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A STRONG CONVERGENCE THEOREM UNDER A NEW
SHRINKING PROJECTION METHOD FOR TWO
DEMIGENERALIZED MAPPINGS IN A BANACH SPACE

WATARU TAKAHASHI

ABSTRACT. In this paper, we establish a strong convergence theorem for finding
a common element of the zero point set of a maximal monotone operator and
the common fixed point set of two demigeneralized mappings in a Banach space
by using a new shrinking projection method. Moreover we apply our result to
obtain well-known and new strong convergence theorems in a Hilbert space and
in a Banach space.

1. INTRODUCTION

Let H be a real Hilbert space and let C be a nonempty, closed and convex subset
of H. For a mapping U : C' — H, we denote by F(U) the set of fixed points of U.
Let k be a real number with 0 < k < 1. A mapping U : C' — H is called a k-strict
pseudo-contraction [5] if

Uz —Uyll* < |lo = yl* + k|2 — Uz — (y - Uy)||?

for all z,y € C. If U is a k-strict pseud-contraction and F(U) # 0, then we have
that, for x € C and q € F(U),

Uz —ql® < [lz — gl + klla — Uz|.

From this, we have that

|Uz —z||* + [l — | + 2(Uzx — 2,2 — q) < ||z — ql* + k|l — Uz|>.
Therefore, we have that
(1.1) 2x —Uz,x —q) > (1 —k)|jz — Uz|?
for all x € C and ¢ € F(U). A mapping U : C — H is called generalized hybrid
[10] if there exist a, 5 € R such that

a|Uz = Uyl]* + (1 = a)lla = Uy|> < 8|0z — y|* + (1 = B) ||z -y

for all z,y € C, where R is the set of real numbers. Such a mapping U is called
(a, B)-generalized hybrid. If U is («, ()-generalized hybrid and F(U) # (), then we
have that, for x € C' and ¢ € F(U),

allg = Uzl® + (1 = a)llg = Uz|* < Bllg — «[* + (1 = B)llqg - =]
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and hence [|[Uz — ¢||* < ||z — ¢||*. From this, we have that
(1.2) 2x —q,x — Uzx) > ||z — Uz|>
On the other hand, such a mapping exists in a Banach space. Let E be a smooth
Banach space and let B be a maximal monotone operator with B~10 # (). Then,
for the generalized resolvent Jy of B for A > 0, we have from [3,23] that, for any
r € E and ¢ € B~10,
(Jxe — q,Jx — JJyx) > 0.

Then we get (Jyxx —z +x — ¢, Jr — JJyx) > 0 and hence

2 —q,Jr — Jhx)) > 2(x — Jha, Jx — JJyx)

> @(IL‘, J)\.'L‘),

where J is the duality mapping on F and

o(z,y) = |z = 2z, Jy) + lyl?, Vz,y € E.

Motivated by (1.1), (1.2) and (1.3), Takahashi, Wen and Yao [27] defined a nonlinear
mapping as follows: Let E be a smooth Banach space, let C' be a nonempty, closed
and convex subset of E and let n be a real number with 7 € (—o0,1). A mapping
U:C — E with F(U) # 0 is called n-demigeneralized if, for any x € C and
q € F(U),

where J is the duality mapping on E. According to this definition, we have that
a k-strict pseud-contraction U with F(U) # ) is k-demigeneralized, a generalized
hybrid mapping U with F(U) # ) is 0-demigeneralized and the metric resolvent
Jy with B710 # () is 0-demigeneralized. On the other hand, we know a strong
convergence theorem under the shrinking projection method which was proved by
Takahashi, Takeuchi and Kubota [26] for finding a fixed point of a nonexpansive
mapping in a Hilbert space.

Theorem 1.1 ([26]). Let H be a Hilbert space and let C' be a nonempty, closed and
convex subset of H. Let T be a nonexpansive mapping of C' into H. Assume that
F(T)#0. Let x1 € C and C; = C. Let {z,} be a sequence generated by

Yn = (1 = A)xn + ATz,

Cnp1 =12 € Cn: |lyn — 2| < [lzn — 2|},

Tny1 = Po,,, 71, Vn €N,
where a € R and {\,} C (0,00) satisfy the following:

0<a< )M\, <1, VneN.

Then {xn} converges strongly to a point zy € F(T'), where zg = Pp(7)a1.

In this paper, using a new shrinking projection method, we establish a strong
convergence theorem for finding a common element of the set of zero points of
a maximal monotone operator and the set of common fixed points of two demi-
generalized mappings in a Banach space. Moreover we apply our result to obtain
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well-known and new strong convergence theorems in a Hilbert space and in a Banach
space.

2. PRELIMINARIES

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let E be a real Banach space with norm || - || and let E* be the
dual space of E. We denote the value of y* € E* at € E by (z,y*). When {z,}
is a sequence in E, we denote the strong convergence of {x,} to x € FE by z,, — =
and the weak convergence by x,, — z. The modulus ¢ of convexity of F is defined
by
o0 =int {1 P2 oy < 1yl < 1o -0l 2
for all e with 0 < e < 2. A Banach space F is said to be uniformly convex if d(¢) > 0
for every € > 0. A uniformly convex Banach space is strictly convex and reflexive.
We also know that a uniformly convex Banach space has the Kadec-Klee property,
ie., x, — v and ||z,| — [Ju|| imply x, — u; see [6,16].

The duality mapping J from E into 2F" is defined by

Ju={2" € B : (z,a") = ||z|* = [|l"|*}

forall z € E. Let U = {x € E : ||| = 1}. The norm of F is said to be Gateaux
differentiable if for each x,y € U, the limit

t—0 t

exists. In the case, F is called smooth. We know that FE is smooth if and only if
J is a single-valued mapping of E into E*. The norm of E is said to be Fréchet
differentiable if for each x € U, the limit (2.1) is attained uniformly for y € U. The
norm of E is said to be uniformly smooth if the limit (2.1) is attained uniformly for
xz,y € U. We also know that E is reflexive if and only if J is surjective, and F is
strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly
convex and reflexive Banach space, then J is a single-valued bijection and in this
case, the inverse mapping J~! coincides with the duality mapping J, on E*. For
more details, see [22] and [23]. In this connection, see also the paper by Reich [15].
We know the following result.

Lemma 2.1 ([22]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, (x—y, Jx—Jy) > 0 for all z,y € E. Furthermore, if E is strictly
convezr and (x —y, Jx — Jy) =0, then x = y.

Let E be a smooth Banach space and let J be the duality mapping on E. Define
a function ¢ : £ x E — R by

In the case when F is clear, ¢ is simply denoted by ¢. Observe that, in a Hilbert
space H, ¢(z,y) = ||z — y||? for all x,y € H. Furthermore, we know that for each
z,y, 2, w € E|

(2.3) (lzll = lly)? < é(z,y) < (=] + llyl)?;
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(2.4) P(x,y) = ¢z, 2) + ¢(2,y) + 2(z — 2, Jz — Jy);
(25) 2<I’ -y, Jz — J’LU> - (Z)(l’,’LU) + d)(y? Z) - ¢($7 Z) - ¢(y7 w)
If F is additionally assumed to be strictly convex, then

(2.6) ¢(z,y) =0 ifand onlyif x=y.

The following lemma was proved by Kamimura and Takahashi [9].

Lemma 2.2 ([9]). Let E be a uniformly convex and smooth Banach space and let
{yn}, {2zn} be two sequences of E. If ¢(yn,2n) — 0 and either {y,} or {z,} is
bounded, then y, — z, — 0.

Let C' be a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E. Then, for any x € E, there exists a unique element z € C
such that

d(z,x) = min ¢(y, ).

yeC
The mapping Il : E — C defined by z = Ilpx is called the generalized projection
of E onto C. For example, see [1,2,9].

Lemma 2.3 ([1,2,9]). Let E be a smooth, strictly convexr and reflexive Banach
space. Let C be a nonempty, closed and convex subset of E and let 1 € E and
z € C. Then, the following conditions are equivalent:

(1) z =1¢cxy;

(2) (z—y,Jo1 — Jz) >0, VYyeC.

Lemma 2.4 ([1,9]). Let C be a nonempty, closed and convexr subset of a smooth,
strictly convex and reflexive Banach space. Then

o(y, loxr) + o(Uezr, 1) < ¢(y,z1), VyeC, z € E.

Let E be a Banach space and let B be a mapping of E into 2F°. The effective
domain of B is denoted by dom(B), that is, dom(B) = {z € E : Bx # (}. A
multi-valued mapping B on F is said to be monotone if (x — y, u* — v*) > 0 for all
x,y € dom(B), u* € Bz, and v* € By. A monotone operator B on F is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to [4,18]; see also [23, Theorem 3.5.4].

Theorem 2.5 ([4,18]). Let E be a uniformly convex and smooth Banach space and
let J be the duality mapping of E into E*. Let B be a monotone operator of E into
2E"  Then B is mazimal if and only if for any r > 0,

R(J+rB) = E~*,
where R(J + rB) is the range of J + rB.

Let E be a uniformly convex Banach space with a Gateaux differentiable norm
and let B be a maximal monotone operator of E into 28", For all z € E and r > 0,
we consider the following equation

Jxr € Jx, + rBzx,.
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This equation has a unique solution x,. In fact, let x € E. There exists x, € D(B)
from Jz € E* = R(J + rB) such that

Jx € Jx, + rBx,.
We show that such a solution z, is unique. Take z1,zo € D(B) such that
Jr € Jz1 +rBz and Jxr € Jzo + rBzs.

We have 1(Jz — Jz1) € Bz and 1(Jz — Jz) € Bzy. Since B and J are monotone,
we have

1
0< <z1 — 29, ;(JZL‘ —Jz)

1
= ;(zl — 29, Jx — Jz — (Jr — J22))

- %(Jx - ng)>

1
= —;(zl —z9,Jz1 — Jz9) <0

and hence
<Zl — 22, JZl - JZQ)> =0.

Since F is strictly convex, we have from Lemma 2.1 that z; = zo. We define J, by
x, = Jrx. Such J,.,r > 0 are called the generalized resolvents of B. The set of null
points of B is defined by B~!'0 = {z € E : 0 € Bz}. We know that B0 is closed
and convex; see [23].

3. MAIN RESULT

In this section, using the new shrinking projection method we introduced, we
prove a strong convergence theorem for finding a common element of the zero point
set of a maximal monotone operator and the common fixed point set of two demigen-
eralized mappings in a Banach space. The ideas of the proof are due to [19-21,25].
Let E be a smooth and strictly convex Banach space and let J be the duality map-
ping on E. Let n and s be real numbers with n € (—oo, 1) and s € [0,00), respec-
tively. Then a mapping U : C — E with F(U) # 0 is called (7, s)-demigeneralized
[14,27] if, for any € C and q € F(U),

(3.1) 2x—q,Jr—JUx) > (1 —n)o(x,Uz) + sp(Ux, z),

where F(U) is the set of fixed points of U. In particular, if s =0 in (3.1), then the
mapping U is as follows:

2x —q,Jr—JUx) > (1 —n)o(x,Ux)
for all z € C and ¢ € F(U). Especially, such (n,0)-demigeneralized mappings in
the class of demigeneralized mappings are important and called n-demigeneralized.

Examples.

(1) Let H be a Hilbert space and let C' be a nonempty, closed and convex subset
of H. Let k be a real number with 0 < k < 1. If U is a k-strict pseudo-contraction
[5] and F(U) # 0, then U is (k,0)-demigeneralized [27].
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(2) Let H be a Hilbert space and let C be a nonempty, closed and convex subset of
H. If U is («, 8)-generalized hybrid and F(U) # ), then U is (0, 0)-demigeneralized
[27], i.e.,

20z —u,x —Uz) > ||z —Uz|?, VzeC, ue FU).

Notice that the class of generalized hybrid mappings covers several well-known map-
pings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is non-
spreading [11,12] for « =2 and 8 =1, i.e.,

2|Te — Ty|? < | Tz —y|* + | Ty — z|?, Va,yeC.

It is also hybrid [24] for a = % and 8 = %, ie.,

3Tz — Ty|* < |l — y|* + || Tx — y|* + | Ty — 2|, Va,yeC.

In general, nonspreading and hybrid mappings are not continuous; see [8].
(3) Let E be a strictly convex, reflexive and smooth Banach space and let C' be a
nonempty, closed and convex subset of E. Let Ilo be the generalized projection of

E onto C. Then Il¢ is (0, 1)-demigeneralized. In fact, since II¢ is the generalized
projection of E onto C, we have that, for any x € F and q € C,

2(llgx — q, Jx — Jlgx) > 0.
Then we get
2llgx —x+x—q,Jr — Jllgz) >0
and hence
2(x —q,Jx — Jlcz) > 2(x — ez, Jr — Jlcz)
= ¢(z,Ucz) + ¢(llcw, ).
This means that II¢ is (0, 1)-demigeneralized. Furthermore, since

Qb(x, ch) + ¢(Hc$, .ZU) > ¢(1‘> ch)a
I is also (0, 0)-demigeneralized, i.e., 0-demigeneralized.

(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal
monotone operator with B='0 # (). Let A > 0. Then the generalized resolvent Q)
is (0, 1)-demigeneralized, i.e.,

2z —q,Jr — JQxz) > 2(x — Qrz, Jr — JQ)\T)
= d)(x? Q)\.%') + ¢(QA$, .’B)

Furthermore, since

oz, Qrx) + ¢(Qaz, ). > o(, Qrz),

@, is also (0,0)-demigeneralized, i.e., 0-demigeneralized.

The following lemma is important and crucial in the proof of our main result
which was proved in [27]. For the sake of completeness, we give the proof.

Lemma 3.1 ([27]). Let E be a smooth and strictly convex Banach space and let
C be a nonempty, closed and convex subset of E. Let n and s be real numbers
with n € (—oo,1) and s € [0,00), respectively. Let U be an (n,0)-demigeneralized
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mapping of C into E. Then F(U) is closed and convex. In particular, if U is
(n, s)-demigeneralized, then F(U) is closed and convez.

Proof. Assume that U is an (7, 0)-demigeneralized. Let us show that F'(U) is closed.
For a sequence {g,} such that ¢, — ¢ and ¢, € F(U), we have from the definition
of U that

L—n
{d = aqn. Jg = JUq) 2 ——9(q,Uq).
From ¢, — ¢, we have 0 > 177%5((1, Ugq). From 1 —n > 0, we get 0 > ¢(q,Uq) and
hence ¢ = Uq. This implies that F(U) is closed. Let us prove that F(U) is convex.

Let p,q € F(U) and set z = ap + (1 — a)q, where a € [0,1]. From the definition of
U, we have that, for x € C and u € F(U),

(x —u,Jr — JUz) > 1%”¢(x,Ux)
This implies from (2.5) that
¢(z,Uz) + ¢(u, x) — ¢(u,Uz) = (1 = n)¢(z, Uz)
and hence
B(u,) +16(z, Uz) > (u, U).
Using this, we have that for z = ap + (1 — a)q and p,q € F(U),
$(2,Uz) = ||2]|* = 2(z, JU=) + |U=|?
= |l2)* = 2(ap + (1 = a)q, JU2) + ||U=|”
= [[2lI* — 2a(p, JU2) — 2(1 — a){q, JUz) + |[U=|]®
= 21 + ag(p, Uz) + (1 — @)é(q, Uz) — a|pl* — (1 - a)llq]?
< 21?4+ a(¢(p, 2) + n¢(2,Uz))
+ (1= a)(¢(g, 2) + 02, Uz)) — a|pl* — (1 = a)]q||?
= 217 + alllpll® = 2{p, J2) + ||2[* + né(z,Uz))
+ (1= a)(llall* = 2(g, T2) + 12]]* + n¢(2, U2))
—alpl* = (1= a)ql?
=2|1z)* = 2(ap + (1 — a)g, J2) + (2, U=z)
= 2||z||* = 2(z, J2) + np(z,Uz)
=n¢(z,Uz)

and hence 0 < (n — 1)¢(z,Uz). We have from 0 > n — 1 that ¢(z,Uz) = 0. Since
E is strictly convex, we have z = Uz. This means that F(U) is convex. If U is
(n, s)-demigeneralized, then U is (7, 0)-demigeneralized and hence F(U) is closed
and convex. 0

Let E be a Banach space and let C' be a nonempty, closed and convex subset of
E. A mapping U : C — E is called demiclosed if for a sequence {z,} in C such
that x, — p and z,, — Ux, — 0, p = Up holds.
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Theorem 3.2. Let E be a uniformly convexr and uniformly smooth Banach space
and let C' be a nonempty, closed and convex subset of E such that JC' is closed and
convezr. Let A C Ex E* be a mazimal monotone operator and let Q, = (J+rA)~1J
be the generalized resolvent of A for all > 0. Let n,7 € (—o0,1) and let S and T
be n and T-demigeneralized mappings from C into itself, respectively, such that they
are demiclosed and Q@ = F(S)N F(T)N A0 # 0. For 1 € C and Cy = C, let

{zn} be a sequence generated by
Up = Qr, 2,
2y = J N (BpJvn + (1 = Bp)JTvy,)
vp = J YanJzn + (1 — ay)JSzy),
Cp+1 = {z € Cpn:2zy — 2,z — Jup) > d(2n, un) + ¢(tn, 21),
2(vp — 2z, Jup, — Jzp) > (1 — 7)d(vn, 2n)
and  2(xy, — z,Jx, — Jup) > (1 —n)é(xn, vp) },

[ Zn+1 = e, ,,z1, Vn €N,

where J is the duality mapping on E, {an},{Bn} C [0,1] and {r,} C [a,00) for
somea>0. Ifl —ay, >b>0and 1 — B, >c>0 for some b, c € (0,1), then {x,}
converges strongly to llgx1, where llg is the generalized projection of E onto €.

Proof. It follows that C, is closed and convex for all n € N. We show that Q C C,
for all n € N. It is obvious that Q) C C7 = C. Suppose that 2 C C}, for some k£ € N.
To show 2 C Cgy1, let us show that

2z — 2z, Jzi — Jug) > o(zk, uk) + d(ug, 2x),
2(v — 2z, Jug — Jz) > (1 — 7)p(vg, 2) and
2z — 2z, Jxg — Jug) > (1 —n)op(xg, vg)
for all z € Q. Let z € Q. Since @Q,, is the generalized resolvent, we have that
(Qrozi — 2, J 25 — JQrp2) > 0
for all z € Q € A~10. Thus, we get that
(Qroze — 26+ 2 — 2, J2 — JQpp2) > 0
and hence
2z, — 2z, Jzi — JQro2) > 2(2k — Qrp2ks J 21 — JQrp. 2k)-
We have from (2.5) that
2z, — 2, Jzi — JQrp2k) > 0(2k, Qry 2k) + O(Qry 25 2k )-
This implies that
2z — 2z, Jzi — Jug) > o(zk, uk) + d(ug, 2k).
Since v € Q and T is T-demigeneralized, we have that
P(vk, 21) = ¢ (v, T (BeJvi + (1 — By) JTvy))
= |logl|* = 2(vg, BeJvr + (1 — Br) JTv)
+ 1Bk Jvg + (1 — Be) J Tk
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< Jlorll* = 2Bkllvkl® = 2(1 = B) (vk, JTvg,)
+ Brllowll” + (1 = By Tl
= (1= B)llorll* = 2(1 = ) vk, JTvr) + (1 = Be)|| T
= (1= Bi) (v, Tok)
and hence
2(v — 2, Jup, — Jz) = 2(vg, — 2z, Jug — (BeJog + (1 — Bi) JTvg))
= 2(1 — B) (v — 2z, Jug, — JTvg)
(3.2) > (1= Be)(1 = 7)¢(vk, To)
> (1- T)(Z)(vk, (BkJUk +(1- Bk)JTUk))
= (L= 7))¢(vk, 2)-
Similarly, we have that
2w — 2z, J(xr — k) 2 (1= n)d(w, vg).-
Then Q C Ciy1. We have by mathematical induction that Q C C, for all n € N.
This implies that {x,} is well defined.
We have that F'(S) and F(T') are closed and convex from Lemma 3.1 . We also

have that A~10 is closed and convex. Thus € is nonempty, closed and convex. Then
there exists w; € 2 such that w; = Illgz;. From z,, = Il¢, x;, we have that

¢(zn, 1) < Oy, 71)
for all y € C,. Since wi € Q C C,, we have that
(3.3) ¢(Tn, 1) < P(w1,21).
From z,, = Ill¢, x1 and zy,41 € Cy41 C Cp, we have that
O(zn, x1) < (Tns1,71).

Thus {¢(zn,x1)} is bounded and nondecreasing. Then there exists the limit of
{¢(zn,x1)}. Put lim, o0 ¢(zpn,x1) = c. For any m,n € N with m > n, we have
Cp, C Cy. From z, =1, z1 € Cy, C C,, and Lemma 2.4, we have that

o(lg,x1,21) + ¢(2m, o, 21) < ¢(Tm, 21).
This implies that
(34) ¢(‘Tm7x7’l) S ¢(xm7x1) - ¢(xn7$1) S c— ¢($n7x1)-

Since ¢ — ¢(zp, 1) — 0 as n — oo, we have from Lemma 2.2 that {x,} is a Caushy
sequence. By the completeness of C, there exists a point wg € C' such that

(3.5) Ty, — Wo.

To complete the proof, it is sufficient to show that w; = IIgx; = wy. From (3.5),
we have that

(3.6) |z — Tpt1]] — 0.
From x,41 = Ilg, ., 21, we have x,41 € Cpyq. This implies that
(3.7) 2(xy, — Tpy1, JTn — Ju) > (1 —n)p(xn, vp).
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Furthermore, we claim that {Jz, — Jv,} is bounded. That {Jx, — Juv,} is bounded
is proved as follows. For proving this, from

|Jn — Jun|| = [[(1 = Bn)(Jzn — JSz0)],
we may prove that {Sz,} is bounded. Since
2xy — 2z, Jxy — JSzp) > (1 —n)(zp, Stp)
for z € F(S), we have from (2.5) that
O(xn, San) + ¢(2,n) — ¢(2,52n) 2 (1 = n)o(zn, Sn)

and hence

N$(Tn, Sxn) + ¢(2,2n) = (2, Szy).

In the case of n < 0, we have ¢(z, z,,) > ¢(z, Sx,). Thus, we have that, for u € F(S),
([l = [1Sznl)* < é(z, Szn)
< ¢(z,aa) < (|2 + [lznl)?.
Using this, we have that
[Sznll < (I[2] + lzall) + 121

This implies that {Sz,} is bounded. In the case of n withh 0 < n < 1, we have

77¢(l’n, Smn) + ¢(Z7 xn) > ¢(Za an)
Thus, we have that, for z € F(S5),

(1 = 1Szall)? < é(2, Szn)
< (2, zn) + nd(Tn, ST4)

IN

(=l + llzal)? + n(ll2all + |1 Szall)?

2
< (Il + Nzl + vadllzall + 1Szall)) "
From this, we have that

lzll = 1Sznlll < [zl + [lenll + valzall + Sz l)

and hence

(1= vllSzall < (14 vn)llznll + 2|2

Then, we have that

1+./n 2
I152all < (T2 all + =21,
1—yn 1—yn
This implies that {Sz,} is bounded. We have from (3.7) that ¢(zy,v,) — 0. Then
we have from Lemma 2.2 that

(3.8) lim ||z, — v, = 0.
n—0o0
Since E is uniformly smooth, we have that Jx, — Jv, — 0. From 1 —a,, > b >0
and
|Jzn — Jop|| = (1 — an)(Jzn — JSxy)|| > b||Jzn, — TS0 ||,

we have that Jx,, — JSx, — 0. Since E* is uniformly smooth, we have that

(3.9) nh_)rréo |z, — Szy,|| = 0.
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Furthermore, we have from z,11 € Cj41 that
2(vp, — Tnt1, JUp — Jzn) > (1 — 7)P(vn, 21)
and hence
2y — xp + Ty — Tpg1, JUn — J2n) = (1 — Bn)(1 — 7)d(vn, 2n).

As in the proof of boundedness of {Jx,,—Juv, }, we have that {Jv, —Jz,} is bounded.
From ||z, — zp41]| — 0 and ||z, — vn]| — 0, we have that lim, o ¢(vn, 2n) = 0.
Using Lemma 2.2, we have that v, — z, — 0. As in the proof of x,, — Sz, — 0, we
have that

(3.10) lim ||v, — Tv,|| = 0.
n—oo
We also have from x,+1 € C,41 that

2(zn, — Tna1, Jzn — Jun) > ¢(zn, un) + @(un, 2n).

From ||z, — Zny1|| < ||z — onll + [Jon — Zn || + |20 — Zntills 20 —vn — 0, vy — 2, — 0
and z, — zp+1 — 0, we have ||z, — Zp41|| — 0. Then we get that

lim ¢(zp,un) =0

n—oo
and hence
(3.11) lim ||z, — Qp,zn| = 0.
n—oo

Since x,, — wp and S is demiclosed, we have from (3.9) that wy € F'(S). Similarly,
since v, — wo and T is demiclosed, we have from (3.10) that wy € F(T'). We show
wo € A710. Since F is uniformly smooth, from u, = Q, 2, and (3.11) we have that

lim ||Jz, — Juy,|| = 0.
n—00
From r,, > a, we have
1
lim —||Jz, — Juy,|| = 0.
n—0o0 T,
Therefore, we have
1
lim [|A,, 2| = lim —||Jz, — Ju,| = 0.
n—oo n—00 1y,

For (p,p*) € A, from the monotonicity of A, we have (p — un,p* — Ay, 2z,) > 0 for
all n > 0. From u, — wy, we get (p — wp, p*) > 0. From the maximallity of A, we
have wg € A~10. Therefore, we have wg € €.

From wy = gz, wy € 2 and (3.3), we have that

¢(wr, 1) < P(wo, 21) = Hm Gz, 21) < d(wr, 21).

Then we get that ¢(wi,z1) = ¢(wo,z1) and hence wyg = wy. Therefore, we have
T, — wo = wy. This completes the proof. O
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4. APPLICATIONS

In this section, using Theorem 3.2, we prove strong convergence theorems under
a new shrinking projection method in a Hilbert space and in a Banach space. We
know the following result obtained by Marino and Xu [13]; see also [28].

Lemma 4.1 ([13,28]). Let H be a Hilbert space and let C' be a nonempty, closed
and convex subset of H. Let k be a real number with 0 < k <1 and letU : C — H
be a k-strict pseudo-contraction. If x, — z and x,, — Uz, — 0, then z € F(U).

We also know the following result from Kocourek, Takahashi and Yao [10]; see
also [29].

Lemma 4.2 ([10,29]). Let H be a Hilbert space, let C be a nonempty, closed and
conver subset of H and let U : C' — H be generalized hybrid. If x, — z and
Ty — Uxy — 0, then z € F(U).

As a direct consequence of Theorem 3.2, we obtain the following result.

Theorem 4.3. Let E be a uniformly convexr and uniformly smooth Banach space.
Let A C E x E* be a mazimal monotone operator satisfying A=10 # 0 and let
Qr = (J+1A)"LJ be the generalized resolvent of A for all v > 0. Let S and T be
relatively nonexpansive mappings from E into itself such that

Q=F(S)NF(T)n A0 # 0.

Forxzy € E and Cy = E, let {x,} be a sequence generated by

Up = Qr, Zn,

zn = J Y (Bpdvn + (1 = Bp)JTvy),

vp = J HanJzn + (1 — ay)JSzy),

Cpy1 = {Z €Cp:2(zy — 2,2 — Jup) > ¢(zn, un) + ¢(tn, 2n),
¢(Z7zn) S (ZS(Z?'U’VL) CLTLd ¢(Z7Un) S ¢(Z,xn) }7

Tny1 =g, 21, Vn €N,

where J is the duality mapping on E, {an},{Bn} C [0,1] and {r,} C [a,00) for
somea>0. Ifl—a,>b>0and1— B, >c>0 for someb,c € (0,1), then {,}
converges strongly to Ilgx1, where Ilq is the generalized projection of E onto Q.

Proof. Since S and T are relatively nonexpansive, S and T are 0-demigeneralized
mappings such that they are demiclosed. We also have that ¢(z,z,) < ¢(z,vy) is
equivalent to

2(vy, — z, Jop, — Jzp) = d(vn, 2n).
Similarly, ¢(z,vn) < ¢(z, ) is equivalent to

2xy — 2z, Jxy — Jop) > d(xn, vp).
Therefore, we obtain Theorem 4.3 from Theorem 3.2. (|

Let E be a Banach space and let f : E — (—o00, 00| be a proper, lower semicon-
tinuous and convex function. Define the subdifferential of f as follows:

Of(x) ={z" € E*: f(y) =2 (y —x,2") + f(z), Vy € E}
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for all z € E. Then, we know that df is a maximal monotone operator; see [17] for
more details.

Theorem 4.4. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty, closed and conver subset of E such that JC is closed
and convex. Let S be a relatively nonerpansive mapping from C into itself. Let
T € (—00,1) and let T be a T-demigeneralized mapping from C' into itself such that
it is demiclosed and F(T) # (. Suppose that Q@ = F(S)NF(T) # 0. For z; € C
and C1 = C, let {x,} be a sequence generated by

(2, = Jfl(angn +(1- an)JTUn),
vp = J 7 (BpJan + (1 — Bn)J Sy),
Cpy1 = {z €Cp:2(vy — 2z, Juy — Jzp) > (1 — 7)d(0n, 2n)

and ¢(z,v,) < ¢(z,xp) }’

(Tn+1 =1lo, 21, VR EN,

where {a, },{Bn} C [0,1]. Ifl—a, >b>0and1—p, > c >0 for someb,c € (0,1),
then {z,} converges strongly to llgx1, where Il is the generalized projection of E
onto ).

Proof. Set A = Ji¢ in Theorem 3.2, where i¢ is the indicator function, that is,

i 0, zeC,
“ oo, x¢C.

Then, we have that di¢ is a maximal monotone operator and @), = Il for all > 0.
In fact, for any « € F and r > 0, we have from Lemma 2.3 that
z2=Qrr < Jz+1dic(z) 3 Jx
< Jr—Jz € rdic(z)

. Jr— Jz .
Sic(y) > <y — 2z, 7> +ic(z), Yye E

0> (y—z,Je—Jz), Yye
Sz = i ,
¢ = arg min o(y, )
sz =1l¢
and u, = z, in Theorem 3.2. Therefore, from Theorem 3.2, we obtain Theorem

4.4. g

The following is a strong convergence theorem for nonexpansive mappings and
k-strict pseudo-contractions in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty, closed and
convez subset of H. Let k be a real number with k € [0,1). Let T : C — C be a
nonexpansive mapping and let U : C — C' be a k-strict pseudo-contraction such that
F(U) # 0. Suppose that Q = F(T)NF(U) # (. Let For 1 € C and C1 = C, let
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{zn} be a sequence generated by

rZn = ﬁnvn + (1 - Bn)U'Una
Up = @y + (1 — ap)Txy,

Cry1 = {z € Oy : 2(vy — 2,0 — 2n) > (1 — k)|Jvy, — Uzy|?

and 2en — 2,20 = va) > o = vall® },

Tny1 = Po,., 11, YVn €N,

where {an},{Bn} C[0,1]. If 1=, > b >0 and 1—0,, > ¢ > 0 for someb,c € (0,1),
then {xn} converges strongly to a point Pox1, where Pq is the metric projection of
H onto Q2.

Proof. Since U be a k-strict pseudo-contraction of C' into itself such that F(U) # 0,
from (1) in Examples, U is k-demigeneralized. From Lemma 4.1, U is demiclosed.
We also have that a nonexpansive maping 7' is 0-demigeneralized and demiclosed.
Furthermore, putting A = 0 in Theorem 3.2, we have that @, = I for all » > 0.
Therefore, we have the desired result from Theorem 3.2. O

The following is a strong convergence theorem for nonexpansive mappings and
generalized hybrid mappings in a Hilbert space.

Theorem 4.6. Let H be a Hilbert space and let C be a nonempty, closed and
convez: subset of H. Let T : C — C be a nonexpansive mapping with F(T) #
and let U : C — C be a generalized hybrid mapping with F(U) # (. Suppose that
Q=FT)NFU)#0. Forxz1 € C and C; = C, let {x,} be a sequence generated
by

2n = Bnvn + (1 - Bn)UUnv

U = QpZp + (1 — ap)Txy,

Chy1 = {z € Oy : 2(vy — 2,0n — 25) > |lvn — Uz

and 2(xy, — z,Tp — Vp) > ||Tn — vn||2},

(Znt+1 = Pe, 71, Vn€EN,

where {an },{Bn} C[0,1]. If 1=, > b >0 and 1—06, > ¢ > 0 for someb,c € (0,1),
then {xn} converges strongly to a point Pox1, where Pq is the metric projection of
H onto Q.

Proof. Since U be a generalized hybrid mapping of C' into itself such that F(U) # 0,
from (2) in Examples, U is 0-demigeneralized. From Lemma 4.2, U is demiclosed.
We also have that a nonexpansive maping 7" is 0-demigeneralized and demiclosed.
Furthermore, putting A = 0 in Theorem 3.2, we have that @, = I for all » > 0.
Therefore, we have the desired result from Theorem 3.2. O

The following is a strong convergence theorem for two generalized projections in
a Banach space.

Theorem 4.7. Let E be a uniformly convexr and uniformly smooth Banach space.
Let C and D be nonempty, closed and convex subsets of E and let Ilc and Ilp be the
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generalized projections of E onto C' and D, respectively. Suppose that C N D # ().
Forxz1 € E and Cy = E, let {x,} be a sequence generated by

Zn = J_l(/BnJvn + (]- - /Bn)JHDUn)a
Un = HC'xna
Chi1 = {z € Cp:2(vy — 2z, Juy — J2p) > d(vn, 2n)
and 2(xy, — z,Jx, — Juy) > qb(acn,vn)},

Tpe1 =g, 71, VneN,

where {Bp} C [0,1]. If 1 — B, > ¢ > 0 for some ¢ € (0,1), then {z,} converges
strongly to a point zg € C N D, where zg = lgnpx:.

Proof. Since Il¢ is the generalized projection of E onto C, Il is 0-demigeneralized
from (3) in Examples. Since IIp is the generalized projection of F onto D, from
(3) in Examples, IIp is 0-demigeneralized. We also have that if {u,} is a sequence
in E such that u, — p and u, — lIpu, — 0, then p = IIpp. In fact, assume that
u, — p and u, — Ilpu,, — 0. It is clear that IIpu, — p. Furthermore, since E is
uniformly smooth, we have that ||Ju, — JIIpuy| — 0. Since IIp is the generalized
projection of E onto D, we have that

(Ipuy, —pp, Ju, — Jlpu, — (Jp — Jllpp)) > 0.
Therefore, (p — lIpp, —(Jp — JIIpp)) > 0. This implies that

é(p,HUpp) + ¢(Ilpp,p) <0

and hence p = Ilpp. Therefore, I1p is demiclosed. Similarly, IIo is demiclosed.
Furthermore, putting A = 0 in Theorem 3.2, we have that Q, = I for all » > 0.
Therefore, we have the desired result from Theorem 3.2. O

The following is a strong convergence theorem for two generalized resolvents in
a Banach space.

Theorem 4.8. Let E be a uniformly convexr and uniformly smooth Banach space.
Let G and B be maximal monotone operators of E into E*. Let Jy be the generalized
resolvent of G for X > 0 and let R, be the generalized resolvent of B for p > 0.
Suppose that G0N B0 # 0. For x1 € E and C; = E, let {x,} be a sequence
generated by

(2, = T Y (BuJvn + (1 — B) JR,vn),
Un = J)\xna
Chi1 = {z € Cp:2(vy — 2z, Juy — J2p) > d(vp, 2n)
and  2(xy, — z,Jx, — Jvp) > ¢(Tp, vp) },

Tptl = ch_Hl‘l, Vn € N,

where {f,} C [0,1]. If 1 — 3, > ¢ >0 for some c € (0,1), then the sequence {x,}
converges strongly to a point zg € G0N B~10, where zg = lg-19np-1071-
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Proof. Since R, is the generalized resolvent of B on F, from (4) in Examples, R,, is
0-demigeneralized. We also have that if {u,} is a sequence in E such that u, — p
and u, — R,u, — 0, then p = R,p. In fact, assume that u,, — p and u,, — R,u, — 0.
It is clear that R,u, — p. Furthermore, since E is uniformly smooth, we have that
| Jun — JR,uy|| — 0. Since R, is the generalized resolvent of B, we have from [3]
that

(Ryun — Rup, Jup, — JRyuy — (Jp — JR,p)) > 0.
Therefore, (p — R,p, —(Jp — JR,p)) > 0. This implies that

and hence p = R, p. Therefore, R, is demiclosed. Similarly, J is 0O-demigeneralized
and demiclosed. Furthermore, putting A = 0 in Theorem 3.2, we have that Q, = I
for all » > 0. Therefore, we have the desired result from Theorem 3.2. (]
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