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science and engineering problems can be reformulated in terms of optimization prob-
lems which are governed by m-flow type PDEs (multitime evolution systems) and
by cost functionals expressed as curvilinear integrals or multiple integrals. Udriste
and Tevy [34] were the first to present the basic optimization problems involv-
ing path-independent curvilinear integrals and multiple integrals. Mathematically,
these integrals are equivalent, but their meanings are completely different in real
life problems. Subsequently, Jayswal et al. [19] introduced a variational inequality
in terms of path-independent curvilinear integrals and demonstrated the relation
between this variational inequality problem and a multitime variational problem.
Recently, Singh et al. [27] have formulated a variational inequality problem in terms
of multiple integrals and also have established its equivalence with certain multiple
integral type multitime variational problems, which were investigated in [23,32,33]
in many ways. For more contributions, see [31].

Motivated by the above studies, we introduce in the present paper a multidi-
mensional (multitime-dependent) variational inequality problem involving multiple
integrals and establish existence and uniqueness results for it. In order to illustrate
the utilization of this multidimensional variational inequality in economics, we in-
terpret the equilibria of a multidimensional traffic network model in terms of such a
variational inequality and also discuss these equilibria using the Wardrop condition.
Finally, we propose a method for finding the equilibria of our multidimensional traf-
fic network model, and numerically demonstrate the validity and applicability of our
results. The key difference between our results and the relevant results obtained
in [3, 8, 12] is that the latter are investigated with respect to a linear dimension of
time (in a fixed time interval) while our results pertain to multidimensional time,
which varies between the opposite diagonal points of a hyperparallelepiped.

Our paper is organized as follows: preliminaries and our formulation of the prob-
lem are presented in Section 2. A user-oriented form of the multidimensional traffic
network equilibria is developed in Section 3 and an existence result for these equilib-
ria is established in Section 4. Numerical illustrations and the procedure for finding
the equilibria of our multidimensional traffic network model are provided in Section
5. Finally, we present our conclusions in Section 6.

2. Preliminaries and problem formulation

In order to formulate our multidimensional traffic network model, we start by intro-
ducing important notations and mathematical tools. Our traffic network is made of
the set of nodes N , which represent airports, railway stations, crossings, etc., and
are connected by the set of directed links L. Furthermore, W represents the set of
origin-destination pairs and V represents the entire set of routes. We assume that
each route r ∈ V links exactly one origin-destination pair. The set of all r ∈ V
which link a given w ∈ W is denoted by V (w). Let f(t) ∈ RV be the multitime-
dependent flow trajectory and for each r ∈ V , let fr(t) represent the flow trajectory
over the multitime t in the route r. Here, t is defined as t = (tα) ∈ Ωl◦,l1 ⊂ Rm,
where α = (1, 2, . . . ,m) denotes a multitime parameter of evolution or a multitime,
for short. Geometrically, Ωl◦,l1 is a hyperparallelepiped in Rm with the opposite di-
agonal points l◦ = (l1◦, l

2
◦, . . . , l

m
◦ ) and l1 = (l11, l

2
1, . . . , l

m
1 ), and by using the product

order relation on Rm, it can be written as an interval [l◦, l1]
m. Our functional setting
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for the flow trajectories is the reflexive Banach function space Lp(Ωl◦,l1 ,RV ), where

p > 1, the dual space of which is the Banach function space Lq(Ωl◦,l1 ,RV ), 1
p+

1
q = 1.

We use the following notation to denote the value of the functional represented by
h(t) at the point f(t):

⟨⟨f(t), h(t)⟩⟩ =
∫
Ωl◦,l1

⟨f(t), h(t)⟩dt, f(t) ∈ Lp(Ωl◦,l1 ,R
V ),

and h(t) ∈ Lq(Ωl◦,l1 ,RV ), where ⟨., .⟩ denotes the Euclidean inner product and
dt = dt1 . . . dtm denotes the volume element of Ωl◦,l1 .

We impose the restrictions that every feasible flow has to satisfy the multitime-
dependent capacity constraints

λ(t) ≤ f(t) ≤ µ(t), a.e. on Ωl◦,l1 ,

and the traffic conservation law/demand requirements

ϕf(t) = ρ(t), a.e. on Ωl◦,l1 ,

where λ(t), µ(t) ∈ Lp(Ωl◦,l1 ,RV ) are given bounds with λ(t) ≤ µ(t) and the function

ρ(t) ∈ Lp(Ωl◦,l1 ,RW ) is the given demand. Here ρ(t) ≥ 0 and ϕ = ϕr,w is the
pair link incidence matrix, the entries of which are equal to 1 if route r links the
pair w and 0 otherwise. The abbreviation “a.e.” stands for “almost everywhere”
throughout the paper. We also assume that

ϕλ(t) ≤ ρ(t) ≤ ϕµ(t), a.e. on Ωl◦,l1 ,

an assumption which implies the non-emptiness of the set of feasible flows

K := {f(t) ∈ Lp(Ωl◦,l1 ,R
V ) : λ(t) ≤ f(t) ≤ µ(t) and ϕf(t) = ρ(t),

a.e. on Ωl◦,l1}.
Remark 2.1. It can easily be proven that the feasible set K is convex, closed and
bounded. Consequently, it is weakly compact.

From now on, for notational simplicity, the multitime-dependent flow trajectories
are written without explicitly mentioning t. For example, we denote the multitime-
dependent flow trajectory by f . Furthermore, for each f ∈ K, the cost trajectory
is determined by a mapping F : K → Lq(Ωl◦,l1 ,RV ) and denoted by F (f).

Now we formulate our multidimensional variational inequality problem as follows:
(MDVIP) to find f ∈ K such that∫

Ωl◦,l1

⟨F (f), h− f⟩dt ≥ 0 ∀ h ∈ K.

In the sequel we denote the solution set of (MDVIP) by A.

Special Case. If m = 1, then Ωl◦,l1 is simply the closed real interval [l◦, l1].
Furthermore, for more convenience, we put l◦ = 0 and l1 = T (which denotes an
arbitrary time) and then Ωl◦,l1 = [0, T ] (a fixed time interval). Consequently, in this
case (MDVIP) reduces to the following problem:
Find f ∈ K such that ∫ T

0
⟨F (f), h− f⟩dt ≥ 0 ∀ h ∈ K,
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where the feasible set K = {f(t) ∈ Lp([0, T ],RV ) : λ(t) ≤ f(t) ≤ µ(t) and ϕf(t) =
ρ(t) a.e. on [0, T ]}. This is an evolutionary (time-dependent) variational inequality
problem of the kind introduced by Lions and Stampacchia [21], and Brezis [4].
This problem has been explored by Daniele et al. [12], Cojocaru et al. [8], and by
Barbagallo [3] in the context of traffic network equilibrium problems with a linear
dimension of time.
In view of the definition of an equilibrium flow for a dynamic traffic network prob-
lem as defined by Daniele et al. [12], we set forth the following definition for a
multidimensional traffic network model in terms of our (MDVIP).

Definition 2.2. H ∈ K is an equilibrium flow if and only if H ∈ A.

Equilibrium flows of traffic network problems have been studied in terms of the
Wardrop condition. An equivalence between the Wardrop condition and classical
variational inequality problems was established by Daniele et al. [12], and the vector
form of the Wardrop condition was explored by Raciti [25]. In a similar manner,
we consider the following multitime-dependent Wardrop condition.
(MWC) For an arbitrary f ∈ K and a.e. on Ωl◦,l1 , the multitime-dependent
Wardrop condition is defined as follows:

Fu(f) < Fs(f) ⇒ fu = µu or fs = λs ∀ w ∈ W, ∀ u, s ∈ V (w).

3. User-oriented multidimensional traffic network equilibria

In this section we study a more amenable form of our multidimensional traffic
network model. Concretely, we provide an equivalent form of the equilibrium flows
of our multidimensional traffic network model by means of the multitime-dependent
Wardrop condition. As a matter of fact, because of its form, the multitime-dependent
Wardrop condition is more responsive to the user than the definition of equilibrium
flows given in Definition 2.2.

The following theorem is the main result of this section.

Theorem 3.1. Let f ∈ K be an arbitrary flow. Then f is an equilibrium flow if
and only if it satisfies the (MWC).

Proof. First we assume that f ∈ K satisfies the (MWC). Given an origin-destination
pair w ∈ W , we define the following two sets:

R := {u ∈ V (w) : fu < µu}, S := {s ∈ V (w) : fs > λs}.
It follows from (MWC) that

(3.1) Fu(f) ≥ Fs(f) ∀ u ∈ R, ∀ s ∈ S and a.e. on Ωl◦,l1 .

Inequality (3.1) implies that there exists a real number v ∈ R such that

sup
s∈S

Fs(f) ≤ v ≤ inf
u∈R

Fu(f), a.e. on Ωl◦,l1 .

Suppose that h ∈ K is an arbitrary flow. Then, for a.e. on Ωl◦,l1 , we have

∀ r ∈ V (w), Fr(f) < v ⇒ r /∈ R.

Next, we note that if r /∈ R, then fr = µr and (hr − fr) ≤ 0. Consequently, we have
(Fr(f)− v)(hr − fr) ≥ 0 a.e. on Ωl◦,l1 . In the same way, we obtain that for a.e. on
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Ωl◦,l1 and for all r ∈ V (w) such that Fr(f) > v, we also have (Fr(f)−v)(hr−fr) ≥ 0
a.e. on Ωl◦,l1 . Thus we have

(3.2)

⟨F (f), h− f⟩ =
∑
w∈W

∑
r∈V (w)

Fr(f)(hr − fr)

=
∑
w∈W

∑
r∈V (w)

(Fr(f)− v)(hr − fr) + v
∑
w∈W

∑
r∈V (w)

(hr − fr)

≥ 0, a.e. on Ωl◦,l1 .

Note that in the above inequality, the value of the term
∑

w∈W

∑
r∈V (w)

(hr − fr) is zero

because of another form of the traffic conservation law/demand requirements, that
is,

∑
r∈V (w)

fr(t) = ρw(t) for all f ∈ K and w ∈ W , a.e. on Ωl◦,l1 .

Since h ∈ K is arbitrary, (3.2) implies that∫
Ωl◦,l1

⟨F (f), h− f⟩dt ≥ 0 ∀ h ∈ K.

Therefore, f is indeed an equilibrium flow, as claimed.
To prove the converse assertion, we suppose to the contrary that f is an equi-

librium flow, but that it does not satisfy the (MWC). It then follows that there
exist an origin-destination pair w ∈ W and routes u, s ∈ V (w) together with a set
G

l◦,
l◦+l1

2

⊂ Ωl◦,l1 of positive measure such that

Fu(f) < Fs(f), fu < µu, fs > λs, a.e. on G
l◦,

l◦+l1
2

,

where G
l◦,

l◦+l1
2

is a hyperparallelepiped in Rm with the opposite diagonal points

l◦ = (l1◦, l
2
◦, . . . , l

m
◦ ) and l◦+l1

2 = (
l1◦+l11

2 ,
l2◦+l21

2 , . . . ,
lm◦ +lm1

2 ). By using the product

order relation on Rm, this set can be written as an interval
[
l◦,

l◦+l1
2

]m
. Next, we

consider the function

ν(t) := min{µu(t)− fu(t), fs(t)− λs(t)}, t ∈ G
l◦,

l◦+l1
2

.

Then ν(t) > 0 a.e. on G
l◦,

l◦+l1
2

. We now define a multitime-dependent flow trajec-

tory h ∈ Lp(Ωl◦,l1 ,RV ) by

hu := fu + ν(t), hs := fs − ν(t), hr := fr for r ̸= u, s, a.e. on G
l◦,

l◦+l1
2

.

Then, h ∈ K clearly satisfies h = f outside G
l◦,

l◦+l1
2

. Now we have∫
Ωl◦,l1

⟨F (f), h− f⟩dt =
∫
G

l◦,
l◦+l1

2

⟨F (f), h− f⟩dt

=

∫
G

l◦,
l◦+l1

2

ν(t)(Fu(f)− Fs(f))dt

< 0,



388 S. SINGH AND S. REICH

an inequality which shows that f is not an equilibrium flow after all. The contradic-
tion we have reached enables us to conclude that f does satisfy the (MWC). This
completes the proof of the theorem. □

4. Existence and uniqueness of multidimensional traffic network
equilibria

In this section we establish the existence and uniqueness of equilibria of our
multidimensional traffic network model, which we have formulated in terms of a
multidimensional variational inequality problem.

In this connection we recall that the first existence and uniqueness theorem for
solutions of the classical variational inequality problem was established by Stampac-
chia [29] in 1964. Thereafter, many existence results were established by Browder [5]
using monotonicity methods. Several recent existence results for vector variational
inequality problems can be found in [1,6,30]. We need the following definitions and
lemma, which are influenced by [6, 15,16].

Let M be a nonempty, closed and convex subset of the set of feasible flows K.

Definition 4.1. The cost function F is said to be strictly monotone if

⟨⟨F (x)− F (y), x− y⟩⟩ > 0 ∀ x, y ∈ K and x ̸= y.

Definition 4.2. The cost function F is said to be demi-continuous at the point
a ∈ K if it is strongly–weakly sequentially continuous at this point, that is, if the
sequence {F (xn)} weakly converges to F (a) for all sequences {xn} ⊂ K, xn → a.
Here the symbol “ → ” stands for strong convergence.

Definition 4.3. The convex hull of a finite subset {x1, x2, . . . , xn} of M is defined
as follows:

co{x1, x2, . . . , xn} :=

{
n∑

i=1

βixi, :
n∑

i=1

βi = 1, for some βi ∈ [0, 1]

}
.

Definition 4.4. A (set-valued) mapping Γ : M → 2K is said to be a KKM mapping
if for any finite subset {x1, x2, . . . , xn} of M , we have

co{x1, x2, . . . , xn} ⊂
n⋃

i=1

Γ(xi).

The following lemma is a special case of Ky Fan’s infinite-dimensional version of
the classical Knaster-Kuratowski-Mazurkiewicz theorem.

Lemma 4.5 ([15] KKM-Fan Theorem)). Let Γ : M → 2K be a KKM mapping such
that Γ(x) is a closed subset of K for each x ∈ M . If Γ(x) is compact for at least
one x ∈ M , then ⋂

x∈M
Γ(x) ̸= ∅.

We are now ready to state and prove our existence result.
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Theorem 4.6. Assume that the cost function F is demi-continuous, and that there
exist a nonempty compact set C ⊂ M and a point y ∈ C such that for all x ∈ M\C,
we have ∫

Ωl◦,l1

⟨F (x), y − x⟩dt < 0.

Then (MDVIP) has a solution.

Proof. First, we construct two set-valued mappings as follows: Γ1 : M → 2K is
defined by

Γ1(x
∗) :=

{
x ∈ M :

∫
Ωl◦,l1

⟨F (x∗), x− x∗⟩dt < 0

}
for each x∗ ∈ M and Γ2 : M → 2K is defined by

Γ2(x) :=

{
x∗ ∈ M :

∫
Ωl◦,l1

⟨F (x∗), x− x∗⟩dt ≥ 0

}
for each x ∈ M . It is clear that x ∈ Γ2(x). Therefore, Γ2(x) is nonempty for all
x ∈ M . At the next stage, we are going to prove that Γ2 is a KKM mapping. To
this end, suppose to the contrary that Γ2 is not a KKM mapping. Then there exists
a finite subset {x1, x2, . . . , xn} of M such that

(4.1) co{x1, x2, . . . , xn} ̸⊂
n⋃

i=1

Γ2(xi).

The definition of the convex hull yields that there exists a point
ŷ ∈ co{x1, x2, . . . , xn}, that is,

ŷ =
n∑

i=1

βixi,

where
∑n

i=1 βi = 1 for some βi ∈ [0, 1], such that

ŷ /∈
n⋃

i=1

Γ2(xi).

Thus, for any i = {1, 2, . . . , n}, we have∫
Ωl◦,l1

⟨F (ŷ), xi − ŷ⟩dt < 0,

which implies that {x1, x2, . . . , xn} ⊂ Γ1(ŷ). Further, it can easily be seen that
the set-valued mapping Γ1 has convex point images, that is, Γ1(x

∗) is convex for
each x∗ ∈ M . It follows that co{x1, x2, . . . , xn} ⊂ Γ1(ŷ) and hence ŷ ∈ Γ1(ŷ) too.
Therefore, we have ∫

Ωl◦,l1

⟨F (ŷ), ŷ − ŷ⟩dt < 0,

which is impossible. Consequently, Γ2 is, in fact, a KKM mapping, as claimed.
Now suppose that x ∈ M is arbitrary and {xn}∞n=0 is a sequence in Γ2(x) which



390 S. SINGH AND S. REICH

converges strongly to y. Since xn ∈ Γ2(x), we have∫
Ωl◦,l1

⟨F (xn), x− xn⟩dt ≥ 0

for each natural number n. As the cost function F is strongly-weakly sequentially
continuous, by taking the limit as n → ∞ in the above inequalities, we obtain∫

Ωl◦,l1

⟨F (y), x− y⟩dt ≥ 0.

Therefore, y ∈ Γ2(x). Hence the point images of the set-valued mapping Γ2(x) are
closed (in the strong topology) for all x ∈ M . Since Γ2(y) ⊂ C for y ∈ C ⊂ M ,
it follows that Γ2(y) is compact (in the strong topology) for each y ∈ C. It now
follows from the KKM-Fan Theorem that⋂

x∈M
Γ2(x) ̸= ∅,

that is, there exists a point x∗ ∈ M such that x∗ ∈ Γ2(x) for all x ∈ M . In other
words, there exists a point x∗ ∈ M such that

(4.2)

∫
Ωl◦,l1

⟨F (x∗), x− x∗⟩dt ≥ 0 ∀ x ∈ M.

Therefore (MDVIP) has indeed a solution x∗ in the set M ⊂ K, as asserted. □
The following corollary provides the uniqueness of the solution of (MDVIP).

Corollary 4.7. If the cost function F is strictly monotone on K, then (MDVIP)
has a unique solution.

Proof. Suppose to the contrary that (MDVIP) does not have a unique solution. Let
x1 ∈ K be a solution of (MDVIP). Then we have

(4.3)

∫
Ωl◦,l1

⟨F (x1), x− x1⟩dt ≥ 0 ∀ x ∈ K.

If x2 ∈ K is another solution of (MDVIP) and x1 ̸= x2, then we get

(4.4)

∫
Ωl◦,l1

⟨F (x2), x̂− x2⟩dt ≥ 0 ∀ x̂ ∈ K.

Inequality (4.3) can be rewritten as

(4.5) ⟨⟨F (x1), x2 − x1⟩⟩ ≥ 0

and the strict monotonicity of the function F yields

(4.6) ⟨⟨F (x1)− F (x2), x1 − x2⟩⟩ > 0.

Adding inequalities (4.5) and (4.6), we obtain

⟨⟨F (x2), x1 − x2⟩⟩ < 0,

which, however, contradicts inequality (4.4). Hence x2 is not a solution of (MDVIP)
after all. Therefore (MDVIP) does have a unique solution, as asserted. □



A MULTIDIMENSIONAL APPROACH TO TRAFFIC ANALYSIS 391

5. Experimental study of the multidimensional traffic network
model

In this section we study our multidimensional traffic network model by using
the theory of projected dynamical systems (PDS). We are motivated by the work
of Cojocaru et al. [8]. These authors were also concerned with the historical and
practical aspects of projected dynamical systems, and explored them very well. At
this point it is worthwhile recalling that Dupuis and Nagurney [13] had already
studied projected dynamical systems and established their connections with the
classical variational inequality problem. Influenced by these works, we consider the
following projected dynamical system on the feasible set K for p = 2:

(PDS) x(·, τ) ∈ K such that
dx(·, τ)

dτ
= ΠK(x(·, τ),−F (x(·, τ))),

x(·, 0) = x◦(·) ∈ K, where F : K → L2(Ωl◦,l1 ,RV ) is a Lipschitz continuous vector

field and the operator ΠK : K × L2(Ωl◦,l1 ,RV ) → L2(Ωl◦,l1 ,RV ) is defined by

ΠK(x(·), v(·)) := lim
δ→0+

projK(x(·) + δv(·))− x(·)
δ

∀ x(·) ∈ K

and v(·) ∈ L2(Ωl◦,l1 ,RV ). Here projK(·) is the nearest point projection of a given
vector onto the set K (we recall its definition below). Furthermore, in order to
avoid confusion between the multitime t and the time τ , we represent elements
of the space L2(Ωl◦,l1 ,RV ) at fixed moments t ∈ Ωl◦,l1 by x(·). Indeed, in the
formulation of (PDS), the time τ is different from the multitime t. For all t ∈ Ωl◦,l1 ,
a solution of (MDVIP) represents a static state of the underlying system and the
static states define one or more equilibrium curves when t varies over the set Ωl◦,l1 .
On the other hand, τ defines the dynamics of the system over the interval [0,∞)
until it reaches one of the equilibria on the curves. It is clear that the solutions to
(PDS) lie in the class of absolutely continuous functions with respect to τ , taking
[0,∞) to K. In order to describe the procedure for solving the (MDVIP), we need
to recall the following definitions (compare [9, 22]).

Definition 5.1. x∗(·) ∈ K is called a critical point of (PDS) if

ΠK(x∗(·),−F (x∗(·))) = 0.

Definition 5.2. The nearest point projection of a point x(·) ∈ L2(Ωl◦,l1 ,RV ) onto
the set K is defined by

projK
(
x(·)

)
:= arg min

y(·)∈K

∥∥x(·)− y(·)
∥∥.

Remark 5.3. For each x(·) ∈ L2(Ωl◦,l1 ,RV ), projK(x(·)) enjoys the following prop-
erty:

⟨⟨x(·)− projK(x(·)), y(·)− projK(x(·))⟩⟩ ≤ 0 ∀ y(·) ∈ K.

Definition 5.4. The polar set K◦ associated to K is defined by

K◦ :=
{
y(·) ∈ L2(Ωl◦,l1 ,R

V ) : ⟨⟨y(·), x(·)⟩⟩ ≤ 0 ∀ x(·) ∈ K
}
.
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Definition 5.5. The tangent cone to the set K at a point x(·) ∈ K is defined by

TK(x(·)) = cl

(⋃
λ>0

K − x(·)
λ

)
,

where cl denotes the closure operation.

Definition 5.6. The normal cone of K at a point x(·) ∈ K is defined by

NK

(
x(·)

)
:= {y(·) ∈ L2(Ωl◦,l1 ,R

V ) : ⟨⟨y(·), z(·)− x(·)⟩⟩ ≤ 0 ∀ z(·) ∈ K}.

This can also be written as TK

(
x(·)

)
=
[
NK

(
x(·)

)]◦
.

The following propositions are direct consequences of Proposition 2.1 and 2.2
in [9].

Proposition 5.7. For all x(·) ∈ K and v(·) ∈ L2(Ωl◦,l1 ,RV ), ΠK(x(·), v(·)) exists
and ΠK(x(·), v(·)) = projTK(x(·))(v(·)).

Proposition 5.8. For all x(·) ∈ K, there exists n(·) ∈ NK(x(·)) such that ΠK(x(·), v(·)) =
v(·)− n(·) ∀ v(·) ∈ L2(Ωl◦,l1 ,RV ).

The following theorem establishes a relationship between solutions to (MDVIP)
and the critical points of (PDS).

Theorem 5.9. x∗(·) ∈ K is a solution of (MDVIP) if and only if it is a critical
point of (PDS).

Proof. Suppose first that x∗(·) ∈ K is a solution to (MDVIP), that is,∫
Ωl◦,l1

⟨F (x∗(·)), x(·)− x∗(·)⟩dt ≥ 0 ∀ x(·) ∈ K.

In other words,

⟨⟨F (x∗(·)), x(·)− x∗(·)⟩⟩ ≥ 0 ∀ x(·) ∈ K,

so that

−F (x∗(·)) ∈ NK(x∗(·)).
Proposition 5.8 now implies that

(5.1) ΠK(x∗(·),−F (x∗(·))) = 0.

Thus x∗(·) is a critical point of (PDS), as claimed.
Conversely, assume that x∗(·) is a critical point of (PDS). Then (5.1) holds. It

follows from Proposition 5.7 that

projTK(x∗(·))(−F (x∗(·))) = 0.

Using Remark 5.3, we get

⟨⟨−F (x∗(·)), z⟩⟩ ≤ 0 ∀ z ∈ TK(x∗(·)),

which yields

−F (x∗(·)) ∈ NK(x∗(·)).
In other words, x∗(·) is indeed a solution of (MDVIP), as asserted. □
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Now we are in a position to present our method for solving (MDVIP). Theorem
5.9 means that any point on a curve of equilibria in the set Ωl◦,l1 is a critical point
of (PDS) and vice versa. Also, the existence and uniqueness of equilibria have
already been established in the previous section. Keeping this information in mind,
we employ the following discretization of Ωl◦,l1 : (l1◦, l

2
◦, . . . , l

m
◦ ) = (t10, t

2
0, . . . , t

m
0 ) <

(t11, t
2
1, . . . , t

m
1 ) < . . . < (t1i , t

2
i , . . . , t

m
i ) < . . . < (t1n, t

2
n, . . . , t

m
n ) = (l11, l

2
1, . . . , l

m
1 ).

Then for each ti = (t1i , t
2
i , . . . , t

m
i }, i = 0, 1, . . . , n, we obtain a sequence of (PDS)

on the distinct, finite-dimensional, closed and convex sets Kti . After computing
all the critical points of each (PDS), we get a sequence of critical points which by
interpolation yields the curves of equilibria. In order to illustrate how to apply this
procedure in practice, we consider a transportation network pattern of a city called
X, which is shown in Figure 1. This transportation network is made of twelve
nodes and thirteen links. We assume that two persons called Y and Z live at nodes
“a” and “l”, respectively, and City X has two railway stations at nodes “f” and
“h”. Furthermore, we assume that persons Y and Z have to catch a train from
the railway stations “f” and “h”, respectively. Thus, the origin-destination pairs
are w1 = (a, f) and w2 = (l, h), which are respectively connected by the following
routes:

w1 :

{
V1 = (a, b) ∪ (b, c) ∪ (c, d) ∪ (d, e) ∪ (e, f)

V2 = (a, b) ∪ (b, h) ∪ (h, g) ∪ (g, f),

w2 :

{
V3 = (l, k) ∪ (k, j) ∪ (j, i) ∪ (i, h)

V4 = (l, a) ∪ (a, b) ∪ (b, h).

a
b

c d

e f

g
h

ij

k
l

Figure 1. A Traffic Network Model of the City X

Let p = 2, m = 2 and Ωl◦,l1 = Ω0,3 = [0, 3]2. The set of feasible flows is given by

K = {f(t) ∈ L2(Ω0,3,R4) : (0, 0, 0, 0) ≤ (f1(t), f2(t), f3(t), f4(t))

≤ (t1 + t2 + 1, t1 + t2 + 2, 2t1 + 2t2 + 2, t1 + t2 + 5)

and f1(t) + f2(t) = 2t1 + 2t2 + 2, f3(t) + f4(t) = 3t1 + 3t2 + 3, a.e. on Ω0,3},
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and the cost function F : K → L2(Ω0,3,R4) is defined by

F (x(t)) := (x1(t) + x21(t), x2(t) + x22(t), x3(t) + x23(t), x4(t) + x24(t)),

where x(t) = (x1(t), x2(t), x3(t), x4(t)). It can easily be proven that the hypothe-
ses of Theorem 4.6 are satisfied and the cost function F is strictly monotone on
the set K. Therefore, (MDVIP) has a unique solution on K. We select ti ∈{(

k
6 ,

k
6

)
: k ∈ {0, 1, 2, . . . , 18}

}
. Then we get a sequence of (PDS) defined on the

feasible set

Kti = {f ∈ L2(Ω0,3,R4) : (0, 0, 0, 0) ≤ (f1(ti), f2(ti), f3(ti), f4(ti))

≤ (t1i + t2i + 1, t1i + t2i + 2, 2t1i + 2t2i + 2, t1i + t2i + 5)

and f1(ti) + f2(ti) = 2t1i + 2t2i + 2, f3(ti) + f4(ti) = 3t1i + 3t2i + 3, a.e. on Ω0,3}.

For calculating the unique equilibrium, we have the following system at ti: to
find the point x∗(ti) = (x∗1(ti), x

∗
2(ti), x

∗
3(ti), x

∗
4(ti)) ∈ Kti such that

−F (x∗1(ti), x
∗
2(ti), x

∗
3(ti), x

∗
4(ti)) ∈ NKti

(x∗1(ti), x
∗
2(ti), x

∗
3(ti), x

∗
4(ti)).

After a simple computation, we indeed find the equilibrium points. They are
listed in Table 1. Interpolating the points of Table 1, we finally get the curves of
equilibria. They are displayed in Figure 2.

Table 1. Numerical Results

ti = {t1i , t2i } x∗1(ti) x∗2(ti) x∗3(ti) x∗4(ti)

{0, 0} 1 1 1.5 1.5
{1
6 ,

1
6} 1.332 1.332 1.998 1.998

{1
3 ,

1
3} 1.666 1.666 2.499 2.499

{1
2 ,

1
2} 2 2 3 3

{2
3 ,

2
3} 2.332 2.332 3.498 3.498

{5
6 ,

5
6} 2.666 2.666 3.999 3.999

{1, 1} 3 3 4.5 4.5
{7
6 ,

7
6} 3.332 3.332 4.998 4.998

{4
3 ,

4
3} 3.666 3.666 5.499 5.499

{3
2 ,

3
2} 4 4 6 6

{5
3 ,

5
3} 4.332 4.332 6.498 6.498

{11
6 ,

11
6 } 4.666 4.666 6.999 6.999

{2, 2} 5 5 7.5 7.5
{13

6 ,
13
6 } 5.332 5.332 7.998 7.998

{7
3 ,

7
3} 5.666 5.666 8.499 8.499

{5
2 ,

5
2} 6 6 9 9

{8
3 ,

8
3} 6.332 6.332 9.498 9.498

{17
6 ,

17
6 } 6.666 6.666 9.999 9.999

{3, 3} 7 7 10.5 10.5
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Figure 2. The Traffic Network Pattern of City X

6. Conclusions

In this paper we have made a contribution towards a multidimensional study
of traffic network equilibrium problems. We have formulated a multidimensional
variational inequality problem and discussed the equilibria of a multidimensional
traffic network model of a city in terms of this problem. We have also established
existence and uniqueness results for these equilibria and provided a method for
finding them.
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[23] Ş. Mititelu and S. Treanţă, Efficiency conditions in vector control problems governed by mul-
tiple integrals, J. Appl. Math. Comput. 57 (2018), 647–665.

[24] A. Nagurney, D. Parkes and P. Daniele, The internet, evolutionary variational inequalities,
and the time-dependent Braess paradox, Comput. Manag. Sci. 4 (2007), 355–375.

[25] F. Raciti, Equilibrium conditions and vector variational inequalities: a complex relation, J.
Global Optim. 40 (2008), 353–360.

[26] L. Scrimali and C. Mirabella, Cooperation in pollution control problems via evolutionary vari-
ational inequalities, J. Global Optim. 70 (2018), 455–476.

[27] S. Singh, A. Pitea and X. Qin, An iterative method and weak sharp solutions for multitime-type
variational inequalities, Appl. Anal. (2019) https://doi.org/10.1080/00036811.2019.1679787.

[28] M. J. Smith, The existence, uniqueness and stability of traffic equilibrium, Transportation
Research. 13 (1979), 295–304.
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