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α : V → P(V ′) be a maximal monotone operator. The present analysis is based on
that of the (simply-nonlinear) maximal monotone flow

(1.2) Dtu+ α(u) 3 h in V ′, a.e. in ]0, T [ (Dt := ∂/∂t).

In [11] Fitzpatrick introduced a representation of maximal monotone operators
α : V → P(V ′) via a qualified minimization principle, see Section 2.

Brezis and Ekeland [5] and Nayroles [15] assumed that α = ∂g for some lower
semi-continuous convex function g : V → R ∪ {+∞}, set

Φ(v, v∗) =

∫ T

0
[g(v) + g∗(v∗ −Dtv)− 〈v∗, v〉] dt+ 1

2
‖v(T )‖2H − 1

2
‖u(0)‖2H

∀(v, v∗) ∈ L2(0, T ;V ×V ′),

(1.3)

and reformulated the inclusion (1.2) as

(1.4) u ∈ L2(0, T ;V ) ∩H1(0, T ;V ′) Φ(u, h) = inf Φ(·, h) = 0.

We shall refer to this result as the B.E.N. principle, Here we extend it to the
doubly-nonlinear inclusion (1.1) without assuming α to be a subdifferential, and
extend the compactness and stability analysis of (1.2), along the lines of [21], [23],
[24].

Structural compactness and structural stability. Besides stability w.r.t. per-
turbations of the data (e.g., source terms, initial- and boundary-values), one may
consider robustness w.r.t. perturbations of the structure of the problem (e.g. lin-
ear and nonlinear operators in differential equations). We shall call this structural
stability , This is a prerequisites for the numerical treatment and efficient control
of systems, and has an obvious applicative motivation, since data and operators
are accessible just with some approximation. Structural stability is here associated
with structural compactness, namely the existence of a convergent subsequence of
the solutions of the perturbed problems.

For variational principles, these structural properties are fulfilled by De Giorgi’s
theory of Γ-convergence. This typically applies to stationary models, and the
present article extends that approach to flows.

Here the choice of the topology for data and operators plays a key role. The
topology must be so weak that, under minimal assumptions of boundedness and
coerciveness, there exists a sequence of solutions of the perturbed problems that
converges with respect to that topology. In order to fulfill a compactness theorem,
this topology is necessarily of weak type. However, the weak topology is not ap-
propriate, since it would not provide the existence of a recovery sequences: to this
purpose a slightly stronger topology is needed. An answer to this question is pro-
vided by what we name the nonlinear weak topology of V×V ′, which is intermediate
between the strong and the weak topology of V ×V ′, see [21].

Plan of work. In Section 2 we outline the variational formulation of the flow (1.2),
which is the point of departure for the study of (1.1). In Section 3 we introduce
the notions of structural compactness and structural stability, and in Sections 4
we prove these properties for the Cauchy problem for (1.1). Finally, in Sections 5
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we show that this result can be applied to several quasilinear PDEs issued from
mathematical physics.

2. Fitzpatrick’s theory and extended B.E.N. principle

In this section we review a result of Fitzpatrick [11] for monotone operators and the
related extension of the B.E.N. principle.

The Fitzpatrick theory. Let V be a real Banach space with norm ‖ · ‖, dual
norm ‖ · ‖V ′ , and duality pairing 〈·, ·〉.

Let an operator α : V → P(V ′) be proper and measurable (this includes maximal
monotone operators). In [11] Fitzpatrick defined what is now called the Fitzpatrick
function of α:

fα(v, v
∗) := 〈v∗, v〉+ sup

{
〈v∗ − ṽ∗, ṽ − v〉 : ṽ ∈ V, ṽ∗ ∈ α(ṽ)

}
=sup

{
〈v∗, ṽ〉 − 〈ṽ∗, ṽ − v〉 : ṽ ∈ V, ṽ∗ ∈ α(ṽ)

}
∀(v, v∗) ∈ V ×V ′,

(2.1)

and proved the following result.

Theorem 2.1 ([11]). α : V → P(V ′) is maximal monotone if and only if

fα(v, v
∗) ≥ 〈v∗, v〉 ∀(v, v∗) ∈ V ×V ′,(2.2)

fα(v, v
∗) = 〈v∗, v〉 ⇔ v∗ ∈ α(v).(2.3)

More generally, nowadays one says that a function f (variationally) represents a
proper measurable operator α : V → P(V ′) whenever

f : V ×V ′ → R ∪ {+∞} is convex and lower semi-continuous,(2.4)

f(v, v∗) ≥ 〈v∗, v〉 ∀(v, v∗) ∈ V ×V ′,(2.5)

f(v, v∗) = 〈v∗, v〉 ⇔ v∗ ∈ α(v).(2.6)

One accordingly says that α is representable, that f is a (convex) representative
function, that f represents α, and so on. The Fitzpatrick function fα thus represents
α. We shall denote by F(V ) the class of the functions that fulfill (2.4) and (2.5).
Representable operators are monotone, see [11], but need not be either cyclically
monotone or maximal monotone. However, by Theorem 2.1 any operator that
is represented by its Fitzpatrick function is maximal monotone. The notion of
representative function can be extended dropping the requirement of convexity, but
leaving the lower semi-continuity.

Examples. (i) For any proper convex and lower-semi-continuous function g : V →
R∪ {+∞}, the Fenchel function f : (v, v∗) 7→ g(v) + g∗(v∗) represents the operator
∂g.

(ii) Let A : V → V ′ be a linear, bounded and invertible monotone operator, and
define the convex and continuous mapping

(2.7) Fb : V × V ′ → R : (v, v∗) 7→ b[〈Av, v〉+ 〈v∗, A−1v∗〉] ∀b > 0.

F1/2 is the Fenchel function of the operator A. For any b > 1/2, Fb represents
the nonmaximal monotone operator α(0) = {0}, α(v) = ∅ for any v 6= 0. For
0 < b < 1/2, Fb does not represents any operator, as (2.5) fails.
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(iii) Let us denote by ∆−1 : H−1(Ω) → H1
0 (Ω) the inverse of the Laplace operator

with homogeneous Dirichlet boundary condition, and by 〈·, ·〉 the duality pairing
between H−1(Ω) and H1

0 (Ω) such that 〈u, v〉 =
∫
Ω u(x) v(x) dx for any u, v ∈ H1

0 (Ω).

If φ : Rn ×RN → R represents the mapping γ in RN in the sense of (2.4)–(2.6),
then the function

(2.8) ψ(v, v∗) =

∫
Ω
[φ(∇v,∇∆−1v∗)− 〈v∗, v〉] dx ∀(v, v∗) ∈ H1

0 (Ω)×H−1(Ω)

represents the maximal monotone operator

(2.9) α : H1
0 (Ω) → P(H−1(Ω)) : v 7→ −∇ · γ(∇v).

This is proved e.g. in Example 3.2 of [21].
Further examples of representative functions are provided e.g. in [20], [21].

The extended B.E.N. principle. Let us assume that we are given a triplet of
real Hilbert spaces

(2.10) V ⊂ H = H ′ ⊂ V ′ with continuous and dense injections,

and assume that

α : V → P(V ′) is maximal monotone,

∃A,B ∈ R : ∀v ∈ V, ‖α(v)‖V ′ ≤ A‖v‖V +B.
(2.11)

Let us fix any u∗ ∈ L2(0, T ;V ′), any u0 ∈ H, and consider the Cauchy problem

(2.12)


u ∈ V := L2(0, T ;V ) ∩H1(0, T ;V ′),

Dtu+ α(u) 3 u∗ in V ′, a.e. in ]0, T [,

u(0) = u0.

Let us set Vu0 = {v ∈ V : v(0) = u0} and

Ψ(v, v∗) :=

∫ T

0
[〈Dtv − v∗, v〉+ φ(v, v∗ −Dtv)] dt

∀(v, v∗) ∈ Vu0×L2(0, T ;V ′),

Ψ(v, v∗) := +∞ for any other (v, v∗) ∈ L2(0, T ;V ×V ′).

(2.13)

Theorem 2.2 (Extended B.E.N. principle). Let (2.10) and (2.11) be fulfilled, and
let φ represent the operator α in V . The functional Ψ then represents the operator
Dt + α in L2(0, T ;V ), and the Cauchy problem (2.12) is equivalent to

(2.14) u ∈ Vu0 , Ψ(u, u∗) = 0.

Proof. It is clear that Ψ is convex and lower semicontinuous. As φ fulfills (2.4) and

(2.5), these properties also hold for Ψ in Lp(0, T ;V )× Lp′(0, T ;V ′).
As φ is representative, Ψ ≥ 0; hence Ψ(u, u∗) = 0 only if this integrand vanishes

a.e. in ]0, T [. As φ represents α, (2.12) follows. Ψ thus represents the operator
Dt+α in L2(0, T ;V ), and (2.14) entails (2.12). Conversely, if (2.12) is fulfilled then
the integrand of (2.13) vanishes, and (2.14) follows. □
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Time-integrated extended B.E.N. principle. Let us first define the measure
dµ(t) = (T − t)dt. For any Hilbert space X, let us introduce the Hilbert space

(2.15) L2
µ(0, T ;X) :=

{
µ-measurable v : ]0, T [ → X :

∫ T

0
‖v(t)‖2X dµ(t) < +∞

}
,

and note that

(2.16) L2
µ(0, T ;V ) ⊂ L2

µ(0, T ;H) = L2
µ(0, T ;H)′ ⊂ L2

µ(0, T ;V )′ = L2
µ(0, T ;V

′),

with continuous and dense injections. Let us set

Vµ :=
{
v ∈ L2

µ(0, T ;V ) : Dtv ∈ L2
µ(0, T ;V

′)
}
,

Vµ,u0 :=
{
v ∈ Vµ : v(0) = u0

}
.

(2.17)

Note that Vµ equipped with the graph norm is a Hilbert space, and the injection
Vµ → L2

µ(0, T ;H) is compact.
Next we apply a further time integration to the potential Ψ. Recalling the ele-

mentary identity
∫ T
0 dτ

∫ τ
0 f(t) dt =

∫ T
0 f(t) dµ(t) for any f ∈ L1(0, T ), we set

Ψ̃(v, v∗) :=

∫ T

0

[
〈Dtv − v∗, v〉+ φ(v, v∗ −Dtv)

]
dµ(t)

(v, v∗) ∈ Vµ,u0×L2
µ(0, T ;V

′),

Ψ̃(v, v∗) := +∞ for any other (v, v∗) ∈ L2
µ(0, T ;V ×V ′).

(2.18)

Theorem 2.3 (Time-integrated extended B.E.N. principle). Assume that (2.10)

and (2.11) are fulfilled, and that φ represents α in V . Then Ψ̃ represents the
operator Dt + α in L2

µ(0, T ;V ), and the problem

(2.19) u ∈ Vµ,u0 , Dtu+ α(u) 3 u∗ in L2
µ(0, T ;V

′)

is equivalent to

(2.20) u ∈ Vµ,u0 , Ψ̃(u, u∗) = 0.

Proof. The argument of Proposition 2.2 can be repeated almost verbatim, since the
further time integration preserves the conditions (2.4)–(2.6). □

3. Structural compactness, structural stability and nonlinear weak
topology

In this section we illustrate the notions of structural compactness and structural
stability, and apply them to maximal monotone flows, here reformulated as null-
minimization principles , We also introduce what we shall refer to as the nonlinear
weak topology of V ×V ′, which will be used in the next section.

Structural compactness and structural stability. We illustrate these notions
in an abstract set-up. Let X be a topological space and G be a family of func-
tionals X → R ∪ {+∞}, equipped with Γ-convergence. We shall use the following
terminology:

(i) the problem of minimizing these functionals will be called structurally compact
if the family G is sequentially compact, and the corresponding minimizers range in
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a sequentially relatively compact subset of X. This definition is instrumental to the
next one.

(ii) the minimization problem will be said structurally stable if 1

(3.1)


un → u in X

Φn →Γ Φ in G
Φn(un)− inf Φn → 0

⇒ Φ(u) = inf Φ.

The selection of the notion of convergence in X is crucial. Structural compactness
and structural stability are in competition: the convergence must be sufficiently
weak in order to allow for sequential compactness, and at the same time it must
be sufficiently strong to provide structural stability. The (typically stationary) Γ-
convergence is especially appropriate for this problem.

The nonlinear weak topology, Dealing with the structural stability of the null-

minimization of (2.20), one must pass to the limit in the term
∫ T
0 〈v∗n−Dtvn, vn〉 dµ(t).

This induces us to complement the weak topology of L2
µ(0, T ;V ×V ′) with the con-

vergence ∫ T

0
〈v∗n, vn〉 dµ(t) →

∫ T

0
〈v∗, v〉 dµ(t).

In view of the use of Γ-convergence, this will provide the existence of a so-called
recovery sequence. 2

More specifically, let us still denote by π the duality pairing of V×V ′: π(v, v∗) =
〈v∗, v〉. Along the lines of [21], we shall name nonlinear weak topology of V ×V ′,
and denote by π̃, the coarsest among the topologies of this space that are finer than
the weak topology, and for which the mapping π is continuous. For any sequence
{(vn, v∗n)} in V ×V ′, thus 3

(vn, v
∗
n) →̃π (v, v∗) in V ×V ′ ⇔

vn ⇀ v in V, v∗n ⇀ v∗ in V ′, 〈v∗n, vn〉 → 〈v∗, v〉,
(3.2)

and similarly for nets. This construction is extended to the space L2
µ(0, T ;V ×V ′)

in an obvious way: in this case the duality product reads (v, v∗) 7→
∫ T
0 〈v∗, v〉 dµ(t),

and we set

(vn, v
∗
n) →̃π (v, v∗) in L2

µ(0, T ;V ×V ′) ⇔
vn ⇀ v in L2

µ(0, T ;V ), v∗n ⇀ v∗ in L2
µ(0, T ;V

′) and∫ T

0
〈v∗n, vn〉 dµ(t) →

∫ T

0
〈v∗, v〉 dµ(t),

(3.3)

and similarly for nets.

1By Φn →Γ Φ we mean that the sequence {Φn} Γ-converges to Φ in the sense of De Giorgi, see
e.g. [7].

2Here it does not seem appropriate to use the product of the weak topology of L2
µ(0, T ;V ) by

the strong topology of L2
µ(0, T ;V

′). Indeed, dealing with parabolic problems, v∗n is replaced by

v∗n −Dtv, and the sequence {Dtvn} typically converges just weakly in L2
µ(0, T ;V

′).
3We denote the strong, weak, and weak star convergence respectively by →, ⇀, ⇀∗ .
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Γπ̃-compactness and Γπ̃-stability of F(L2
µ(0, T ;V )), As the weak topology

and the nonlinear weak topology π̃ are nonmetrizable, some caution is needed in
dealing with sequential Γ-convergence with respect to either topology; for the former
topology see e.g. [2], [7]. For functions defined on a topological space, the definition
of Γ-convergence involves the filter of the neighborhoods of each point. If the space
is metrizable, that notion can equivalently be formulated in terms of the family of
converging sequences; but this does not hold in general. We shall refer to these
two notions as topological and sequential Γ-convergence, respectively. Hereafter
reference to the topological notion should be understood, if not otherwise stated.

The similarity between the nonlinear weak topology of V × V ′ and that of
L2
µ(0, T ;V ×V ′) is obvious. Dealing with flows, here we are mainly concerned with

the latter; for the sake of simplicity, we shall however develop our discussion for the
former, and leave the obvious reformulation of the other one to the reader.

It is known that bounded subsets of a separable and reflexive space equipped
with the weak topology are metrizable. The same holds for the nonlinear weak
topology π̃ of V ×V ′, as it was proved in [21]. This property is at the basis of the
next statement, where we define F(V ) and F(L2

µ(0, T ;V )) as above.

Theorem 3.1 (Γ-compactness and Γ-stability). Let V be a separable real Banach
space, and {γn} be an equi-coercive sequence in F(V ), in the sense that

(3.4) sup
n∈N

{
‖v‖V + ‖v∗‖V ′ : (v, v∗) ∈ V ×V ′, γn(v, v

∗) ≤ C
}
< +∞ ∀C ∈ R.

Then: (i) There exists γ : V ×V ′ → R ∪ {+∞} such that, possibly extracting a
subsequence, γn Γπ̃-converges to γ both topologically and sequentially.

(ii) This convergence entails that γ ∈ F(V ).
(iii) If αn (α, resp.) is the operator that is represented by γn (γ, resp.) for any

n, then

(3.5) ∀ sequence {(vn, v∗n) ∈ graph(αn)}, (vn, v
∗
n) →̃π (v, v∗) ⇒ v∗ ∈ α(v).

That is, the superior limit in the sense of Kuratowski of the graph of the αns is
included in the graph of α.

Proof. Part (i) is Theorem 4.4 of [21].
As the functional π is obviously π̃-continuous, the sequential π̃-lower semiconti-

nuity of the γns and the property “γn ≥ π” are preserved by Γπ̃-convergence; thus
γ ∈ F(V ) (whereas in general γ 6∈ F(V )). On the other hand, it is known that
passage to the Γ-limit preserves the convexity. If γn ∈ F(V ) for any n, namely if
the γns are also convex, then the same holds for γ. Part (ii) is thus established.

Next let the operators {αn} and α be as prescribed in part (iii), (vn, v
∗
n) ∈

graph(αn) for any n, and (vn, v
∗
n) →̃

π
(v, v∗). As γn represents αn, we have

γn(vn, v
∗
n) = 〈v∗n, vn〉 for any n. By the definition of Γπ̃-convergence, if (vn, v

∗
n) →

π̃
(v, v∗) we then get

(3.6) γ(v, v∗) ≤ lim inf
n→∞

γn(vn, v
∗
n) = lim inf

n→∞
〈v∗n, vn〉 = 〈v∗, v〉.

Thus v∗ ∈ α(v), as γ represents α. The implication (3.5) is thus established. □
Remarks 3.2. (i) By the same argument, Theorem 3.1 holds also if the space V is
replaced by L2

µ(0, T ;V ), which is the case of interest for the next two sections.
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(ii) In general the sequence of operators {αn} does not converge in the sense of
Kuratowski.

(iii) A counterexample shows that the limit of subdifferential operators is maximal
monotone but need not be a subdifferential, see Section 5 of [21]. Thus the class of
gradient flows is not structurally stable, at variance with that of maximal monotone
flows.

Let {φn} be a sequence of representative functions of F(V ), and define the su-
perposition (i.e., Nemytskĭı-type) operators 4

(3.7) ψn : L2
µ(0, T ;V ×V ′) → L1(0, T ) : w 7→ φn(w(·)) ∀n.

The following question arises:

if ψn Γπ̃-converges to some operator ψ,

is then ψ necessarily a superposition operator, too?
(3.8)

In other terms, does a mapping φ : V×V ′ → R∪{+∞} exist such that ψw = φ(w(·))
for any w ∈ L2

µ(0, T ;V ×V ′)? Denoting by α the function that is represented by
φ, in the limit we would then get the equation Dt∂γ(u) + α(u) 3 h, so with an
instantaneous (i.e., memoryless) relation between u and h−Dt∂γ(u); see e.g. [18].

The next statement provides a positive answer to the question (3.8).

Theorem 3.3 ([24]). Let V be a real separable Hilbert space, and let {φn} be a
sequence of representative functions V ×V ′ → R such that

∃C1, ..., C4 > 0 : ∀n, ∀(v, v∗) ∈ V ×V ′,

C1‖(v, v∗)‖2V×V ′ − C2 ≤ φn(v, v
∗) ≤ C3‖(v, v∗)‖2V×V ′ + C4,

(3.9)

φn(0, 0) = 0.(3.10)

Let us define the functionals

(3.11) Φn(v, v
∗) =

∫ T

0
φn(v(t), v

∗(t)) dµ(t) ∀(v, v∗) ∈ L2
µ(0, T ;V ×V ′), ∀n.

Then: (i) There exists a functional Φ : L2
µ(0, T ;V ×V ′) → R such that, possibly

extracting a subsequence,

(3.12) Φn →Γπ̃ Φ sequentially in L2
µ(0, T ;V ×V ′).

(ii) This entails that there exists a representative function φ : V ×V ′ → R such
that

(3.13) Φ(v, v∗) =

∫ T

0
φ(v(t), v∗(t)) dµ(t) ∀(v, v∗) ∈ L2

µ(0, T ;V ×V ′).

4These operators should not be confused with the functions γn ∈ F(L2
µ(0, T ;V )) of the Re-

mark 3.2 (i).
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4. Structural properties of doubly-nonlinear flows

In this section we study the structural compactness and structural stability of
doubly-nonlinear flows of the form

(4.1) Dtw + α(u) 3 h, w ∈ ∂γ(u),

with α maximal monotone operator, and γ lower semicontinuous and convex.
Let V , H be real separable Hilbert spaces, let the sequences {αn}, {φn} and {γn}

be given such that

V ⊂ H with compact and dense injection,(4.2)

αn : V → P(V ′) is maximal monotone, ∀n,(4.3)

φn is the Fitzpatrick function of αn, ∀n,(4.4)

γn : H → R is convex and lower semicontinuous, ∀n,(4.5)

and assume that

∃C1, C2 > 0 : ∀n, ∀v ∈ V, 〈αn(v), v〉 ≥ C1|v‖2V − C2,(4.6)

∃C3, C4 > 0 : ∀n, ∀v ∈ V, ‖αn(v)‖V ′ ≤ C3‖v‖V + C4,(4.7)

∃C̄1, ..., C̄4 > 0 : ∀n, ∀v ∈ H, C̄1‖v‖2H − C̄2 ≤ γn(v) ≤ C̄3‖v‖2H + C̄4,(4.8)

0 ∈ αn(0) ∀n.(4.9)

(The latter condition is not really restrictive: if it is not satisfied, it can be recovered
by selecting any bn ∈ αn(0) and then replacing αn by ᾱn = αn − bn.) Let two
sequences {w0

n} and {hn} be also given such that

w0
n → w0 in H,(4.10)

hn → h in L2(0, T ;V ′).(4.11)

For any n, we are now able to formulate the following initial-value problem:

(4.12)


un ∈ L2(0, T ;V ), wn ∈ L2(0, T ;H) ∩H1(0, T ;V ′),

Dtwn + α(un) 3 h in V ′, a.e. in ]0, T [,

wn ∈ ∂γ(un) in H, a.e. in ]0, T [,

wn(0) = w0
n.

Lemma 4.1 ( [1, 6, 10, 12]). Under the above hypotheses on the sequences
{αn}, {hn}, {γn}, {w0

n}, for any n the initial-value problem (4.12) has at least one
solution. Moreover, the sequence {(un, wn)} is bounded in L2(0, T ;V )×

(
L2(0, T ;H)∩

H1(0, T ;V ′)
)
.

Null-Minimization. Next we reformulate the problem (4.12) as a null-minimization
principle. Let us first define the measure dµ(t) = (T − t)dt, the Hilbert space

(4.13) W :=
{
v ∈ L2

µ(0, T ;H) : Dtv ∈ L2
µ(0, T ;V

′)
}
,
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and the affine subspace Wµ,w0
n
:=

{
v ∈ W : v(0) = w0

n

}
. Notice that∫ T

0
〈Dtw, v〉 dµ(t) =

∫ T

0
dτ

∫ τ

0
〈Dtw, v〉 dt

=

∫ T

0
dτ

∫ τ

0
Dtγ

∗
n(w)dt =

∫ T

0
γ∗n(w) dt− Tγ∗n(w(0))

∀v ∈ L2
µ(0, T ;V ), ∀w ∈ W , with w ∈ ∂γn(v) a.e. in ]0, T [.

(4.14)

For any n, we introduce a representative function φn of the operator α and the
twice-time-integrated functional
(4.15)

Ξn(u,w, h) :=

∫ T

0
dτ

∫ τ

0

[
γn(u) + γ∗n(w)− (w, u)H

]
dt

+

(∫ T

0
dτ

∫ τ

0

[
φn(u, h−Dtw)− 〈h−Dtw, u〉

]
dt

)+

∀(u,w, h) ∈L2
µ(0, T ;V )×Wµ,w0

n
×L2

µ(0, T ;V
′),

Ξn(u,w, h) := +∞ for any other (u,w, h) ∈L2
µ(0, T ;V )×W×L2

µ(0, T ;V
′).

Note that the first integrand is nonnegative, because of the Fenchel inequality;
hence Ξn ≥ 0. Moreover, by (4.14),

Ξn(u,w, h) =

∫ T

0

[
γn(u) + γ∗n(w)− (w, u)H

]
dµ(t)

+

(∫ T

0

[
φn(u, h−Dtw)− 〈h, u〉

]
dµ(t) +

∫ T

0
γ∗n(w) dt− Tγ∗n(w

0
n)

)+

∀(u,w, h) ∈L2
µ(0, T ;V )×Wµ,w0

n
×L2

µ(0, T ;V
′).

(4.16)

Proposition 4.2 ([17]). For any n, the pair (un, wn) solves the initial-value prob-
lem (4.12) if and only if

(4.17)


un ∈ L2

µ(0, T ;V ), wn ∈ W ,

Ξn(un, wn, hn) = 0
(
= inf

L2
µ(0,T ;V )×W

Ξn(·, ·, hn)
)
.

Moreover, this null-minimization problem is equivalent to
(4.18)

∫ T

0

[
γn(un) + γ∗n(wn)− (wn, un)H

]
dµ(t) = 0,∫ T

0

[
φn(un, hn −Dtwn)− 〈hn, un〉

]
dµ(t) +

∫ T

0
γ∗n(wn) dt− Tγ∗n(w

0
n) ≤ 0.

Proof. Let us assume that Ξn(u,w, h) = 0. By (4.12)3, the first integrand of (4.15)
is nonnegative. Hence

(4.19)

{
γn(u) + γ∗n(w)− (w, u)H = 0 a.e. in ]0, T [,

φn(u, h−Dtw)− 〈h−Dtw, u〉 ≤ 0 a.e. in ]0, T [.



STRUCTURAL COMPACTNESS AND STABILITY OF DOUBLY NONLINEAR FLOWS 427

(4.19)1 entails that w ∈ γn(u) a.e. in Q := Ω×]0, T [, whence 〈Dtw, u〉 = Dtγ
∗
n(w)

a.e. in ]0, T [. Therefore, by (4.19)2,

(4.20) φn(u, h−Dtw)−〈h, u〉+Dtγ
∗
n(w(τ)) = φn(u, h−Dtw)−〈h−Dtw, u〉 ≤ 0,

a.e. in ]0, T [. As φn is a representative function the latter term is nonnegative, hence
it vanishes whenever Ξn(u,w, h) = 0. We then conclude that Dtwn + αn(un) 3 hn
in V ′, a.e. in ]0, T [.

The null-minimization problem (4.17) is thus equivalent to the system (4.18), and
in turn this entails the Cauchy problem. The converse of the latter implication is
straightforward. □
Lemma 4.3 ([24]). Let (4.2)–(4.9) be fulfilled, and set

(4.21) Φn(v, v
∗) =

∫ T

0
φn(v, v

∗) dµ(t) ∀(v, v∗) ∈ L2
µ(0, T ;V ×V ′), ∀n.

Then: (i) There exists a functional Φ such that, up to extracting a subsequence,

(4.22) Φn →Γπ̃ Φ sequentially in L2
µ(0, T ;V ×V ′).

(ii) There exists a representative function φ : V ×V ′ → R such that, setting

(4.23) Φ(v, v∗) =

∫ T

0
φ(v, v∗) dµ(t) ∀(v, v∗) ∈ L2

µ(0, T ;V ×V ′), ∀n.

The first part of this lemma stems from Theorem 3.1. The second part is proved
in Section 4 of [24].

Theorem 4.4 (Structural compactness and structural stability). Let (4.2)–(4.11)
be fulfilled, and for any n let (un, wn) be a solution of the Cauchy problem (4.12).
Then:

(i) There exist u ∈ L2(0, T ;V ) and w ∈ W such that, possibly extracting a
subsequence,

un ⇀ u in L2(0, T ;V ),(4.24)

wn ⇀
∗ w in W.(4.25)

(ii) There exists a convex and lower semicontinuous function γ : H → R such
that

C̄1‖v‖2H − C̄2 ≤ γ(v) ≤ C̄3‖v‖2H + C̄4 ∀v ∈ H,(4.26)

γn →Γ γ weakly in L2(0, T ;H).(4.27)

(iii) Let φ be as in Lemma 4.3, and let α : V → P(V ′) be the operator that is
represented by this function. If

(4.28) γ∗n(w
0
n) → γ∗(w0),

then

(4.29)


u ∈ L2(0, T ;V ), w ∈ L2(0, T ;H) ∩H1(0, T ;V ′),

Dtw + α(u) 3 h in V ′, a.e. in ]0, T [,

w ∈ ∂γ(u) in H, a.e. in ]0, T [,

w(0) = w0.
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Proof. We split this argument into several steps.
(1) Lemma 4.1 yields (4.24) and (4.25), up to extracting subsequences. As the

injection W → L2(0, T ;H) is compact, it follows that

(4.30)

∫ T

0
(un, wn) dµ(t) →

∫ T

0
(u,w) dµ(t).

(2) A result of Γ-compactness similar to Theorem 3.1 holds for the weak topol-
ogy, see e.g. [7] (p. 95). By (4.5) and (4.8), then there exists a convex and lower
semicontinuous function γ : H → R such that, possibly extracting a subsequence,
(4.26) and (4.27) hold. After e.g. [2] (pp. 282-283), this entails that

(4.31) γ∗n →Γ γ∗ strongly in L2(0, T ;H).

(3) Hence

(4.32) lim inf
n→∞

∫ T

0

[
γn(un) + γ∗n(wn)

]
dµ(t) ≥

∫ T

0

[
γ(u) + γ∗(w)

]
dµ(t).

As wn ∈ ∂γn(un) for any n, by the Fenchel equality we have

(4.33)

∫ T

0

[
γn(un) + γ∗n(wn)− (un, wn)

]
dµ(t) = 0 ∀n.

On the other hand by the Fenchel inequality

(4.34)

∫ T

0

[
γ(u) + γ∗(w)− (u,w)

]
dµ(t) ≥ 0.

By (4.31)–(4.34) the equality holds in (4.34), and, possibly extracting further
sequences,

w ∈ ∂γ(u) in H, a.e. in ]0, T [,(4.35) ∫ T

0
γn(un) dµ(t) →

∫ T

0
γ(u) dµ(t),(4.36) ∫ T

0
γ∗n(wn) dµ(t) →

∫ T

0
γ∗(w) dµ(t).(4.37)

(4) By (4.14), (4.24), (4.25), (4.28), (4.35) and (4.37) we have∫ T

0
〈Dtwn, un〉 dµ(t) =

∫ T

0
γ∗n(wn) dτ − Tγ∗n(wn(0))

→
∫ T

0
γ∗(w) dτ − Tγ∗(w0) =

∫ T

0
〈Dtw, u〉 dµ(t).

(4.38)

Thus

(4.39) (un, hn −Dtwn) →̃π (u, h−Dtw) in L2(0, T ;V × V ′).
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Therefore

∫ T

0
φ(u, h−Dtw) dµ(t)

(3.12),(4.22)

≤ lim inf
n→∞

∫ T

0
φn(un, hn −Dtwn) dµ(t)

(4.18)2
≤ lim inf

n→∞

{∫ T

0
〈un, hn〉 dµ(t)−

∫ T

0
γ∗n(wn) dt+ Tγ∗n(w

0
n)

}
(4.28),(4.37)

≤
∫ T

0
〈u, h〉 dµ(t)−

∫ T

0
γ∗(w) dt+ Tγ∗(w0)

(4.35)
=

∫ T

0
〈u, h−Dtw〉 dµ(t).

(4.40)

By (4.28), (4.30), (4.32), (4.37) and (4.40), we get

(4.41) Ξ(u,w, h) ≤ lim inf
n→∞

Ξn(un, wn, hn).

As 0 ≤ Ξ(u,w, h) and Ξn(un, wn, hn) = 0 for any n, we infer that Ξ(u,w, h) = 0.
In conclusion, u fulfills the twice-time-integrated BEN principle, which by Propo-

sition 4.2 is equivalent to the problem (4.29). □

Remarks 4.5. (i) A similar procedure could be used to prove the structural com-
pactness and structural stability of doubly-nonlinear equations of the form

(4.42) α(Dtu) + ∂γ(u) 3 h,

if α : H → P(H) is maximal monotone, and γ : V → R∪{+∞} is convex and lower
semicontinuous; see [22]. This class of doubly-nonlinear equations was also studied
e.g. in [6], [13], [16], [17].

(ii) It would be certainly desirable to prove that in this case the limit operator
is representable. However, this is not always needed for representable operators, as
we pointed out in Remark 3.2 (iii).

5. Application to PDEs of mathematical physics

Theorem 4.4 provides the structural compactness and structural stability of the
Cauchy problem associated with several quasilinear PDEs issued from mathematical
physics. In this section we just illustrate some examples.

Example 1. The doubly-nonlinear parabolic system

(5.1)

{
Dtw −∇·g(x,∇u) 3 h

w ∈ ∂γ(x, u)

can represent nonlinear heat conduction coupled with a nonlinear relation between
the energy density, w, and the temperature, u. If the mapping ∂γ(x, ·) is multi-
valued, then this equation can also account for phase transitions with nonlinear
diffusion. (This might be labelled a doubly-nonlinear Stefan problem.) Existence of
a solution of the associated flow is known, see e.g. [1], [6], [10], [12].
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Let Ω be a bounded Lipschitz domain ofRN (N ≥ 1), and assume that g(x, v, ξ) =
g1(ξ) + g2(x, v, ξ), with g1 and g2 such that

g1 : R
N → P(RN ) g2 : Ω×RN → RN ,

g1 is maximal monotone,

g2 is measurable, and g2(x, ·) is maximal monotone for a.e. x,

∃c1, c2 > 0 : for a.e. x, ∀ξ, |g1(ξ)|+ |g2(x, ξ)| ≤ c1|ξ|+ c2.

(5.2)

Moreover, assume that

γ : Ω×RM → R ∪ {+∞} (M ≥ 1),

x 7→ γ(x, v) is Lebesgue-measurable, ∀v,
v 7→ γ(x, v) is convex, for a.e. x.

(5.3)

Under these regularity assumptions, Theorem 4.4 provides the structural com-
pactness and the structural stability of the Cauchy problem associated to this model.

Example 2. For N = 3 one can also deal with the parabolic vector equation

(5.4) Dt∂γ(x,H) +∇×g(x,∇×H) 3 0 (∇× := curl).

This equation arises by coupling
(i) the Faraday law of magnetic induction, DtB +∇×E = 0,
(ii) the Ampère law J = ∇×H,
(iii) a magnetic constitutive relation of the form B ∈ ∂γ(x,H),
(iv) a nonlinear Ohm law E ∈ g(x, J).
The Ampère law is here written neglecting the displacement current, by the so-

called eddy current approximation ,
Denoting the outward-oriented unit normal vector-field on ∂Ω by ν, we assume

properties analogous to (5.2), with g1 : R3 → P(R3) and g2 : Ω×R3 → R3. We
also use the function spaces

H =
{
v ∈ L2(Ω)3 : ∇·v = 0 in D′(Ω)

}
,

V =
{
v ∈ H : ∇×v ∈ L2(Ω)3, ν×v = 0 in H−1/2(∂Ω)3

}
,

(5.5)

Notice that V ⊂ H with dense and compact injection. The operator

V → P(V ′) : v 7→ ∇×g1(∇×v) +∇×g2(x,∇×v)
is maximal monotone, and Theorem 4.4 then provides the structural compactness
and the structural stability of the Cauchy problem that is associated to (5.4).

Example 3. One can also deal with the following system of 2M scalar equations

(5.6)

{
Dtw −∇·g(x,∇u) 3 h

w ∈ ∂γ(x, u),

with u,w : Ω×]0, T [ → RM , assuming that the functions

(5.7) γ : Ω×RM → R ∪ {+∞} (M ≥ 1), g : Ω×RM×N → P(RM×N )

fulfill analogous regularity conditions to those of the Example 1.
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Equations of this form arise in the thermodynamics of irreversible processes, and
apply to a large class of phenomena, see e.g. [9], Chap. 8 of [14] and Chap. V of [19].
In this case the potential γ(x, u) represents the negative of the entropy density, u
is the vector of M scalar state variables (density of internal energy, concentration,
ecc.), g(x,∇u) is the vector of M generalized fluxes (each an element of RN ).

If the mapping ξ 7→ g(x, ξ) is maximal monotone for a.e. x, then Theorem 4.4
provides the structural compactness and the structural stability of the corresponding
Cauchy problem.
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