ĝk,n(p)| ≤
1

(2π)
d+1
2

∥Gk∥L1(Ω)

and

Gk(x) =
1

(2π)
d+1
2

∞∑
n=−∞

∫
Rd

Ĝk,n(p)e
ipx⊥einx1dp.

It is also helpful to introduce the Fourier transform only in the first variable, namely

(2.23) Gk,n(x⊥) :=

∫ 2π

0
Gk(x1, x⊥)

e−inx1

√
2π

dx1, n ∈ Z.

Let us define

ξ
(a)
k,n(p) :=

Ĝk,n(p)

(p2 + n2)2 − a2k
,

with 1 ≤ k ≤ N, n ∈ Z, p ∈ Rd, d = 1, 2, ak > 0 and introduce

(2.24) Qk := max{∥ξ(a)k,n(p)∥L∞
n,p

, ∥(p2 + n2)2ξ
(a)
k,n(p)∥L∞

n,p
}, 1 ≤ k ≤ N.

Expressions (2.24) are finite by means of the third and the last lemmas of the
Appendix of [23] under our Assumption 2.6. These lemmas are the trivial gener-
alizations of Lemmas A5 and A6 of [19] when the Laplace operator in our domain
Ω is replaced by the bi-Laplacian, under the same orthogonality conditions (2.16),
(2.17), (2.18), (2.19), (2.20). This enables us to define

(2.25) Q = max1≤k≤NQk.

The total Laplace operator in this context will be given by

∆ :=
∂2

∂x21
+

d∑
s=1

∂2

∂x2⊥,s

.

The corresponding Sobolev space for our problem is H4(Ω,RN ) of vector functions
u(x) : Ω → RN , such that for k = 1, ..., N

uk(x), ∆2uk(x) ∈ L2(Ω), uk(0, x⊥) = uk(2π, x⊥),

∂uk
∂x1

(0, x⊥) =
∂uk
∂x1

(2π, x⊥),
∂2uk
∂x21

(0, x⊥) =
∂2uk
∂x21

(2π, x⊥),

∂3uk
∂x31

(0, x⊥) =
∂3uk
∂x31

(2π, x⊥),
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with x⊥ ∈ Rd a.e. It is equipped with the norm

∥u∥2H4(Ω,RN ) =

N∑
k=1

{∥uk∥2L2(Ω) + ∥∆2uk∥2L2(Ω)}.

Analogously to the whole space case treated in Theorem 2.3 above, the operators
∆2 − a2k : H4(Ω) → L2(Ω), ak > 0 are non Fredholm. Let us establish that

system (2.3) in this context defines a map ta : H4(Ω,RN ) → H4(Ω,RN ), a strict
contraction under the given technical conditions.

Theorem 2.7. Let Ω = I × Rd, d = 1, 2, Assumptions 2.1 and 2.6 hold and√
2(2π)

d+1
2 QL < 1.

Then the map tav = u on H4(Ω,RN ) defined by system (2.3) has a unique fixed

point v(a) : Ω → RN , which the only stationary solution of the system of equations
(1.1) in H4(Ω,RN ).

This fixed point v(a) is nontrivial provided that for some 1 ≤ k ≤ N and a cer-
tain n ∈ Z the intersection of supports of the Fourier transforms of functions

suppF̂k(0, x)n(p) ∩ suppĜk,n(p) is a set of nonzero Lebesgue measure in Rd.

Remark. Note that the maps discussed above act on real valued vector functions
by virtue of the assumptions on Fk(u, x) and Gk(x), 1 ≤ k ≤ N involved in the
nonlocal terms of the system of equations (2.3).

3. The problem in the whole space

Proof of Theorem 2.3. Let us first suppose that in the case of Ω = Rd for some v ∈
H4(Rd,RN ) there exist two solutions u(1),(2) ∈ H4(Rd,RN ) of system (2.3). Then

their difference w(x) := u(1)(x)−u(2)(x) ∈ H4(Rd,RN ) will satisfy the homogeneous
system of equations

∆2wk = a2kwk, 1 ≤ k ≤ N.

Since the bi-Laplacian acting in the whole space does not have any nontrivial square
integrable eigenfunction, w(x) vanishes a.e. in Rd.

Let us choose arbitrarily v(x) ∈ H4(Rd,RN ). We apply the standard Fourier
transform (2.7) to both sides of (2.3). This gives us

(3.1) ûk(p) = (2π)
d
2
Ĝk(p)f̂k(p)

|p|4 − a2k
, k = 1, ..., N.

Here f̂k(p) denotes the Fourier image of Fk(v(x), x). Clearly, we have the upper
bounds

|ûk(p)| ≤ (2π)
d
2Mk|f̂k(p)| and ||p|4ûk(p)| ≤ (2π)

d
2Mk|f̂k(p)|,

k = 1, ..., N , where all Mk are finite by virtue of the first lemma of the Appendix
of [23] under Assumption 2.2 above. This enables us to derive the estimate from
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above for the norm

∥u∥2H4(Rd,RN ) =
N∑
k=1

{∥ûk(p)∥2L2(Rd) + ∥|p|4ûk(p)∥2L2(Rd)} ≤

≤ 2(2π)dM2
N∑
k=1

∥Fk(v(x), x)∥2L2(Rd),

which is finite by means of (2.1) of Assumption 2.1 for |v(x)|RN ∈ L2(Rd). Hence,
for any

v(x) ∈ H4(Rd,RN )

there is a unique solution
u(x) ∈ H4(Rd,RN )

of system (2.3) with its Fourier transform given by (3.1), such that the map Ta :

H4(Rd,RN ) → H4(Rd,RN ) is well defined. We choose arbitrarily v(1),(2)(x) ∈
H4(Rd,RN ) so that their images u(1),(2) = Tav

(1),(2) ∈ H4(Rd,RN ). Thus,

∆2u
(1)
k − a2ku

(1)
k =

∫
Rd

Gk(x− y)Fk(v
(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy,

∆2u
(2)
k − a2ku

(2)
k =

∫
Rd

Gk(x− y)Fk(v
(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy,

with 1 ≤ k ≤ N . We apply standard Fourier transform (2.7) to both sides of these
systems of equations. This gives us

û
(1)
k (p) = (2π)

d
2
Ĝk(p)f̂

(1)
k (p)

|p|4 − a2k
, û

(2)
k (p) = (2π)

d
2
Ĝk(p)f̂

(2)
k (p)

|p|4 − a2k
, 1 ≤ k ≤ N.

Here f̂
(j)
k (p) stands for the Fourier transform of Fk(v

(j)(x), x), j = 1, 2. Evidently,
for k = 1, ..., N , we have

|û(1)k (p)− û
(2)
k (p)| ≤ (2π)

d
2M |f̂ (1)

k (p)− f̂
(2)
k (p)|,

||p|4û(1)k (p)− |p|4û(2)k (p)| ≤ (2π)
d
2M |f̂ (1)

k (p)− f̂
(2)
k (p)|.

Hence, for the appropriate norms of our vector functions we derive

∥u(1) − u(2)∥2H4(Rd,RN )

=

N∑
k=1

{
∥û(1)k (p)− û

(2)
k (p)∥2L2(Rd) + ∥|p|4û(1)k (p)− |p|4û(2)k (p)∥2L2(Rd)

}

≤ 2(2π)dM2
N∑
k=1

∥Fk(v
(1)(x), x)− Fk(v

(2)(x), x)∥2L2(Rd).

Apparently, v
(1),(2)
k (x) ∈ H4(Rd) ⊂ L∞(Rd), d ≤ 3 by means of the Sobolev embed-

ding. By virtue of condition (2.2) with the vector functions involved in it having
the finite valued components, we easily arrive at

∥Tav
(1) − Tav

(2)∥H4(Rd,RN ) ≤
√
2(2π)

d
2ML∥v(1) − v(2)∥H4(Rd,RN ),
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with the constant in the right side of this estimate less than one via the assumption
of the theorem. Therefore, by means of the Banach contraction principle, there
exists a unique function v(a) ∈ H4(Rd,RN ) with the property Tav

(a) = v(a), which

is the only stationary solution of system (1.1) in H4(Rd,RN ) . Suppose v(a)(x)
vanishes a.e. in Rd. This will imply the contradiction to our assumption that for
some k = 1, ..., N the Fourier images of Gk(x) and Fk(0, x) do not vanish on some
set of nonzero Lebesgue measure in Rd. □

4. The problem on the finite interval

Proof of Theorem 2.5. First we suppose that for some certain v ∈ H4
c (I,RN ) there

exist two solutions u(1),(2) ∈ H4
c (I,RN ) of system (2.3) with Ω = I. Then the

vector function w(x) := u(1)(x) − u(2)(x) ∈ H4
c (I,RN ) will be a solution of the

homogeneous system of equations

w′′′′
k = a2kwk, 1 ≤ k ≤ N.

In case I) of Assumption 2.4 above we have ak > 0, ak ̸= n2, n ∈ Z for 1 ≤ k ≤ m.
Therefore, a2k is not an eigenvalue of the operator

d4

dx4
: H4(I) → L2(I),

such that wk(x) = 0 in I for 1 ≤ k ≤ m. By the similar reasoning, using the
constrained subspace (2.15), we show that wk(x) vanishes identically in I when
m+ 1 ≤ k ≤ N .

We choose arbitarily v(x) ∈ H4
c (I,RN ) and apply Fourier transform (2.12) to

system (2.3) considered on the interval I. This yields

(4.1) uk,n =
√
2π

Gk,nfk,n
n4 − a2k

, 1 ≤ k ≤ N, n ∈ Z,

where fk,n := Fk(v(x), x)n. Clearly, for the transforms of the fourth derivatives we
easily derive

(u′′′′k )n =
√
2π

n4Gk,nfk,n
n4 − a2k

, 1 ≤ k ≤ N, n ∈ Z.

where fk,n := Fk(v(x), x)n. Clearly, for the transforms of the fourth derivatives we
easily derive

(u′′′′k )n =
√
2π

n4Gk,nfk,n
n4 − a2k

, 1 ≤ k ≤ N, n ∈ Z.

Hence,

|uk,n| ≤
√
2πPk|fk,n|, |n4uk,n| ≤

√
2πPk|fk,n|, 1 ≤ k ≤ N, n ∈ Z,
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with Pk, 1 ≤ k ≤ N finite by means of the second lemma of the Appendix of [23]
under our Assumption 2.4 above. This enables us to estimate

∥u∥2H4
c (I,RN ) =

N∑
k=1

[ ∞∑
n=−∞

|uk,n|2 +
∞∑

n=−∞
|n4uk,n|2

]

4πP 2
N∑
k=1

∥Fk(v(x), x)∥2L2(I)

< ∞

due to (2.1) of Assumption 2.1 for |v(x)|RN ∈ L2(I). Hence, for an arbitrary v(x) ∈
H4

c (I,RN ) there is a unique u(x) ∈ H4
c (I,RN ), which satisfies system (2.3) with its

Fourier image given by (4.1), such that the map τa : H4
c (I,RN ) → H4

c (I,RN ) is
well defined.

Let us consider the arbitrary v(1),(2) ∈ H4
c (I,RN ). Their images under the map

discussed above u(1),(2) = τav
(1),(2) ∈ H4

c (I,RN ), such that

u
(1)
k

′′′′
− a2ku

(1)
k =

∫ 2π

0
Gk(x− y)Fk(v

(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy,

u
(2)
k

′′′′
− a2ku

(2)
k =

∫ 2π

0
Gk(x− y)Fk(v

(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy,

where 1 ≤ k ≤ N . Let us apply Fourier transform (2.12) to both sides of these
systems to arrive at

u
(1)
k,n =

√
2π

Gk,nf
(1)
k,n

n4 − a2k
, u

(2)
k,n =

√
2π

Gk,nf
(2)
k,n

n4 − a2k
, 1 ≤ k ≤ N, n ∈ Z,

where f
(j)
k,n := Fk(v

(j)(x), x)n, j = 1, 2. Obviously, for 1 ≤ k ≤ N, n ∈ Z we have

|u(1)k,n − u
(2)
k,n| ≤

√
2πP |f (1)

k,n − f
(2)
k,n|, |n4u

(1)
k,n − n4u

(2)
k,n| ≤

√
2πP |f (1)

k,n − f
(2)
k,n|.

We derive easily the estimates from above

∥u(1) − u(2)∥2H4
c (I,RN ) =

N∑
k=1

[ ∞∑
n=−∞

|u(1)k,n − u
(2)
k,n|

2 +

∞∑
n=−∞

|n4(u
(1)
k,n − u

(2)
k,n)|

2

]

≤ 4πP 2
N∑
k=1

∥Fk(v
(1)(x), x)− Fk(v

(2)(x), x)∥2L2(I).

Clearly, v
(1),(2)
k (x) ∈ H4(I) ⊂ L∞(I), 1 ≤ k ≤ N do to the Sobolev embedding. By

means of (2.2), we easily obtain

∥τav(1) − τav
(2)∥H4

c (I,RN ) ≤ 2
√
πPL∥v(1) − v(2)∥H4

c (I,RN ).

The constant in the right side of this estimate is less than one by virtue of the one
of our assumptions. Therefore, the Fixed Point Theorem implies the existence and
uniqueness of a vector function v(a) ∈ H4

c (I,RN ) satisfying τav
(a) = v(a), which is

the only stationary solution of system (1.1) in H4
c (I,RN ). Suppose v(a)(x) vanishes
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in I. Then we arrive at the contradiction to our assumption that Gk,nFk(0, x)n ̸= 0
for some 1 ≤ k ≤ N and a certain n ∈ Z. □

5. The problem on the product of sets

Proof of Theorem 2.7. First we suppose that there exists v(x) ∈ H4(Ω,RN ) which

generates u(1),(2)(x) ∈ H4(Ω,RN ) which satisfies system (2.3). Then their difference

w(x) := u(1)(x)−u(2)(x) ∈ H4(Ω,RN ) will be a solution of the homogeneous system
of equations

∆2wk = a2kwk, 1 ≤ k ≤ N

in the domain Ω. Let us apply the partial Fourier transform (2.23) to both sides of
this system of equations. This yields

(n2 −∆⊥)
2wk,n(x⊥) = a2kwk,n(x⊥), 1 ≤ k ≤ N, n ∈ Z,

where ∆⊥ denotes the transversal Laplacian acting on x⊥. Apparently,

∥wk∥2L2(Ω) =
∞∑

n=−∞
∥wk,n(x⊥)∥2L2(Rd), 1 ≤ k ≤ N.

Thus, wk,n(x⊥) ∈ L2(Rd), 1 ≤ k ≤ N, n ∈ Z. But each operator (n2−∆⊥)
2, n ∈ Z

does not have any nontrivial square integrable eigenfunctions belonging to L2(Rd).
Therefore, w(x) vanishes in Ω.

Let us choose an arbitrary v(x) ∈ H4(Ω,RN ) and apply Fourier transform (2.21)
to both sides of system (2.3). This gives us

(5.1) ûk,n(p) = (2π)
d+1
2

Ĝk,n(p)f̂k,n(p)

(p2 + n2)2 − a2k
,

where

1 ≤ k ≤ N, n ∈ Z, p ∈ Rd, d = 1, 2,

with f̂k,n(p) standing for the Fourier image of Fk(v(x), x) under transform (2.21)

for 1 ≤ k ≤ N . Obviously, for 1 ≤ k ≤ N, n ∈ Z, p ∈ Rd, we have

|ûk,n(p)| ≤ (2π)
d+1
2 Qk|f̂k,n(p)|, |(p2 + n2)2ûk,n(p)| ≤ (2π)

d+1
2 Qk|f̂k,n(p)|,

with all Qk < ∞ by means of the third and the last lemmas of the Appendix of [23]
under Assumption 2.6 above. Hence,

∥u∥2H4(Ω,RN ) =
N∑
k=1

[ ∞∑
n=−∞

∫
Rd

|ûk,n(p)|2dp+
∞∑

n=−∞

∫
Rd

|(p2 + n2)2ûk,n(p)|2dp

]

≤ 2(2π)d+1Q2
N∑
k=1

∥Fk(v(x), x)∥2L2(Ω) < ∞

due to (2.1) of Assumption 2.1 for |v(x)|RN ∈ L2(Ω). Therefore, for any v(x) ∈
H4(Ω,RN ) there exists a unique u(x) ∈ H4(Ω,RN ), which satisfies system (2.3) with
its Fourier transform given by (5.1), such that the map ta : H4(Ω,RN ) → H4(Ω,RN )
is well defined.
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Let us choose arbitrarily v(1),(2)(x) ∈ H4(Ω,RN ), such that their images under

our map are u(1),(2) = tav
(1),(2) ∈ H4(Ω,RN ). Hence,

∆2u
(1)
k − a2ku

(1)
k =

∫
Ω
Gk(x− y)Fk(v

(1)
1 (y), v

(1)
2 (y), ..., v

(1)
N (y), y)dy,

∆2u
(2)
k − a2ku

(2)
k =

∫
Ω
Gk(x− y)Fk(v

(2)
1 (y), v

(2)
2 (y), ..., v

(2)
N (y), y)dy,

where 1 ≤ k ≤ N . We apply Fourier transform (2.21) to both sides of these systems.
Hence,

(5.2) û
(1)
k,n(p) = (2π)

d+1
2

Ĝk,n(p)f̂
(1)
k,n(p)

(p2 + n2)2 − a2k
, û

(2)
k,n(p) = (2π)

d+1
2

Ĝk,n(p)f̂
(2)
k,n(p)

(p2 + n2)2 − a2k
,

where 1 ≤ k ≤ N, n ∈ Z, p ∈ Rd, d = 1, 2 and f̂
(j)
k,n(p) denotes the Fourier image

of Fk(v
(j)(x), x) under transform (2.21) for j = 1, 2. This enables us to derive for

1 ≤ k ≤ N, n ∈ Z, p ∈ Rd

|û(1)k,n(p)− û
(2)
k,n(p)|

≤ (2π)
d+1
2 Q|f̂ (1)

k,n(p)− f̂
(2)
k,n(p)|, |(p

2 + n2)2û
(1)
k,n(p)− (p2 + n2)2û

(2)
k,n(p)|

≤ (2π)
d+1
2 Q|f̂ (1)

k,n(p)− f̂
(2)
k,n(p)|.

Therefore,

∥u(1) − u(2)∥2H4(Ω,RN ) =
N∑
k=1

[ ∞∑
n=−∞

∫
Rd

|û(1)k,n(p)− û
(2)
k,n(p)|

2dp

+
∞∑

n=−∞

∫
Rd

|(p2 + n2)2(û
(1)
k,n(p)− û

(2)
k,n(p))|

2dp

]

≤ 2(2π)d+1Q2
N∑
k=1

∥Fk(v
(1)(x), x)− Fk(v

(2)(x), x)∥2L2(Ω).

Apparently, v
(1),(2)
k (x) ∈ H4(Ω) ⊂ L∞(Ω), 1 ≤ k ≤ N via the Sobolev embedding

theorem. By virtue of (2.2) with the vector functions involved in it having the finite
valued components, we easily arrive at the estimate from above

∥tav(1) − tav
(2)∥H4(Ω,RN ) ≤

√
2(2π)

d+1
2 QL∥v(1) − v(2)∥H4(Ω,RN ),

with the constant in the right side of it less than one due to the one of our as-
sumptions. Thus, the Fixed Point Theorem yields the existence and uniqueness of
a vector function v(a) ∈ H4(Ω,RN ) satisfying tav

(a) = v(a). This is the only station-

ary solution of system (1.1) in H4(Ω,RN ). Suppose v(a)(x) vanishes in Ω. This will
imply the contradiction to our assumption that there exist 1 ≤ k ≤ N and n ∈ Z
for which suppĜk,n(p) ∩ suppF̂k(0, x)n(p) is a set of nonzero Lebesgue measure in

Rd. □
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