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AN ALTERNATIVE THEOREM FOR GRADIENT SYSTEMS

BIAGIO RICCERI

ABSTRACT. In this paper, given two Banach spaces X,Y and a C' functional
d: X XY — R, under general assumptions, we show that either ® has a saddle-
point in X X Y or, for each convex and dense set S C Y, there is some § € S
such that ®(-,7) has at least three critical points in X, two of which are global
minima. Also, an application to non-cooperative elliptic systems is presented.

The present paper is part of the extensive program of studying consequences and
applications of certain general minimax theorems ([9, 10, 12-25]) which cannot be
directly deduced by the classical Fan-Sion theorem ([5,26]).

Here, we are interested in gradient systems. Precisely, given two Banach spaces

X,Y and a C! functional ® : X x Y — R, we are interested in the existence of
critical points for @, that is in the solvability of the system

P (z,y) =0,

where @/, (resp. @) is the derivative of ® with respect to x (resp. y).

Let I : X — R. As usual, I is said to be coercive if lim 4o [(z) = +o0.
I is said to be quasi-concave (resp. quasi-convex) if the set I~1([r, +o0o[) (resp.
I71(] — o0,7])) is convex for all » € R. When I is C!, it is said to satisfy the
Palais-Smale condition if each sequence {z,} in X such that sup,cn |I(z,)| < +00
and lim,, o0 ||I'(z)||x+ = 0 admits a strongly convergent subsequence.

Here is our main abstract theorem:

Theorem 1. Let X,Y be two real reflexive Banach spaces and let ® : X XY — R
be a C functional satisfying the following conditions:

(a) the functional ®(x,-) is quasi-concave for all x € X and the functional —®(x, -)
1s coercive for some xg € X;

(b) there exists a convex set S C'Y dense in Y, such that, for each y € S, the
functional ®(-,y) is weakly lower semicontinuous, coercive and satisfies the Palais-
Smale condition.
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Then, either the system
P (z,y) =0

P, (z,y) =0
has a solution (z*,y*) such that

®(z",y") = inf &(z,y7) = Sg@(w*’y)’
or, for every convex set T C S dense in Y, there exists § € T such that equation
@, (2,9) =0
has at least three solutions, two of which are global minima in X of the functional
o, 7).
Proof. Assume that there is no solution (z*,y*) of the system

P’ (z,y) =0

@ (z,y) =0

such that

O(2*,y") = inf ®(z,y") = sup D(z*,y).
We consider both X, Y endowed with the weak topology. Notice that, by (a), ®(x,-)
is weakly upper semicontinuous in Y for all x € X and weakly sup-compact for
x = xg. As a consequence, the functional y — inf,cx ®(z,y) is weakly sup-compact
and so it attains its supremum. Likewise, by (b), ®(-,y) is weakly inf-compact for
all y € S. By continuity and density, we have
(1) sup ®(z,y) = sup ®(z,y)

yey yeSs

for all z € X. As a consequence, the functional z — sup,cy ®(z,y) is weakly
inf-compact and so it attains its infimum. Therefore, the occurrence of the equality

inf & = inf P
Sl;plgl( iy Sl}l/p

is equivalent to the existence of a point

(/\
sup (&, y) = D (%,
yey

,9) € X XY such that
y) = inf ®(x,9).
) = inf &(z,7)
But, for what we are assuming, no such a point can exist and hence we have
2 inf & < inf sup ®.
(2) Sl}l/p ind i sgp
So, in view of (1) and (2), we also have
inf ¢ < inf .
sgp inf inf sgp

At this point, we are allowed to apply Theorem 1.1 of [20]. Therefore, there exists
g € S such that the functional ®(-,7) has at least two global minima in X and so,
thanks to Corollary 1 of [8], the same functional has at least three critical points. [
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The next result is a consequence of Theorem 1.

Theorem 2. Let X,Y be two real Hilbert spaces and let J : X xY — R be a C!
functional satisfying the following conditions:

(a1) the functional y — ||yl|3 + J(z,y) is quasi-convex for all x € X and coercive
for some x € X ;

(b1) there exists a conver set S C Y dense in' Y such that, for each y € S, the
operator J.(-,y) is compact and

J 1
(3) lim sup (x,2y) <=
lzlx—too NZI% 2
Then, either the system
z = Jy(z,y)
y=—Jy(z,y)

has a solution (x*,y*) such that
1 * * * * : 1 * *
3127 B = 1718 = ") = int (0% — 1971) — TCo.) )

1 * *
= sup (51" = Il ~ "))
yey

or, for every convex set T C S dense in'Y, there exists y € T such that the equation
v = Jy(x,7)

has at least three solutions, two of which are global minima in X of the functional

v = glllk = J(@,9).

Proof. PROOF. Consider the function ® : X x Y — R defined by

1
®(@,y) = 5 (=% = lvl§) = J(@.v)
for all (x,y) € X x Y. Clearly, ® is C! and one has
O (2,y) = — Jy(2,y),
for all (z,y) € X xY. We want to apply Theorem 1 such a ®. Of course, ® satisfies
(a) in view of (aj). Concerning (b), notice that, for each y € S, the functional
J(-,y) is sequentially weakly continuous since J.(,y) is compact ([27], Corollary
41.9). Moreover, from (3) it immediately follows that ®(-,y) is coercive and so, by
the Eberlein-Smulyan theorem, it is weakly lower semicontinuous. Finally, ®(-,y)

satisfies the Palais-Smale condition in view of Example 38.25 of [27]. Now, the
conclusion follows directly from Theorem 1. O

We now present an application of Theorem 2 to non-cooperative elliptic systems.

In what follows,  C R™ (n > 2) is a bounded smooth domain. We consider
H&(Q) equipped with the scalar product

(u,v>:/QVu(x)Vv(:v)dx.



376 BIAGIO RICCERI

We denote by A the class of all functions H : Q x R? — R, with H(z,0,0) = 0 for
all 2 € , which are measurable in Q, C' in R? and satisfy
Sup \Hu(x,u,’u)] + ’H’U(‘Tvua U)|
(z,u,0)EQXR2 1+ ’u‘p + ‘v’q

< +00

where p,q > 0, with p < ”—‘fg and ¢ < Z—fg when n > 2. Given H € A, we are

n

interested in the problem
—Au = Hy,(x,u,v) inQ

(Pr) —Av = —Hy(z,u,v) in

lu:U:O on 052,

H, (resp. H,) denoting the derivative of H with respect to u (resp. v).
As usual, a weak solution of (Py) is any (u,v) € H3(Q) x H(Q) such that

/ V() Vi (a)da = / oz, u(x), v(a)) () de,

/w e /H o, u(z), v(2) ) (@) ds

for all o, € H(Q
Define the functlonal Iy : HY(Q) x H} () — R by

(/|Vu 2dx—/yvv |da:> /qu (z))dz

for all (u,v) € HE(Q) x HE(Q).

Since H € A, the functional Iy is C' in H}(Q) x HE(Q) and its critical points
are precisely the weak solutions of (Pg). Also, we denote by A; the first eigenvalue

of the Dirichlet problem
—Au=Au in Q)

u=20 on 0f).

Our result on (Py) is a follows:

Theorem 3. Let H € A be such that

SUPcq SUP|y <, H (2, u, v)

(4) lim sup 5
|u| =00 u

for allr >0, and

(5) meas <{:v € Q:sup H(xz,u,0) > 0}) > 0.

ueR
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Moreover, assume that either H(x,u,-) is convex for all (x,u) € Q x R, or

su H T, U,V) — H €T, u,w
(6) L= sup p(%u)EQXR| v( ) v( )|
(v.w)ER2 ww v — wl

< +00.

Set

. lin Jo IVw(z)|?dx Cw 1 e -
A =3 f{fQH(x,w(:):),O)d:r’ EHO(Q),/QH( ,w(z),0)d >0}

and assume that \* < )‘—Ll when (6) holds.
Then, for each A > \*, with A < % when (6) holds, either the problem

—Au = AHy,(z,u,v) in Q

—Av = —-AHy(z,u,v) in Q

\u:v:O on 0f2

has a non-zero weak solution belonging to L>°(Q2) x L>®(R), or, for each convez set
T C HY () N L®(Q) dense in Hi (), there exists © € T such that the problem

—Au = AHy(z,u,0(z)) in

u=20 on 0f2

has at least three weak solutions, two of which are global minima in H&(Q) of the
functional Ing(-,0).

Proof. Define the functional J : H}(Q) x H}(Q) — R by

J(u,v):/QH(x,u(a:),v(x))dx

for all (u,v) € H(Q) x H}(Q). Notice that (5) implies SUDye 111 () J(u,0) > 0
([16], pp. 135-136). Consequently, \* < +oo. Fix A > A\*, with A < % when (6)
holds. We want to apply Theorem 2 to AJ. Concerning (a;), notice that, for each
u € HE(), the functional v — L [, |[Vu(z)[?dz + AJ(u,v) is strictly convex and
coercive. This is clear when H (z, £, ) is convex for all (z,€&) € R?. When (6) holds,
the operator J(u, ) turns out to be Lipschitzian in H{ () with Lipschitz constant
/\% ([11], p. 165). So, the operator v — v — AJ}(u,v) is uniformly monotone and
then the claim follows from a classical result ([27], pp. 247-249). Concerning (b1),
fix v € HE(Q) N L®(2). Notice that J/,(-,v) is compact due to restriction on p
(recall that H € A). Moreover, in view of (4), for each € > 0, there exists 6 > 0
such that
H(z,t,s) < et?

for all z € Q, s € [—||vl|p (@), |v]l L= ()] and t € R\ [=4,6]. But H is bounded on
each bounded subset of Q x R2, and so, for a suitable constant ¢ > 0, we have

(7) H(z,t,s) <et’+c
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for all (x,t,s) € QxR x [—HUHLoo(Q), [[v]| oo ()] - Of course, from (7) it follows that

J
lim sup (u,;)) <e
lull =400 llul]

and so

J
lim sup (u’;j) <0
Jull=+oo Il

since € > 0 is arbitrary. Hence, \J satisfies (3). Now suppose that there exists
a convex set T C H}(Q) N L>®(2) dense in H () such that, for each v € T, the
problem

—Au = AHy(z,u,v(x)) in Q

u=20 on 0f)

has at most two weak solutions. Then, Theorem 2 ensures the existence of a weak
solution (u*,v*) of the problem

—Au = AH,(z,u,v) in

—Av = —-AHy(z,u,v) in Q

(u=v= 0 on 0f)
such that
(8) Lyg(u*,v*) = inf DLg(u,v*)= sup Lgu®,v).
ueH; () vEHL(Q)

From (8), in view of Theorem 1 of [3] (see Remark 5, p. 1631), it follows that
u*,v* € L>®(§). We show that (u*,v*) # (0,0). If v* # 0, we are done. So, assume
v* = 0. Since A > \*, we have

9) inf <;/ﬂ]Vu(:r)\Qda:—)\/QH(x,u(:c),O)dx> < 0.

weHL(Q)

But then, since [, H(z,0,0)dz = 0, from (9) and the first equality in (8), it follows
that u* # 0, and the proof is complete. O

For previous results on problem (Pp) (markedly different from Theorem 3) we
refer to [1,4,6,7].

A joint application of Theorem 3 with the main result in [2] gives the following:
Theorem 4. Let H € A satisfy the assumptions of Theorem 8. Moreover, suppose

that infqugrz Hy > 0 and that, for each (x,v) € Q x R, the function u — W
is strictly decreasing in ]0, 4+o00].
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Then, for every A > \*, with A < % when (6) holds, the problem

(—Au= AH,(z,u,v)  in Q

—Av = —-AHy(z,u,v) in Q

u=v=0 on 0N
has a non-zero weak solution belonging to L™ (€2) x L>(Q).

Proof. Fix A > \*, with A < )‘—Ll when (6) holds. Fix also v € C§°(€2). Since
infqyr2 Hy > 0, the bounded weak solutions of the problem

—Au = AHy(z,u,v(z)) in

u =0 on 0f2
are continuous and non-negative in Q. As a consequence, in view of Theorem 1
of [2], the problem

—Au = A Hy(z,u,v(x)) in

u=20 on 0f)

has at most one non-zero bounded weak solution. Now, the conclusion follows
directly from Theorem 3. U

Finally, notice the following corollary of Theorem 4:

Theorem 5. Let F,G : R — R be two C' functions, with FG — F(0)G(0) € A,
satisfying the following conditions:
(a2) F is non-negative, increasing, lim, 4o %;L) = 0 and the function u — %
is strictly decreasing in ]0,400] ;
(b2) G 1is positive and conver.

Finally, let a € L>®(QY), with o > 0. Set

Y Y g— s I
= ——in

2G(0) Jo o(x)(F(w(z)) — F(0))dx
Then, for every A > X!, the problem

cw € H&(Q),/

a(z)(F(w(x)) — F(0))dx > ()} .
Q

—Au = da(2)G(v(z))F'(u) in

—Av = =da(z)F(u(x))G' (v) in

u=v=20 on 0f)

has a non-zero weak solution belonging to L™ (€2) x L>(Q).
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Proof. Apply Theorem 4 to the function H : Q x R? — R defined by

H(z,u,v) = a(z)(F(u)G(v) = F(0)G(0))

for all (z,u,v) € 2 x R2. Checking that H satisfies the assumptions of Theorem 4
is an easy task. O
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