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and hence ∥Ux− q∥2 ≤ ∥x− q∥2. From this, we have that

(1.2) 2⟨x− q, x− Ux⟩ ≥ ∥x− Ux∥2.
On the other hand, such a mapping exists in a Banach space. Let E be a smooth
Banach space and let B be a maximal monotone operator with B−10 ̸= ∅. Then,
for the generalized resolvent Jλ of B for λ > 0, we have from [3, 23] that, for any
x ∈ E and q ∈ B−10,

⟨Jλx− q, Jx− JJλx⟩ ≥ 0.

Then we get ⟨Jλx− x+ x− q, Jx− JJλx⟩ ≥ 0 and hence

2⟨x− q, Jx− JJλx)⟩ ≥ 2⟨x− Jλx, Jx− JJλx⟩
= ϕ(x, Jλx) + ϕ(Jλx, x)(1.3)

≥ ϕ(x, Jλx),

where J is the duality mapping on E and

ϕ(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ E.

Motivated by (1.1), (1.2) and (1.3), Takahashi, Wen and Yao [27] defined a nonlinear
mapping as follows: Let E be a smooth Banach space, let C be a nonempty, closed
and convex subset of E and let η be a real number with η ∈ (−∞, 1). A mapping
U : C → E with F (U) ̸= ∅ is called η-demigeneralized if, for any x ∈ C and
q ∈ F (U),

2⟨x− q, Jx− JUx⟩ ≥ (1− η)ϕ(x, Ux),

where J is the duality mapping on E. According to this definition, we have that
a k-strict pseud-contraction U with F (U) ̸= ∅ is k-demigeneralized, a generalized
hybrid mapping U with F (U) ̸= ∅ is 0-demigeneralized and the metric resolvent
Jλ with B−10 ̸= ∅ is 0-demigeneralized. On the other hand, we know a strong
convergence theorem under the shrinking projection method which was proved by
Takahashi, Takeuchi and Kubota [26] for finding a fixed point of a nonexpansive
mapping in a Hilbert space.

Theorem 1.1 ([26]). Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let T be a nonexpansive mapping of C into H. Assume that
F (T ) ̸= ∅. Let x1 ∈ C and C1 = C. Let {xn} be a sequence generated by

yn = (1− λn)xn + λnTxn,

Cn+1 = {z ∈ Cn : ∥yn − z∥ ≤ ∥xn − z∥},
xn+1 = PCn+1x1, ∀n ∈ N,

where a ∈ R and {λn} ⊂ (0,∞) satisfy the following:

0 < a ≤ λn ≤ 1, ∀n ∈ N.

Then {xn} converges strongly to a point z0 ∈ F (T ), where z0 = PF (T )x1.

In this paper, using a new shrinking projection method, we establish a strong
convergence theorem for finding a common element of the set of zero points of
a maximal monotone operator and the set of common fixed points of two demi-
generalized mappings in a Banach space. Moreover we apply our result to obtain
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well-known and new strong convergence theorems in a Hilbert space and in a Banach
space.

2. Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the
set of real numbers. Let E be a real Banach space with norm ∥ · ∥ and let E∗ be the
dual space of E. We denote the value of y∗ ∈ E∗ at x ∈ E by ⟨x, y∗⟩. When {xn}
is a sequence in E, we denote the strong convergence of {xn} to x ∈ E by xn → x
and the weak convergence by xn ⇀ x. The modulus δ of convexity of E is defined
by

δ(ϵ) = inf

{
1− ∥x+ y∥

2
: ∥x∥ ≤ 1, ∥y∥ ≤ 1, ∥x− y∥ ≥ ϵ

}
for all ϵ with 0 ≤ ϵ ≤ 2. A Banach space E is said to be uniformly convex if δ(ϵ) > 0
for every ϵ > 0. A uniformly convex Banach space is strictly convex and reflexive.
We also know that a uniformly convex Banach space has the Kadec-Klee property,
i.e., xn ⇀ u and ∥xn∥ → ∥u∥ imply xn → u; see [6, 16].

The duality mapping J from E into 2E
∗
is defined by

Jx = {x∗ ∈ E∗ : ⟨x, x∗⟩ = ∥x∥2 = ∥x∗∥2}
for all x ∈ E. Let U = {x ∈ E : ∥x∥ = 1}. The norm of E is said to be Gâteaux
differentiable if for each x, y ∈ U , the limit

(2.1) lim
t→0

∥x+ ty∥ − ∥x∥
t

exists. In the case, E is called smooth. We know that E is smooth if and only if
J is a single-valued mapping of E into E∗. The norm of E is said to be Fréchet
differentiable if for each x ∈ U , the limit (2.1) is attained uniformly for y ∈ U . The
norm of E is said to be uniformly smooth if the limit (2.1) is attained uniformly for
x, y ∈ U . We also know that E is reflexive if and only if J is surjective, and E is
strictly convex if and only if J is one-to-one. Therefore, if E is a smooth, strictly
convex and reflexive Banach space, then J is a single-valued bijection and in this
case, the inverse mapping J−1 coincides with the duality mapping J∗ on E∗. For
more details, see [22] and [23]. In this connection, see also the paper by Reich [15].
We know the following result.

Lemma 2.1 ([22]). Let E be a smooth Banach space and let J be the duality map-
ping on E. Then, ⟨x−y, Jx−Jy⟩ ≥ 0 for all x, y ∈ E. Furthermore, if E is strictly
convex and ⟨x− y, Jx− Jy⟩ = 0, then x = y.

Let E be a smooth Banach space and let J be the duality mapping on E. Define
a function ϕ : E × E → R by

(2.2) ϕE(x, y) = ∥x∥2 − 2⟨x, Jy⟩+ ∥y∥2, ∀x, y ∈ E.

In the case when E is clear, ϕE is simply denoted by ϕ. Observe that, in a Hilbert
space H, ϕ(x, y) = ∥x − y∥2 for all x, y ∈ H. Furthermore, we know that for each
x, y, z, w ∈ E,

(2.3) (∥x∥ − ∥y∥)2 ≤ ϕ(x, y) ≤ (∥x∥+ ∥y∥)2;
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(2.4) ϕ(x, y) = ϕ(x, z) + ϕ(z, y) + 2⟨x− z, Jz − Jy⟩;

(2.5) 2⟨x− y, Jz − Jw⟩ = ϕ(x,w) + ϕ(y, z)− ϕ(x, z)− ϕ(y, w).

If E is additionally assumed to be strictly convex, then

(2.6) ϕ(x, y) = 0 if and only if x = y.

The following lemma was proved by Kamimura and Takahashi [9].

Lemma 2.2 ([9]). Let E be a uniformly convex and smooth Banach space and let
{yn}, {zn} be two sequences of E. If ϕ(yn, zn) → 0 and either {yn} or {zn} is
bounded, then yn − zn → 0.

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E. Then, for any x ∈ E, there exists a unique element z ∈ C
such that

ϕ(z, x) = min
y∈C

ϕ(y, x).

The mapping ΠC : E → C defined by z = ΠCx is called the generalized projection
of E onto C. For example, see [1, 2, 9].

Lemma 2.3 ([1, 2, 9]). Let E be a smooth, strictly convex and reflexive Banach
space. Let C be a nonempty, closed and convex subset of E and let x1 ∈ E and
z ∈ C. Then, the following conditions are equivalent:

(1) z = ΠCx1;
(2) ⟨z − y, Jx1 − Jz⟩ ≥ 0, ∀y ∈ C.

Lemma 2.4 ([1, 9]). Let C be a nonempty, closed and convex subset of a smooth,
strictly convex and reflexive Banach space. Then

ϕ(y,ΠCx1) + ϕ(ΠCx1, x1) ≤ ϕ(y, x1), ∀y ∈ C, x1 ∈ E.

Let E be a Banach space and let B be a mapping of E into 2E
∗
. The effective

domain of B is denoted by dom(B), that is, dom(B) = {x ∈ E : Bx ̸= ∅}. A
multi-valued mapping B on E is said to be monotone if ⟨x− y, u∗ − v∗⟩ ≥ 0 for all
x, y ∈ dom(B), u∗ ∈ Bx, and v∗ ∈ By. A monotone operator B on E is said to be
maximal if its graph is not properly contained in the graph of any other monotone
operator on E. The following theorem is due to [4,18]; see also [23, Theorem 3.5.4].

Theorem 2.5 ([4,18]). Let E be a uniformly convex and smooth Banach space and
let J be the duality mapping of E into E∗. Let B be a monotone operator of E into
2E

∗
. Then B is maximal if and only if for any r > 0,

R(J + rB) = E∗,

where R(J + rB) is the range of J + rB.

Let E be a uniformly convex Banach space with a Gâteaux differentiable norm
and let B be a maximal monotone operator of E into 2E

∗
. For all x ∈ E and r > 0,

we consider the following equation

Jx ∈ Jxr + rBxr.
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This equation has a unique solution xr. In fact, let x ∈ E. There exists xr ∈ D(B)
from Jx ∈ E∗ = R(J + rB) such that

Jx ∈ Jxr + rBxr.

We show that such a solution xr is unique. Take z1, z2 ∈ D(B) such that

Jx ∈ Jz1 + rBz1 and Jx ∈ Jz2 + rBz2.

We have 1
r (Jx− Jz1) ∈ Bz1 and 1

r (Jx− Jz2) ∈ Bz2. Since B and J are monotone,
we have

0 ≤
⟨
z1 − z2,

1

r
(Jx− Jz1)−

1

r
(Jx− Jz2)

⟩
=

1

r
⟨z1 − z2, Jx− Jz1 − (Jx− Jz2)⟩

= −1

r
⟨z1 − z2, Jz1 − Jz2⟩ ≤ 0

and hence

⟨z1 − z2, Jz1 − Jz2)⟩ = 0.

Since E is strictly convex, we have from Lemma 2.1 that z1 = z2. We define Jr by
xr = Jrx. Such Jr, r > 0 are called the generalized resolvents of B. The set of null
points of B is defined by B−10 = {z ∈ E : 0 ∈ Bz}. We know that B−10 is closed
and convex; see [23].

3. Main Result

In this section, using the new shrinking projection method we introduced, we
prove a strong convergence theorem for finding a common element of the zero point
set of a maximal monotone operator and the common fixed point set of two demigen-
eralized mappings in a Banach space. The ideas of the proof are due to [19–21,25].
Let E be a smooth and strictly convex Banach space and let J be the duality map-
ping on E. Let η and s be real numbers with η ∈ (−∞, 1) and s ∈ [0,∞), respec-
tively. Then a mapping U : C → E with F (U) ̸= ∅ is called (η, s)-demigeneralized
[14,27] if, for any x ∈ C and q ∈ F (U),

(3.1) 2⟨x− q, Jx− JUx⟩ ≥ (1− η)ϕ(x, Ux) + sϕ(Ux, x),

where F (U) is the set of fixed points of U . In particular, if s = 0 in (3.1), then the
mapping U is as follows:

2⟨x− q, Jx− JUx⟩ ≥ (1− η)ϕ(x, Ux)

for all x ∈ C and q ∈ F (U). Especially, such (η, 0)-demigeneralized mappings in
the class of demigeneralized mappings are important and called η-demigeneralized.

Examples.

(1) Let H be a Hilbert space and let C be a nonempty, closed and convex subset
of H. Let k be a real number with 0 ≤ k < 1. If U is a k-strict pseudo-contraction
[5] and F (U) ̸= ∅, then U is (k, 0)-demigeneralized [27].



404 WATARU TAKAHASHI

(2) LetH be a Hilbert space and let C be a nonempty, closed and convex subset of
H. If U is (α, β)-generalized hybrid and F (U) ̸= ∅, then U is (0, 0)-demigeneralized
[27], i.e.,

2⟨x− u, x− Ux⟩ ≥ ∥x− Ux∥2, ∀x ∈ C, u ∈ F (U).

Notice that the class of generalized hybrid mappings covers several well-known map-
pings. For example, a (1,0)-generalized hybrid mapping is nonexpansive. It is non-
spreading [11,12] for α = 2 and β = 1, i.e.,

2∥Tx− Ty∥2 ≤ ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

It is also hybrid [24] for α = 3
2 and β = 1

2 , i.e.,

3∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥Tx− y∥2 + ∥Ty − x∥2, ∀x, y ∈ C.

In general, nonspreading and hybrid mappings are not continuous; see [8].
(3) Let E be a strictly convex, reflexive and smooth Banach space and let C be a

nonempty, closed and convex subset of E. Let ΠC be the generalized projection of
E onto C. Then ΠC is (0, 1)-demigeneralized. In fact, since ΠC is the generalized
projection of E onto C, we have that, for any x ∈ E and q ∈ C,

2⟨ΠCx− q, Jx− JΠCx⟩ ≥ 0.

Then we get

2⟨ΠCx− x+ x− q, Jx− JΠCx⟩ ≥ 0

and hence

2⟨x− q, Jx− JΠCx⟩ ≥ 2⟨x−ΠCx, Jx− JΠCx⟩
= ϕ(x,ΠCx) + ϕ(ΠCx, x).

This means that ΠC is (0, 1)-demigeneralized. Furthermore, since

ϕ(x,ΠCx) + ϕ(ΠCx, x). ≥ ϕ(x,ΠCx),

ΠC is also (0, 0)-demigeneralized, i.e., 0-demigeneralized.
(4) Let E be a uniformly convex and smooth Banach space and let B be a maximal

monotone operator with B−10 ̸= ∅. Let λ > 0. Then the generalized resolvent Qλ

is (0, 1)-demigeneralized, i.e.,

2⟨x− q, Jx− JQλx⟩ ≥ 2⟨x−Qλx, Jx− JQλx⟩
= ϕ(x,Qλx) + ϕ(Qλx, x).

Furthermore, since

ϕ(x,Qλx) + ϕ(Qλx, x). ≥ ϕ(x,Qλx),

Qλ is also (0, 0)-demigeneralized, i.e., 0-demigeneralized.

The following lemma is important and crucial in the proof of our main result
which was proved in [27]. For the sake of completeness, we give the proof.

Lemma 3.1 ([27]). Let E be a smooth and strictly convex Banach space and let
C be a nonempty, closed and convex subset of E. Let η and s be real numbers
with η ∈ (−∞, 1) and s ∈ [0,∞), respectively. Let U be an (η, 0)-demigeneralized
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mapping of C into E. Then F (U) is closed and convex. In particular, if U is
(η, s)-demigeneralized, then F (U) is closed and convex.

Proof. Assume that U is an (η, 0)-demigeneralized. Let us show that F (U) is closed.
For a sequence {qn} such that qn → q and qn ∈ F (U), we have from the definition
of U that

⟨q − qn, Jq − JUq⟩ ≥ 1− η

2
ϕ(q, Uq).

From qn → q, we have 0 ≥ 1−η
2 ϕ(q, Uq). From 1 − η > 0, we get 0 ≥ ϕ(q, Uq) and

hence q = Uq. This implies that F (U) is closed. Let us prove that F (U) is convex.
Let p, q ∈ F (U) and set z = αp+ (1− α)q, where α ∈ [0, 1]. From the definition of
U , we have that, for x ∈ C and u ∈ F (U),

⟨x− u, Jx− JUx⟩ ≥ 1− η

2
ϕ(x, Ux).

This implies from (2.5) that

ϕ(x, Ux) + ϕ(u, x)− ϕ(u, Ux) ≥ (1− η)ϕ(x, Ux)

and hence

ϕ(u, x) + ηϕ(x, Ux) ≥ ϕ(u, Ux).

Using this, we have that for z = αp+ (1− α)q and p, q ∈ F (U),

ϕ(z, Uz) = ∥z∥2 − 2⟨z, JUz⟩+ ∥Uz∥2

= ∥z∥2 − 2⟨αp+ (1− α)q, JUz⟩+ ∥Uz∥2

= ∥z∥2 − 2α⟨p, JUz⟩ − 2(1− α)⟨q, JUz⟩+ ∥Uz∥2

= ∥z∥2 + αϕ(p, Uz) + (1− α)ϕ(q, Uz)− α∥p∥2 − (1− α)∥q∥2

≤ ∥z∥2 + α(ϕ(p, z) + ηϕ(z, Uz))

+ (1− α)(ϕ(q, z) + ηϕ(z, Uz))− α∥p∥2 − (1− α)∥q∥2

= ∥z∥2 + α(∥p∥2 − 2⟨p, Jz⟩+ ∥z∥2 + ηϕ(z, Uz))

+ (1− α)(∥q∥2 − 2⟨q, Jz⟩+ ∥z∥2 + ηϕ(z, Uz))

− α∥p∥2 − (1− α)∥q∥2

= 2∥z∥2 − 2⟨αp+ (1− α)q, Jz⟩+ ηϕ(z, Uz)

= 2∥z∥2 − 2⟨z, Jz⟩+ ηϕ(z, Uz)

= ηϕ(z, Uz)

and hence 0 ≤ (η − 1)ϕ(z, Uz). We have from 0 > η − 1 that ϕ(z, Uz) = 0. Since
E is strictly convex, we have z = Uz. This means that F (U) is convex. If U is
(η, s)-demigeneralized, then U is (η, 0)-demigeneralized and hence F (U) is closed
and convex. □

Let E be a Banach space and let C be a nonempty, closed and convex subset of
E. A mapping U : C → E is called demiclosed if for a sequence {xn} in C such
that xn ⇀ p and xn − Uxn → 0, p = Up holds.
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Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty, closed and convex subset of E such that JC is closed and
convex. Let A ⊂ E×E∗ be a maximal monotone operator and let Qr = (J+rA)−1J
be the generalized resolvent of A for all r > 0. Let η, τ ∈ (−∞, 1) and let S and T
be η and τ -demigeneralized mappings from C into itself, respectively, such that they
are demiclosed and Ω = F (S) ∩ F (T ) ∩ A−10 ̸= ∅. For x1 ∈ C and C1 = C, let
{xn} be a sequence generated by

un = Qrnzn,

zn = J−1(βnJvn + (1− βn)JTvn, )

vn = J−1(αnJxn + (1− αn)JSxn),

Cn+1 =
{
z ∈ Cn : 2⟨zn − z, Jzn − Jun⟩ ≥ ϕ(zn, un) + ϕ(un, zn),

2⟨vn − z, Jvn − Jzn⟩ ≥ (1− τ)ϕ(vn, zn)

and 2⟨xn − z, Jxn − Jvn⟩ ≥ (1− η)ϕ(xn, vn)
}
,

xn+1 = ΠCn+1x1, ∀n ∈ N,

where J is the duality mapping on E, {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for
some a > 0. If 1− αn ≥ b > 0 and 1− βn ≥ c > 0 for some b, c ∈ (0, 1), then {xn}
converges strongly to ΠΩx1, where ΠΩ is the generalized projection of E onto Ω.

Proof. It follows that Cn is closed and convex for all n ∈ N. We show that Ω ⊂ Cn

for all n ∈ N. It is obvious that Ω ⊂ C1 = C. Suppose that Ω ⊂ Ck for some k ∈ N.
To show Ω ⊂ Ck+1, let us show that

2⟨zk − z, Jzk − Juk⟩ ≥ ϕ(zk, uk) + ϕ(uk, zk),

2⟨vk − z, Jvk − Jzk⟩ ≥ (1− τ)ϕ(vk, zk) and

2⟨xk − z, Jxk − Jvk⟩ ≥ (1− η)ϕ(xk, vk)

for all z ∈ Ω. Let z ∈ Ω. Since Qrk is the generalized resolvent, we have that

⟨Qrkzk − z, Jzk − JQrkzk⟩ ≥ 0

for all z ∈ Ω ⊂ A−10. Thus, we get that

⟨Qrkzk − zk + zk − z, Jzk − JQrkzk⟩ ≥ 0

and hence

2⟨zk − z, Jzk − JQrkzk⟩ ≥ 2⟨zk −Qrkzk, Jzk − JQrkzk⟩.
We have from (2.5) that

2⟨zk − z, Jzk − JQrkzk⟩ ≥ ϕ(zk, Qrkzk) + ϕ(Qrkzk, zk).

This implies that

2⟨zk − z, Jzk − Juk⟩ ≥ ϕ(zk, uk) + ϕ(uk, zk).

Since u ∈ Ω and T is τ -demigeneralized, we have that

ϕ(vk, zk) = ϕ
(
vk, J

−1(βkJvk + (1− βk)JTvk)
)

= ∥vk∥2 − 2⟨vk, βkJvk + (1− βk)JTvk⟩
+ ∥βkJvk + (1− βk)JTvk∥2
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≤ ∥vk∥2 − 2βk∥vk∥2 − 2(1− βk)⟨vk, JTvk⟩
+ βk∥vk∥2 + (1− βk)∥Tvk∥2

= (1− βk)∥vk∥2 − 2(1− βk)⟨vk, JTvk⟩+ (1− βk)∥Tvk∥2

= (1− βk)ϕ(vk, T vk)

and hence

2⟨vk − z, Jvk − Jzk⟩ = 2⟨vk − z, Jvk − (βkJvk + (1− βk)JTvk)⟩
= 2(1− βk)⟨vk − z, Jvk − JTvk⟩
≥ (1− βk)(1− τ)ϕ(vk, T vk)(3.2)

≥ (1− τ)ϕ
(
vk, J

−1(βkJvk + (1− βk)JTvk)
)

= (1− τ))ϕ(vk, zk).

Similarly, we have that

2⟨xk − z, J(xk − vk)⟩ ≥ (1− η)ϕ(xk, vk)..

Then Ω ⊂ Ck+1. We have by mathematical induction that Ω ⊂ Cn for all n ∈ N.
This implies that {xn} is well defined.

We have that F (S) and F (T ) are closed and convex from Lemma 3.1 . We also
have that A−10 is closed and convex. Thus Ω is nonempty, closed and convex. Then
there exists w1 ∈ Ω such that w1 = ΠΩx1. From xn = ΠCnx1, we have that

ϕ(xn, x1) ≤ ϕ(y, x1)

for all y ∈ Cn. Since w1 ∈ Ω ⊂ Cn, we have that

(3.3) ϕ(xn, x1) ≤ ϕ(w1, x1).

From xn = ΠCnx1 and xn+1 ∈ Cn+1 ⊂ Cn, we have that

ϕ(xn, x1) ≤ ϕ(xn+1, x1).

Thus {ϕ(xn, x1)} is bounded and nondecreasing. Then there exists the limit of
{ϕ(xn, x1)}. Put limn→∞ ϕ(xn, x1) = c. For any m,n ∈ N with m ≥ n, we have
Cm ⊂ Cn. From xm = ΠCmx1 ∈ Cm ⊂ Cn and Lemma 2.4, we have that

ϕ(ΠCnx1, x1) + ϕ(xm,ΠCnx1) ≤ ϕ(xm, x1).

This implies that

(3.4) ϕ(xm, xn) ≤ ϕ(xm, x1)− ϕ(xn, x1) ≤ c− ϕ(xn, x1).

Since c− ϕ(xn, x1) → 0 as n → ∞, we have from Lemma 2.2 that {xn} is a Caushy
sequence. By the completeness of C, there exists a point w0 ∈ C such that

(3.5) xn → w0.

To complete the proof, it is sufficient to show that w1 = ΠΩx1 = w0. From (3.5),
we have that

∥xn − xn+1∥ → 0.(3.6)

From xn+1 = ΠCn+1x1, we have xn+1 ∈ Cn+1. This implies that

(3.7) 2⟨xn − xn+1, Jxn − Jvn⟩ ≥ (1− η)ϕ(xn, vn).
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Furthermore, we claim that {Jxn−Jvn} is bounded. That {Jxn−Jvn} is bounded
is proved as follows. For proving this, from

∥Jxn − Jvn∥ = ∥(1− βn)(Jxn − JSxn)∥,
we may prove that {Sxn} is bounded. Since

2⟨xn − z, Jxn − JSxn⟩ ≥ (1− η)(xn, Sxn)

for z ∈ F (S), we have from (2.5) that

ϕ(xn, Sxn) + ϕ(z, xn)− ϕ(z, Sxn) ≥ (1− η)ϕ(xn, Sxn)

and hence
ηϕ(xn, Sxn) + ϕ(z, xn) ≥ ϕ(z, Sxn).

In the case of η ≤ 0, we have ϕ(z, xn) ≥ ϕ(z, Sxn). Thus, we have that, for u ∈ F (S),

(∥z∥ − ∥Sxn∥)2 ≤ ϕ(z, Sxn)

≤ ϕ(z, xn) ≤ (∥z∥+ ∥xn∥)2.
Using this, we have that

∥Sxn∥ ≤ (∥z∥+ ∥xn∥) + ∥z∥.
This implies that {Sxn} is bounded. In the case of η withh 0 < η < 1, we have

ηϕ(xn, Sxn) + ϕ(z, xn) ≥ ϕ(z, Sxn).

Thus, we have that, for z ∈ F (S),

(∥z∥ − ∥Sxn∥)2 ≤ ϕ(z, Sxn)

≤ ϕ(z, xn) + ηϕ(xn, Sxn)

≤ (∥z∥+ ∥xn∥)2 + η(∥xn∥+ ∥Sxn∥)2

≤
(
∥z∥+ ∥xn∥+

√
η(∥xn∥+ ∥Sxn∥)

)2
.

From this, we have that

|∥z∥ − ∥Sxn∥| ≤ ∥z∥+ ∥xn∥+
√
η(∥xn∥+ ∥Sxn∥)

and hence
(1−√

η)∥Sxn∥ ≤ (1 +
√
η)∥xn∥+ 2∥z∥.

Then, we have that

∥Sxn∥ ≤
(1 +√

η

1−√
η
∥xn∥+

2

1−√
η
∥z∥

)
.

This implies that {Sxn} is bounded. We have from (3.7) that ϕ(xn, vn) → 0. Then
we have from Lemma 2.2 that

(3.8) lim
n→∞

∥xn − vn∥ = 0.

Since E is uniformly smooth, we have that Jxn − Jvn → 0. From 1 − αn ≥ b > 0
and

∥Jxn − Jvn∥ = ∥(1− αn)(Jxn − JSxn)∥ ≥ b∥Jxn − JSxn∥,
we have that Jxn − JSxn → 0. Since E∗ is uniformly smooth, we have that

(3.9) lim
n→∞

∥xn − Sxn∥ = 0.
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Furthermore, we have from xn+1 ∈ Cn+1 that

2⟨vn − xn+1, Jvn − Jzn⟩ ≥ (1− τ)ϕ(vn, zn)

and hence

2⟨vn − xn + xn − xn+1, Jvn − Jzn⟩ ≥ (1− βn)(1− τ)ϕ(vn, zn).

As in the proof of boundedness of {Jxn−Jvn}, we have that {Jvn−Jzn} is bounded.
From ∥xn − xn+1∥ → 0 and ∥xn − vn∥ → 0, we have that limn→∞ ϕ(vn, zn) = 0.
Using Lemma 2.2, we have that vn − zn → 0. As in the proof of xn − Sxn → 0, we
have that

(3.10) lim
n→∞

∥vn − Tvn∥ = 0.

We also have from xn+1 ∈ Cn+1 that

2⟨zn − xn+1, Jzn − Jun⟩ ≥ ϕ(zn, un) + ϕ(un, zn).

From ∥zn−xn+1∥ ≤ ∥zn− vn∥+∥vn−xn∥+∥xn−xn+1∥, zn− vn → 0, vn−xn → 0
and xn − xn+1 → 0, we have ∥zn − xn+1∥ → 0. Then we get that

lim
n→∞

ϕ(zn, un) = 0

and hence

(3.11) lim
n→∞

∥zn −Qrnzn∥ = 0.

Since xn → w0 and S is demiclosed, we have from (3.9) that w0 ∈ F (S). Similarly,
since vn → w0 and T is demiclosed, we have from (3.10) that w0 ∈ F (T ). We show
w0 ∈ A−10. Since E is uniformly smooth, from un = Qrnzn and (3.11) we have that

lim
n→∞

∥Jzn − Jun∥ = 0.

From rn ≥ a, we have

lim
n→∞

1

rn
∥Jzn − Jun∥ = 0.

Therefore, we have

lim
n→∞

∥Arnzn∥ = lim
n→∞

1

rn
∥Jzn − Jun∥ = 0.

For (p, p∗) ∈ A, from the monotonicity of A, we have ⟨p − un, p
∗ − Arnzn⟩ ≥ 0 for

all n ≥ 0. From un → w0, we get ⟨p− w0, p
∗⟩ ≥ 0. From the maximallity of A, we

have w0 ∈ A−10. Therefore, we have w0 ∈ Ω.
From w1 = ΠΩx1, w0 ∈ Ω and (3.3), we have that

ϕ(w1, x1) ≤ ϕ(w0, x1) = lim
n→∞

ϕ(xn, x1) ≤ ϕ(w1, x1).

Then we get that ϕ(w1, x1) = ϕ(w0, x1) and hence w0 = w1. Therefore, we have
xn → w0 = w1. This completes the proof. □
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4. Applications

In this section, using Theorem 3.2, we prove strong convergence theorems under
a new shrinking projection method in a Hilbert space and in a Banach space. We
know the following result obtained by Marino and Xu [13]; see also [28].

Lemma 4.1 ([13, 28]). Let H be a Hilbert space and let C be a nonempty, closed
and convex subset of H. Let k be a real number with 0 ≤ k < 1 and let U : C → H
be a k-strict pseudo-contraction. If xn ⇀ z and xn − Uxn → 0, then z ∈ F (U).

We also know the following result from Kocourek, Takahashi and Yao [10]; see
also [29].

Lemma 4.2 ([10, 29]). Let H be a Hilbert space, let C be a nonempty, closed and
convex subset of H and let U : C → H be generalized hybrid. If xn ⇀ z and
xn − Uxn → 0, then z ∈ F (U).

As a direct consequence of Theorem 3.2, we obtain the following result.

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space.
Let A ⊂ E × E∗ be a maximal monotone operator satisfying A−10 ̸= ∅ and let
Qr = (J + rA)−1J be the generalized resolvent of A for all r > 0. Let S and T be
relatively nonexpansive mappings from E into itself such that

Ω = F (S) ∩ F (T ) ∩A−10 ̸= ∅.
For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

un = Qrnzn,

zn = J−1(βnJvn + (1− βn)JTvn),

vn = J−1(αnJxn + (1− αn)JSxn),

Cn+1 =
{
z ∈ Cn : 2⟨zn − z, Jzn − Jun⟩ ≥ ϕ(zn, un) + ϕ(un, zn),

ϕ(z, zn) ≤ ϕ(z, vn) and ϕ(z, vn) ≤ ϕ(z, xn)
}
,

xn+1 = ΠCn+1x1, ∀n ∈ N,

where J is the duality mapping on E, {αn}, {βn} ⊂ [0, 1] and {rn} ⊂ [a,∞) for
some a > 0. If 1− αn ≥ b > 0 and 1− βn ≥ c > 0 for some b, c ∈ (0, 1), then {xn}
converges strongly to ΠΩx1, where ΠΩ is the generalized projection of E onto Ω.

Proof. Since S and T are relatively nonexpansive, S and T are 0-demigeneralized
mappings such that they are demiclosed. We also have that ϕ(z, zn) ≤ ϕ(z, vn) is
equivalent to

2⟨vn − z, Jvn − Jzn⟩ ≥ ϕ(vn, zn).

Similarly, ϕ(z, vn) ≤ ϕ(z, xn) is equivalent to

2⟨xn − z, Jxn − Jvn⟩ ≥ ϕ(xn, vn).

Therefore, we obtain Theorem 4.3 from Theorem 3.2. □
Let E be a Banach space and let f : E → (−∞,∞] be a proper, lower semicon-

tinuous and convex function. Define the subdifferential of f as follows:

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ ⟨y − x, x∗⟩+ f(x), ∀y ∈ E}
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for all x ∈ E. Then, we know that ∂f is a maximal monotone operator; see [17] for
more details.

Theorem 4.4. Let E be a uniformly convex and uniformly smooth Banach space
and let C be a nonempty, closed and convex subset of E such that JC is closed
and convex. Let S be a relatively nonexpansive mapping from C into itself. Let
τ ∈ (−∞, 1) and let T be a τ -demigeneralized mapping from C into itself such that
it is demiclosed and F (T ) ̸= ∅. Suppose that Ω = F (S) ∩ F (T ) ̸= ∅. For x1 ∈ C
and C1 = C, let {xn} be a sequence generated by

zn = J−1
(
αnJzn + (1− αn)JTvn

)
,

vn = J−1
(
βnJxn + (1− βn)JSxn

)
,

Cn+1 =
{
z ∈ Cn : 2⟨vn − z, Jvn − Jzn⟩ ≥ (1− τ)ϕ(vn, zn)

and ϕ(z, vn) ≤ ϕ(z, xn)
}
,

xn+1 = ΠCn+1x1, ∀n ∈ N,

where {αn}, {βn} ⊂ [0, 1]. If 1−αn ≥ b > 0 and 1−βn ≥ c > 0 for some b, c ∈ (0, 1),
then {xn} converges strongly to ΠΩx1, where ΠΩ is the generalized projection of E
onto Ω.

Proof. Set A = ∂iC in Theorem 3.2, where iC is the indicator function, that is,

iC =

{
0, x ∈ C,

∞, x /∈ C.

Then, we have that ∂iC is a maximal monotone operator and Qr = ΠC for all r > 0.
In fact, for any x ∈ E and r > 0, we have from Lemma 2.3 that

z = Qrx ⇔ Jz + r∂iC(z) ∋ Jx

⇔ Jx− Jz ∈ r∂iC(z)

⇔ iC(y) ≥
⟨
y − z,

Jx− Jz

r

⟩
+ iC(z), ∀y ∈ E

⇔ 0 ≥ ⟨y − z, Jx− Jz⟩, ∀y ∈ C

⇔ z = argmin
y∈C

ϕ(y, x)

⇔ z = ΠC

and un = zn in Theorem 3.2. Therefore, from Theorem 3.2, we obtain Theorem
4.4. □

The following is a strong convergence theorem for nonexpansive mappings and
k-strict pseudo-contractions in a Hilbert space.

Theorem 4.5. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let k be a real number with k ∈ [0, 1). Let T : C → C be a
nonexpansive mapping and let U : C → C be a k-strict pseudo-contraction such that
F (U) ̸= ∅. Suppose that Ω = F (T ) ∩ F (U) ̸= ∅. Let For x1 ∈ C and C1 = C, let
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{xn} be a sequence generated by

zn = βnvn + (1− βn)Uvn,

vn = αnxn + (1− αn)Txn,

Cn+1 =
{
z ∈ Cn : 2⟨vn − z, vn − zn⟩ ≥ (1− k)∥vn − Uzn∥2

and 2⟨xn − z, xn − vn⟩ ≥ ∥xn − vn∥2
}
,

xn+1 = PCn+1x1, ∀n ∈ N,

where {αn}, {βn} ⊂ [0, 1]. If 1−αn ≥ b > 0 and 1−βn ≥ c > 0 for some b, c ∈ (0, 1),
then {xn} converges strongly to a point PΩx1, where PΩ is the metric projection of
H onto Ω.

Proof. Since U be a k-strict pseudo-contraction of C into itself such that F (U) ̸= ∅,
from (1) in Examples, U is k-demigeneralized. From Lemma 4.1, U is demiclosed.
We also have that a nonexpansive maping T is 0-demigeneralized and demiclosed.
Furthermore, putting A = 0 in Theorem 3.2, we have that Qr = I for all r > 0.
Therefore, we have the desired result from Theorem 3.2. □

The following is a strong convergence theorem for nonexpansive mappings and
generalized hybrid mappings in a Hilbert space.

Theorem 4.6. Let H be a Hilbert space and let C be a nonempty, closed and
convex subset of H. Let T : C → C be a nonexpansive mapping with F (T ) ̸= ∅
and let U : C → C be a generalized hybrid mapping with F (U) ̸= ∅. Suppose that
Ω = F (T ) ∩ F (U) ̸= ∅. For x1 ∈ C and C1 = C, let {xn} be a sequence generated
by 

zn = βnvn + (1− βn)Uvn,

vn = αnxn + (1− αn)Txn,

Cn+1 =
{
z ∈ Cn : 2⟨vn − z, vn − zn⟩ ≥ ∥vn − Uzn∥2

and 2⟨xn − z, xn − vn⟩ ≥ ∥xn − vn∥2
}
,

xn+1 = PCn+1x1, ∀n ∈ N,
where {αn}, {βn} ⊂ [0, 1]. If 1−αn ≥ b > 0 and 1−βn ≥ c > 0 for some b, c ∈ (0, 1),
then {xn} converges strongly to a point PΩx1, where PΩ is the metric projection of
H onto Ω.

Proof. Since U be a generalized hybrid mapping of C into itself such that F (U) ̸= ∅,
from (2) in Examples, U is 0-demigeneralized. From Lemma 4.2, U is demiclosed.
We also have that a nonexpansive maping T is 0-demigeneralized and demiclosed.
Furthermore, putting A = 0 in Theorem 3.2, we have that Qr = I for all r > 0.
Therefore, we have the desired result from Theorem 3.2. □

The following is a strong convergence theorem for two generalized projections in
a Banach space.

Theorem 4.7. Let E be a uniformly convex and uniformly smooth Banach space.
Let C and D be nonempty, closed and convex subsets of E and let ΠC and ΠD be the
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generalized projections of E onto C and D, respectively. Suppose that C ∩D ̸= ∅.
For x1 ∈ E and C1 = E, let {xn} be a sequence generated by

zn = J−1(βnJvn + (1− βn)JΠDvn),

vn = ΠCxn,

Cn+1 =
{
z ∈ Cn : 2⟨vn − z, Jvn − Jzn⟩ ≥ ϕ(vn, zn)

and 2⟨xn − z, Jxn − Jvn⟩ ≥ ϕ(xn, vn)
}
,

xn+1 = ΠCn+1x1, ∀n ∈ N,

where {βn} ⊂ [0, 1]. If 1 − βn ≥ c > 0 for some c ∈ (0, 1), then {xn} converges
strongly to a point z0 ∈ C ∩D, where z0 = ΠC∩Dx1.

Proof. Since ΠC is the generalized projection of E onto C, ΠC is 0-demigeneralized
from (3) in Examples. Since ΠD is the generalized projection of E onto D, from
(3) in Examples, ΠD is 0-demigeneralized. We also have that if {un} is a sequence
in E such that un ⇀ p and un − ΠDun → 0, then p = ΠDp. In fact, assume that
un ⇀ p and un − ΠDun → 0. It is clear that ΠDun ⇀ p. Furthermore, since E is
uniformly smooth, we have that ∥Jun − JΠDun∥ → 0. Since ΠD is the generalized
projection of E onto D, we have that

⟨ΠDun −ΠDp, Jun − JΠDun − (Jp− JΠDp)⟩ ≥ 0.

Therefore, ⟨p−ΠDp,−(Jp− JΠDp)⟩ ≥ 0. This implies that

ϕ(p,ΠDp) + ϕ(ΠDp, p) ≤ 0

and hence p = ΠDp. Therefore, ΠD is demiclosed. Similarly, ΠC is demiclosed.
Furthermore, putting A = 0 in Theorem 3.2, we have that Qr = I for all r > 0.
Therefore, we have the desired result from Theorem 3.2. □

The following is a strong convergence theorem for two generalized resolvents in
a Banach space.

Theorem 4.8. Let E be a uniformly convex and uniformly smooth Banach space.
Let G and B be maximal monotone operators of E into E∗. Let Jλ be the generalized
resolvent of G for λ > 0 and let Rµ be the generalized resolvent of B for µ > 0.
Suppose that G−10 ∩ B−10 ̸= ∅. For x1 ∈ E and C1 = E, let {xn} be a sequence
generated by

zn = J−1(βnJvn + (1− βn)JRµvn),

vn = Jλxn,

Cn+1 =
{
z ∈ Cn : 2⟨vn − z, Jvn − Jzn⟩ ≥ ϕ(vn, zn)

and 2⟨xn − z, Jxn − Jvn⟩ ≥ ϕ(xn, vn)
}
,

xn+1 = ΠCn+1x1, ∀n ∈ N,

where {βn} ⊂ [0, 1]. If 1 − βn ≥ c > 0 for some c ∈ (0, 1), then the sequence {xn}
converges strongly to a point z0 ∈ G−10 ∩B−10, where z0 = ΠG−10∩B−10x1.
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Proof. Since Rµ is the generalized resolvent of B on E, from (4) in Examples, Rµ is
0-demigeneralized. We also have that if {un} is a sequence in E such that un ⇀ p
and un−Rµun → 0, then p = Rµp. In fact, assume that un ⇀ p and un−Rµun → 0.
It is clear that Rµun ⇀ p. Furthermore, since E is uniformly smooth, we have that
∥Jun − JRµun∥ → 0. Since Rµ is the generalized resolvent of B, we have from [3]
that

⟨Rµun −Rµp, Jun − JRµun − (Jp− JRµp)⟩ ≥ 0.

Therefore, ⟨p−Rµp,−(Jp− JRµp)⟩ ≥ 0. This implies that

ϕ(p,Rµp) + ϕ(Rµp, p) ≤ 0

and hence p = Rµp. Therefore, Rµ is demiclosed. Similarly, Jλ is 0-demigeneralized
and demiclosed. Furthermore, putting A = 0 in Theorem 3.2, we have that Qr = I
for all r > 0. Therefore, we have the desired result from Theorem 3.2. □
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