

AN ALTERNATIVE THEOREM FOR GRADIENT SYSTEMS

BIAGIO RICCERI

ABSTRACT. In this paper, given two Banach spaces X, Y and a C^1 functional $\Phi: X \times Y \to \mathbf{R}$, under general assumptions, we show that either Φ has a saddlepoint in $X \times Y$ or, for each convex and dense set $S \subseteq Y$, there is some $\tilde{y} \in S$ such that $\Phi(\cdot, \tilde{y})$ has at least three critical points in X, two of which are global minima. Also, an application to non-cooperative elliptic systems is presented.

The present paper is part of the extensive program of studying consequences and applications of certain general minimax theorems ([9, 10, 12-25]) which cannot be directly deduced by the classical Fan-Sion theorem ([5, 26]).

Here, we are interested in gradient systems. Precisely, given two Banach spaces X, Y and a C^1 functional $\Phi : X \times Y \to \mathbf{R}$, we are interested in the existence of critical points for Φ , that is in the solvability of the system

$$\begin{cases} \Phi'_x(x,y) = 0\\ \\ \Phi'_y(x,y) = 0, \end{cases}$$

where Φ'_x (resp. Φ'_y) is the derivative of Φ with respect to x (resp. y).

Let $I : X \to \mathbf{R}$. As usual, I is said to be coercive if $\lim_{\|x\|\to+\infty} I(x) = +\infty$. I is said to be quasi-concave (resp. quasi-convex) if the set $I^{-1}([r,+\infty[)$ (resp. $I^{-1}(]-\infty,r])$) is convex for all $r \in \mathbf{R}$. When I is C^1 , it is said to satisfy the Palais-Smale condition if each sequence $\{x_n\}$ in X such that $\sup_{n\in\mathbf{N}} |I(x_n)| < +\infty$ and $\lim_{n\to\infty} \|I'(x_n)\|_{X^*} = 0$ admits a strongly convergent subsequence.

Here is our main abstract theorem:

Theorem 1. Let X, Y be two real reflexive Banach spaces and let $\Phi : X \times Y \to \mathbf{R}$ be a C^1 functional satisfying the following conditions:

(a) the functional $\Phi(x, \cdot)$ is quasi-concave for all $x \in X$ and the functional $-\Phi(x_0, \cdot)$ is coercive for some $x_0 \in X$;

(b) there exists a convex set $S \subseteq Y$ dense in Y, such that, for each $y \in S$, the functional $\Phi(\cdot, y)$ is weakly lower semicontinuous, coercive and satisfies the Palais-Smale condition.

²⁰²⁰ Mathematics Subject Classification. 49J35; 49J40; 35J50.

Key words and phrases. Minimax; saddle point; non-cooperative elliptic system.

Then, either the system

$$\begin{cases} \Phi'_x(x,y) = 0\\ \Phi'_y(x,y) = 0 \end{cases}$$

has a solution (x^*, y^*) such that

$$\Phi(x^*, y^*) = \inf_{x \in X} \Phi(x, y^*) = \sup_{y \in Y} \Phi(x^*, y),$$

or, for every convex set $T \subseteq S$ dense in Y, there exists $\tilde{y} \in T$ such that equation

$$\Phi'_x(x,\tilde{y}) = 0$$

has at least three solutions, two of which are global minima in X of the functional $\Phi(\cdot, \tilde{y})$.

Proof. Assume that there is no solution (x^*, y^*) of the system

$$\begin{cases} \Phi'_x(x,y) = 0 \\ \\ \Phi'_y(x,y) = 0 \end{cases}$$

such that

$$\Phi(x^*, y^*) = \inf_{x \in X} \Phi(x, y^*) = \sup_{y \in Y} \Phi(x^*, y).$$

We consider both X, Y endowed with the weak topology. Notice that, by (a), $\Phi(x, \cdot)$ is weakly upper semicontinuous in Y for all $x \in X$ and weakly sup-compact for $x = x_0$. As a consequence, the functional $y \to \inf_{x \in X} \Phi(x, y)$ is weakly sup-compact and so it attains its supremum. Likewise, by (b), $\Phi(\cdot, y)$ is weakly inf-compact for all $y \in S$. By continuity and density, we have

(1)
$$\sup_{y \in Y} \Phi(x, y) = \sup_{y \in S} \Phi(x, y)$$

for all $x \in X$. As a consequence, the functional $x \to \sup_{y \in Y} \Phi(x, y)$ is weakly inf-compact and so it attains its infimum. Therefore, the occurrence of the equality

$$\sup_{Y} \inf_{X} \Phi = \inf_{X} \sup_{Y} \Phi$$

is equivalent to the existence of a point $(\hat{x}, \hat{y}) \in X \times Y$ such that

$$\sup_{y \in Y} \Phi(\hat{x}, y) = \Phi(\hat{x}, \hat{y}) = \inf_{x \in X} \Phi(x, \hat{y}).$$

But, for what we are assuming, no such a point can exist and hence we have

(2)
$$\sup_{Y} \inf_{X} \Phi < \inf_{X} \sup_{Y} \Phi.$$

So, in view of (1) and (2), we also have

$$\sup_{S} \inf_{X} \Phi < \inf_{X} \sup_{S} \Phi.$$

At this point, we are allowed to apply Theorem 1.1 of [20]. Therefore, there exists $\tilde{y} \in S$ such that the functional $\Phi(\cdot, \tilde{y})$ has at least two global minima in X and so, thanks to Corollary 1 of [8], the same functional has at least three critical points. \Box

The next result is a consequence of Theorem 1.

Theorem 2. Let X, Y be two real Hilbert spaces and let $J : X \times Y \to \mathbf{R}$ be a C^1 functional satisfying the following conditions:

(a₁) the functional $y \to \frac{1}{2} ||y||_Y^2 + J(x, y)$ is quasi-convex for all $x \in X$ and coercive for some $x \in X$;

(b₁) there exists a convex set $S \subseteq Y$ dense in Y such that, for each $y \in S$, the operator $J'_x(\cdot, y)$ is compact and

(3)
$$\limsup_{\|x\|_X \to +\infty} \frac{J(x,y)}{\|x\|_X^2} < \frac{1}{2} ;$$

Then, either the system

$$\begin{cases} x = J'_x(x,y) \\ y = -J'_y(x,y) \end{cases}$$

has a solution (x^*, y^*) such that

$$\frac{1}{2}(\|x^*\|_X^2 - \|y^*\|_Y^2) - J(x^*, y^*) = \inf_{x \in X} \left(\frac{1}{2}(\|x\|_X^2 - \|y^*\|_Y^2) - J(x, y^*)\right)$$
$$= \sup_{y \in Y} \left(\frac{1}{2}(\|x^*\|_X^2 - \|y\|_Y^2) - J(x^*, y)\right),$$

or, for every convex set $T \subseteq S$ dense in Y, there exists $\tilde{y} \in T$ such that the equation

$$x = J'_x(x, \tilde{y})$$

has at least three solutions, two of which are global minima in X of the functional $x \to \frac{1}{2} \|x\|_X^2 - J(x, \tilde{y}).$

Proof. PROOF. Consider the function $\Phi: X \times Y \to \mathbf{R}$ defined by

$$\Phi(x,y) = \frac{1}{2}(\|x\|_X^2 - \|y\|_Y^2) - J(x,y)$$

for all $(x, y) \in X \times Y$. Clearly, Φ is C^1 and one has

$$\Phi'_x(x,y) = x - J'_x(x,y),$$

$$\Phi'_y(x,y) = -y - J'_y(x,y)$$

for all $(x, y) \in X \times Y$. We want to apply Theorem 1 such a Φ . Of course, Φ satisfies (a) in view of (a_1) . Concerning (b), notice that, for each $y \in S$, the functional $J(\cdot, y)$ is sequentially weakly continuous since $J'_x(\cdot, y)$ is compact ([27], Corollary 41.9). Moreover, from (3) it immediately follows that $\Phi(\cdot, y)$ is coercive and so, by the Eberlein-Smulyan theorem, it is weakly lower semicontinuous. Finally, $\Phi(\cdot, y)$ satisfies the Palais-Smale condition in view of Example 38.25 of [27]. Now, the conclusion follows directly from Theorem 1.

We now present an application of Theorem 2 to non-cooperative elliptic systems. In what follows, $\Omega \subset \mathbf{R}^n$ $(n \geq 2)$ is a bounded smooth domain. We consider $H_0^1(\Omega)$ equipped with the scalar product

$$\langle u, v \rangle = \int_{\Omega} \nabla u(x) \nabla v(x) dx.$$

We denote by \mathcal{A} the class of all functions $H: \Omega \times \mathbf{R}^2 \to \mathbf{R}$, with H(x, 0, 0) = 0 for all $x \in \Omega$, which are measurable in Ω , C^1 in \mathbf{R}^2 and satisfy

$$\sup_{(x,u,v)\in\Omega\times\mathbf{R}^2}\frac{|H_u(x,u,v)|+|H_v(x,u,v)|}{1+|u|^p+|v|^q}<+\infty$$

where p, q > 0, with $p < \frac{n+2}{n-2}$ and $q \leq \frac{n+2}{n-2}$ when n > 2. Given $H \in \mathcal{A}$, we are interested in the problem

$$(P_H) \qquad \begin{cases} -\Delta u = H_u(x, u, v) & \text{in } \Omega \\ -\Delta v = -H_v(x, u, v) & \text{in } \Omega \\ u = v = 0 & \text{on } \partial \Omega \end{cases}$$

 H_u (resp. H_v) denoting the derivative of H with respect to u (resp. v).

As usual, a weak solution of (P_H) is any $(u, v) \in H_0^1(\Omega) \times H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u(x) \nabla \varphi(x) dx = \int_{\Omega} H_u(x, u(x), v(x)) \varphi(x) dx,$$
$$\int_{\Omega} \nabla v(x) \nabla \psi(x) dx = -\int_{\Omega} H_v(x, u(x), v(x)) \psi(x) dx$$

for all $\varphi, \psi \in H_0^1(\Omega)$.

Define the functional $I_H: H^1_0(\Omega) \times H^1_0(\Omega) \to \mathbf{R}$ by

$$I_H(u,v) = \frac{1}{2} \left(\int_{\Omega} |\nabla u(x)|^2 dx - \int_{\Omega} |\nabla v(x)|^2 dx \right) - \int_{\Omega} H(x,u(x),v(x)) dx$$

for all $(u, v) \in H_0^1(\Omega) \times H_0^1(\Omega)$.

Since $H \in \mathcal{A}$, the functional I_H is C^1 in $H_0^1(\Omega) \times H_0^1(\Omega)$ and its critical points are precisely the weak solutions of (P_H) . Also, we denote by λ_1 the first eigenvalue of the Dirichlet problem

$$\begin{cases} -\Delta u = \lambda u & \text{in } \Omega \\ \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

Our result on (P_H) is a follows:

Theorem 3. Let $H \in \mathcal{A}$ be such that

(4)
$$\limsup_{|u| \to +\infty} \frac{\sup_{x \in \Omega} \sup_{|v| \le r} H(x, u, v)}{u^2} \le 0$$

for all r > 0, and

(5)
$$\operatorname{meas}\left(\left\{x \in \Omega : \sup_{u \in \mathbf{R}} H(x, u, 0) > 0\right\}\right) > 0.$$

Moreover, assume that either $H(x, u, \cdot)$ is convex for all $(x, u) \in \Omega \times \mathbf{R}$, or

(6)
$$L := \sup_{(v,\omega)\in\mathbf{R}^2, v\neq\omega} \frac{\sup_{(x,u)\in\Omega\times\mathbf{R}} |H_v(x,u,v) - H_v(x,u,\omega)|}{|v-\omega|} < +\infty$$

Set

$$\lambda^* = \frac{1}{2} \inf\left\{\frac{\int_{\Omega} |\nabla w(x)|^2 dx}{\int_{\Omega} H(x, w(x), 0) dx} : w \in H_0^1(\Omega), \int_{\Omega} H(x, w(x), 0) dx > 0\right\}$$

and assume that $\lambda^* < \frac{\lambda_1}{L}$ when (6) holds.

Then, for each $\lambda > \overline{\lambda^*}$, with $\lambda < \frac{\lambda_1}{L}$ when (6) holds, either the problem

$$\begin{cases} -\Delta u = \lambda H_u(x, u, v) & \text{in } \Omega \\ -\Delta v = -\lambda H_v(x, u, v) & \text{in } \Omega \\ u = v = 0 & \text{on } \partial \Omega \end{cases}$$

has a non-zero weak solution belonging to $L^{\infty}(\Omega) \times L^{\infty}(\Omega)$, or, for each convex set $T \subseteq H_0^1(\Omega) \cap L^{\infty}(\Omega)$ dense in $H_0^1(\Omega)$, there exists $\tilde{v} \in T$ such that the problem

$$\begin{cases} -\Delta u = \lambda H_u(x, u, \tilde{v}(x)) & \text{in } \Omega \\ \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has at least three weak solutions, two of which are global minima in $H_0^1(\Omega)$ of the functional $I_{\lambda H}(\cdot, \tilde{v})$.

Proof. Define the functional $J: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbf{R}$ by

$$J(u,v) = \int_{\Omega} H(x,u(x),v(x))dx$$

for all $(u, v) \in H_0^1(\Omega) \times H_0^1(\Omega)$. Notice that (5) implies $\sup_{u \in H_0^1(\Omega)} J(u, 0) > 0$ ([16], pp. 135-136). Consequently, $\lambda^* < +\infty$. Fix $\lambda > \lambda^*$, with $\lambda < \frac{\lambda_1}{L}$ when (6) holds. We want to apply Theorem 2 to λJ . Concerning (a_1) , notice that, for each $u \in H_0^1(\Omega)$, the functional $v \to \frac{1}{2} \int_{\Omega} |\nabla v(x)|^2 dx + \lambda J(u, v)$ is strictly convex and coercive. This is clear when $H(x, \xi, \cdot)$ is convex for all $(x, \xi) \in \mathbb{R}^2$. When (6) holds, the operator $J'_v(u, \cdot)$ turns out to be Lipschitzian in $H_0^1(\Omega)$ with Lipschitz constant $\frac{L}{\lambda_1}$ ([11], p. 165). So, the operator $v \to v - \lambda J'_v(u, v)$ is uniformly monotone and then the claim follows from a classical result ([27], pp. 247-249). Concerning (b_1) , fix $v \in H_0^1(\Omega) \cap L^{\infty}(\Omega)$. Notice that $J'_u(\cdot, v)$ is compact due to restriction on p (recall that $H \in \mathcal{A}$). Moreover, in view of (4), for each $\epsilon > 0$, there exists $\delta > 0$ such that

$$H(x,t,s) \le \epsilon t^2$$

for all $x \in \Omega$, $s \in \left[-\|v\|_{L^{\infty}(\Omega)}, \|v\|_{L^{\infty}(\Omega)}\right]$ and $t \in \mathbf{R} \setminus [-\delta, \delta]$. But *H* is bounded on each bounded subset of $\Omega \times \mathbf{R}^2$, and so, for a suitable constant c > 0, we have

(7)
$$H(x,t,s) \le \epsilon t^2 + c$$

for all $(x, t, s) \in \Omega \times \mathbf{R} \times \left[-\|v\|_{L^{\infty}(\Omega)}, \|v\|_{L^{\infty}(\Omega)} \right]$. Of course, from (7) it follows that

$$\limsup_{\|u\| \to +\infty} \frac{J(u,v)}{\|u\|^2} \le \epsilon$$

and so

$$\limsup_{\|u\|\to+\infty} \frac{J(u,v)}{\|u\|^2} \le 0$$

since $\epsilon > 0$ is arbitrary. Hence, λJ satisfies (3). Now suppose that there exists a convex set $T \subseteq H_0^1(\Omega) \cap L^{\infty}(\Omega)$ dense in $H_0^1(\Omega)$ such that, for each $v \in T$, the problem

$$\begin{cases} -\Delta u = \lambda H_u(x, u, v(x)) & \text{in } \Omega \\ \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has at most two weak solutions. Then, Theorem 2 ensures the existence of a weak solution (u^*, v^*) of the problem

$$\begin{cases} -\Delta u = \lambda H_u(x, u, v) & \text{in } \Omega \\ \\ -\Delta v = -\lambda H_v(x, u, v) & \text{in } \Omega \\ \\ u = v = 0 & \text{on } \partial \Omega \end{cases}$$

such that

(8)
$$I_{\lambda H}(u^*, v^*) = \inf_{u \in H_0^1(\Omega)} I_{\lambda H}(u, v^*) = \sup_{v \in H_0^1(\Omega)} I_{\lambda H}(u^*, v).$$

From (8), in view of Theorem 1 of [3] (see Remark 5, p. 1631), it follows that $u^*, v^* \in L^{\infty}(\Omega)$. We show that $(u^*, v^*) \neq (0, 0)$. If $v^* \neq 0$, we are done. So, assume $v^* = 0$. Since $\lambda > \lambda^*$, we have

(9)
$$\inf_{u \in H_0^1(\Omega)} \left(\frac{1}{2} \int_{\Omega} |\nabla u(x)|^2 dx - \lambda \int_{\Omega} H(x, u(x), 0) dx \right) < 0.$$

But then, since $\int_{\Omega} H(x, 0, 0) dx = 0$, from (9) and the first equality in (8), it follows that $u^* \neq 0$, and the proof is complete.

For previous results on problem (P_H) (markedly different from Theorem 3) we refer to [1,4,6,7].

A joint application of Theorem 3 with the main result in [2] gives the following:

Theorem 4. Let $H \in \mathcal{A}$ satisfy the assumptions of Theorem 3. Moreover, suppose that $\inf_{\Omega \times \mathbf{R}^2} H_u \geq 0$ and that, for each $(x, v) \in \Omega \times \mathbf{R}$, the function $u \to \frac{H_u(x, u, v)}{u}$ is strictly decreasing in $]0, +\infty[$.

Then, for every $\lambda > \lambda^*$, with $\lambda < \frac{\lambda_1}{L}$ when (6) holds, the problem

$$\begin{cases} -\Delta u = \lambda H_u(x, u, v) & \text{in } \Omega \\ -\Delta v = -\lambda H_v(x, u, v) & \text{in } \Omega \\ u = v = 0 & \text{on } \partial \Omega \end{cases}$$

has a non-zero weak solution belonging to $L^{\infty}(\Omega) \times L^{\infty}(\Omega)$.

Proof. Fix $\lambda > \lambda^*$, with $\lambda < \frac{\lambda_1}{L}$ when (6) holds. Fix also $v \in C_0^{\infty}(\Omega)$. Since $\inf_{\Omega \times \mathbf{R}^2} H_u \geq 0$, the bounded weak solutions of the problem

$$\begin{cases} -\Delta u = \lambda H_u(x, u, v(x)) & \text{in } \Omega \\ \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

are continuous and non-negative in $\overline{\Omega}$. As a consequence, in view of Theorem 1 of [2], the problem

$$\begin{cases} -\Delta u = \lambda H_u(x, u, v(x)) & \text{in } \Omega \\ \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has at most one non-zero bounded weak solution. Now, the conclusion follows directly from Theorem 3. $\hfill \Box$

Finally, notice the following corollary of Theorem 4:

Theorem 5. Let $F, G : \mathbf{R} \to \mathbf{R}$ be two C^1 functions, with $FG - F(0)G(0) \in \mathcal{A}$, satisfying the following conditions: (a₂) F is non-negative, increasing, $\lim_{u\to+\infty} \frac{F(u)}{u^2} = 0$ and the function $u \to \frac{F'(u)}{u}$ is strictly decreasing in $]0, +\infty[$; (b₂) G is positive and convex.

Finally, let $\alpha \in L^{\infty}(\Omega)$, with $\alpha > 0$. Set

$$\lambda_{\alpha}^{*} = \frac{1}{2G(0)} \inf \left\{ \frac{\int_{\Omega} |\nabla w(x)|^{2} dx}{\int_{\Omega} \alpha(x) (F(w(x)) - F(0)) dx} : w \in H_{0}^{1}(\Omega), \int_{\Omega} \alpha(x) (F(w(x)) - F(0)) dx > 0 \right\}.$$

Then, for every $\lambda > \lambda_{\alpha}^*$, the problem

$$\begin{cases} -\Delta u = \lambda \alpha(x) G(v(x)) F'(u) & \text{in } \Omega \\ -\Delta v = -\lambda \alpha(x) F(u(x)) G'(v) & \text{in } \Omega \\ u = v = 0 & \text{on } \partial \Omega \end{cases}$$

has a non-zero weak solution belonging to $L^{\infty}(\Omega) \times L^{\infty}(\Omega)$.

BIAGIO RICCERI

Proof. Apply Theorem 4 to the function $H: \Omega \times \mathbb{R}^2 \to \mathbb{R}$ defined by

$$H(x, u, v) = \alpha(x)(F(u)G(v) - F(0)G(0))$$

for all $(x, u, v) \in \Omega \times \mathbb{R}^2$. Checking that *H* satisfies the assumptions of Theorem 4 is an easy task.

Acknowledgement. The author has been supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and by the Università degli Studi di Catania, "Piano della Ricerca 2016/2018 Linea di intervento 2".

References

- J. C. Batkam and F. Colin, The effects of concave and convex nonlinearities in some noncooperative elliptic systems, Ann. Mat. Pura Appl. 193 (2014), 1565–1576.
- [2] H. Brezis and L. Oswald, *Remarks on sublinear elliptic equation*, Nonlinear Anal. 10 (1986), 55–64.
- [3] A. Cianchi, Boundedness of solutions to variational problems under general growth conditions, Comm. Partial Differential Equations 22 (1997), 1629–1646.
- [4] D. G. De Figueiredo and Y. H. Doing, Strongly indefinite functionals and multiple solutions of elliptic systems, Trans. Amer. Math. Soc. 355 (2003), 2973–2989.
- [5] K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A. 38 (1952), 121–126.
- [6] Y. Guo, Nontrivial solutions for resonant noncooperative elliptic systems, Comm. Pure Appl. Math. 53 (2000), 1335–1349.
- [7] N. Hirano, Infinitely many solutions for non-cooperative elliptic systems, J. Math. Anal. Appl. 311 (2005), 545–566.
- [8] P. Pucci and J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985), 142–149.
- B. Ricceri, Some topological mini-max theorems via an alternative principle for multifunctions, Arch. Math. (Basel) 60 (1993), 367–377.
- [10] B. Ricceri, On a topological minimax theorem and its applications, in: Minimax theory and applications, B. Ricceri and S. Simons (eds.), Kluwer Academic Publishers, 1998, pp. 191–216.
- [11] B. Ricceri Sublevel sets and global minima of coercive functionals and local minima of their perturbations, J. Nonlinear Convex Anal. 5 (2004), 157–168.
- [12] B. Ricceri, Minimax theorems for functions involving a real variable and applications, Fixed Point Theory 9 (2008), 275–291.
- B. Ricceri, Well-posedness of constrained minimization problems via saddle-points, J. Global Optim. 40 (2008), 389–397.
- B. Ricceri, Multiplicity of global minima for parametrized functions, Rend. Lincei Mat. Appl. 21 (2010), 47–57.
- [15] B. Ricceri, A strict minimax inequality criterion and some of its consequences, Positivity 16 (2012), 455–470.
- [16] B. Ricceri, Energy functionals of Kirchhoff-type problems having multiple global minima, Nonlinear Anal. 115 (2015), 130–136.
- [17] B. Ricceri, A minimax theorem in infinite-dimensional topological vector spaces, Linear Nonlinear Anal. 2 (2016), 47–52.
- [18] B. Ricceri, Miscellaneous applications of certain minimax theorems I, Proc. Dynam. Systems Appl. 7 (2016), 198–202.
- [19] B. Ricceri, On the infimum of certain functionals, in: Essays in Mathematics and its Applications - In Honor of Vladimir Arnold, Th. M. Rassias and P. M. Pardalos (eds.), Springer, 2016, pp. 361–367.
- [20] B. Ricceri, On a minimax theorem: an improvement, a new proof and an overview of its applications, Minimax Theory Appl. 2 (2017), 99–152.

- [21] B. Ricceri, Miscellaneous applications of certain minimax theorems II, Acta Math. Vietnam. 45 (2020), 515–524.
- [22] B. Ricceri, Minimax theorems in a fully non-convex setting, J. Nonlinear Var. Anal. 3 (2019), 45–52.
- [23] B. Ricceri, Applying twice a minimax theorem, J. Nonlinear Convex Anal. 20 (2019), 1987– 1993.
- [24] B. Ricceri, Another multiplicity result for the periodic solutions of certain systems, Linear Nonlinear Anal. 5 (2019), 371–378.
- [25] B. Ricceri, A remark on variational inequalities in small balls, J. Nonlinear Var. Anal. 4 (2020), 21–26.
- [26] M. Sion, On general minimax theorems, Pacific J. Math. 8 (1958), 171-176.
- [27] E. Zeidler, Nonlinear Functional Analysis and its Applications, vol. III, Springer-Verlag, 1985.

Manuscript received February 4 2020 revised April 7 2020

BIAGIO RICCERI

Department of Mathematics and Informatics, University of Catania, Viale A. Doria 6, 95125 Catania, Italy

E-mail address: ricceri@dmi.unict.it