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Then, either the system 
Φ′
x(x, y) = 0

Φ′
y(x, y) = 0

has a solution (x∗, y∗) such that

Φ(x∗, y∗) = inf
x∈X

Φ(x, y∗) = sup
y∈Y

Φ(x∗, y),

or, for every convex set T ⊆ S dense in Y , there exists ỹ ∈ T such that equation

Φ′
x(x, ỹ) = 0

has at least three solutions, two of which are global minima in X of the functional
Φ(·, ỹ).

Proof. Assume that there is no solution (x∗, y∗) of the system
Φ′
x(x, y) = 0

Φ′
y(x, y) = 0

such that
Φ(x∗, y∗) = inf

x∈X
Φ(x, y∗) = sup

y∈Y
Φ(x∗, y).

We consider both X,Y endowed with the weak topology. Notice that, by (a), Φ(x, ·)
is weakly upper semicontinuous in Y for all x ∈ X and weakly sup-compact for
x = x0. As a consequence, the functional y → infx∈X Φ(x, y) is weakly sup-compact
and so it attains its supremum. Likewise, by (b), Φ(·, y) is weakly inf-compact for
all y ∈ S. By continuity and density, we have

(1) sup
y∈Y

Φ(x, y) = sup
y∈S

Φ(x, y)

for all x ∈ X. As a consequence, the functional x → supy∈Y Φ(x, y) is weakly
inf-compact and so it attains its infimum. Therefore, the occurrence of the equality

sup
Y

inf
X

Φ = inf
X

sup
Y

Φ

is equivalent to the existence of a point (x̂, ŷ) ∈ X × Y such that

sup
y∈Y

Φ(x̂, y) = Φ(x̂, ŷ) = inf
x∈X

Φ(x, ŷ).

But, for what we are assuming, no such a point can exist and hence we have

(2) sup
Y

inf
X

Φ < inf
X

sup
Y

Φ.

So, in view of (1) and (2), we also have

sup
S

inf
X

Φ < inf
X

sup
S

Φ.

At this point, we are allowed to apply Theorem 1.1 of [20]. Therefore, there exists
ỹ ∈ S such that the functional Φ(·, ỹ) has at least two global minima in X and so,
thanks to Corollary 1 of [8], the same functional has at least three critical points. □
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The next result is a consequence of Theorem 1.

Theorem 2. Let X,Y be two real Hilbert spaces and let J : X × Y → R be a C1

functional satisfying the following conditions:
(a1) the functional y → 1

2∥y∥
2
Y + J(x, y) is quasi-convex for all x ∈ X and coercive

for some x ∈ X ;
(b1) there exists a convex set S ⊆ Y dense in Y such that, for each y ∈ S, the
operator J ′

x(·, y) is compact and

(3) lim sup
∥x∥X→+∞

J(x, y)

∥x∥2X
<

1

2
;

Then, either the system 
x = J ′

x(x, y)

y = −J ′
y(x, y)

has a solution (x∗, y∗) such that

1

2
(∥x∗∥2X − ∥y∗∥2Y )− J(x∗, y∗) = inf

x∈X

(
1

2
(∥x∥2X − ∥y∗∥2Y )− J(x, y∗)

)
= sup

y∈Y

(
1

2
(∥x∗∥2X − ∥y∥2Y )− J(x∗, y)

)
,

or, for every convex set T ⊆ S dense in Y , there exists ỹ ∈ T such that the equation

x = J ′
x(x, ỹ)

has at least three solutions, two of which are global minima in X of the functional
x→ 1

2∥x∥
2
X − J(x, ỹ).

Proof. PROOF. Consider the function Φ : X × Y → R defined by

Φ(x, y) =
1

2
(∥x∥2X − ∥y∥2Y )− J(x, y)

for all (x, y) ∈ X × Y . Clearly, Φ is C1 and one has

Φ′
x(x, y) = x− J ′

x(x, y),

Φ′
y(x, y) = −y − J ′

y(x, y)

for all (x, y) ∈ X×Y . We want to apply Theorem 1 such a Φ. Of course, Φ satisfies
(a) in view of (a1). Concerning (b), notice that, for each y ∈ S, the functional
J(·, y) is sequentially weakly continuous since J ′

x(·, y) is compact ([27], Corollary
41.9). Moreover, from (3) it immediately follows that Φ(·, y) is coercive and so, by
the Eberlein-Smulyan theorem, it is weakly lower semicontinuous. Finally, Φ(·, y)
satisfies the Palais-Smale condition in view of Example 38.25 of [27]. Now, the
conclusion follows directly from Theorem 1. □

We now present an application of Theorem 2 to non-cooperative elliptic systems.

In what follows, Ω ⊂ Rn (n ≥ 2) is a bounded smooth domain. We consider
H1

0 (Ω) equipped with the scalar product

⟨u, v⟩ =
∫
Ω
∇u(x)∇v(x)dx.
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We denote by A the class of all functions H : Ω×R2 → R, with H(x, 0, 0) = 0 for

all x ∈ Ω, which are measurable in Ω, C1 in R2 and satisfy

sup
(x,u,v)∈Ω×R2

|Hu(x, u, v)|+ |Hv(x, u, v)|
1 + |u|p + |v|q

< +∞

where p, q > 0, with p < n+2
n−2 and q ≤ n+2

n−2 when n > 2. Given H ∈ A, we are

interested in the problem

(PH)



−∆u = Hu(x, u, v) in Ω

−∆v = −Hv(x, u, v) in Ω

u = v = 0 on ∂Ω,

Hu (resp. Hv) denoting the derivative of H with respect to u (resp. v).
As usual, a weak solution of (PH) is any (u, v) ∈ H1

0 (Ω)×H1
0 (Ω) such that∫

Ω
∇u(x)∇φ(x)dx =

∫
Ω
Hu(x, u(x), v(x))φ(x)dx,∫

Ω
∇v(x)∇ψ(x)dx = −

∫
Ω
Hv(x, u(x), v(x))ψ(x)dx

for all φ,ψ ∈ H1
0 (Ω).

Define the functional IH : H1
0 (Ω)×H1

0 (Ω) → R by

IH(u, v) =
1

2

(∫
Ω
|∇u(x)|2dx−

∫
Ω
|∇v(x)|2dx

)
−
∫
Ω
H(x, u(x), v(x))dx

for all (u, v) ∈ H1
0 (Ω)×H1

0 (Ω).

Since H ∈ A, the functional IH is C1 in H1
0 (Ω) ×H1

0 (Ω) and its critical points
are precisely the weak solutions of (PH). Also, we denote by λ1 the first eigenvalue

of the Dirichlet problem 
−∆u = λu in Ω

u = 0 on ∂Ω.

Our result on (PH) is a follows:

Theorem 3. Let H ∈ A be such that

(4) lim sup
|u|→+∞

supx∈Ω sup|v|≤rH(x, u, v)

u2
≤ 0

for all r > 0, and

(5) meas

({
x ∈ Ω : sup

u∈R
H(x, u, 0) > 0

})
> 0.
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Moreover, assume that either H(x, u, ·) is convex for all (x, u) ∈ Ω×R, or

(6) L := sup
(v,ω)∈R2,v ̸=ω

sup(x,u)∈Ω×R |Hv(x, u, v)−Hv(x, u, ω)|
|v − ω|

< +∞.

Set

λ∗ =
1

2
inf

{ ∫
Ω |∇w(x)|2dx∫

ΩH(x,w(x), 0)dx
: w ∈ H1

0 (Ω),

∫
Ω
H(x,w(x), 0)dx > 0

}
and assume that λ∗ < λ1

L when (6) holds.

Then, for each λ > λ∗, with λ < λ1
L when (6) holds, either the problem

−∆u = λHu(x, u, v) in Ω

−∆v = −λHv(x, u, v) in Ω

u = v = 0 on ∂Ω

has a non-zero weak solution belonging to L∞(Ω)× L∞(Ω), or, for each convex set
T ⊆ H1

0 (Ω) ∩ L∞(Ω) dense in H1
0 (Ω), there exists ṽ ∈ T such that the problem

−∆u = λHu(x, u, ṽ(x)) in Ω

u = 0 on ∂Ω

has at least three weak solutions, two of which are global minima in H1
0 (Ω) of the

functional IλH(·, ṽ).

Proof. Define the functional J : H1
0 (Ω)×H1

0 (Ω) → R by

J(u, v) =

∫
Ω
H(x, u(x), v(x))dx

for all (u, v) ∈ H1
0 (Ω) × H1

0 (Ω). Notice that (5) implies supu∈H1
0 (Ω) J(u, 0) > 0

([16], pp. 135-136). Consequently, λ∗ < +∞. Fix λ > λ∗, with λ < λ1
L when (6)

holds. We want to apply Theorem 2 to λJ . Concerning (a1), notice that, for each
u ∈ H1

0 (Ω), the functional v → 1
2

∫
Ω |∇v(x)|2dx + λJ(u, v) is strictly convex and

coercive. This is clear when H(x, ξ, ·) is convex for all (x, ξ) ∈ R2. When (6) holds,
the operator J ′

v(u, ·) turns out to be Lipschitzian in H1
0 (Ω) with Lipschitz constant

L
λ1

([11], p. 165). So, the operator v → v − λJ ′
v(u, v) is uniformly monotone and

then the claim follows from a classical result ([27], pp. 247-249). Concerning (b1),
fix v ∈ H1

0 (Ω) ∩ L∞(Ω). Notice that J ′
u(·, v) is compact due to restriction on p

(recall that H ∈ A). Moreover, in view of (4), for each ϵ > 0, there exists δ > 0
such that

H(x, t, s) ≤ ϵt2

for all x ∈ Ω, s ∈
[
−∥v∥L∞(Ω), ∥v∥L∞(Ω)

]
and t ∈ R \ [−δ, δ]. But H is bounded on

each bounded subset of Ω×R2, and so, for a suitable constant c > 0, we have

(7) H(x, t, s) ≤ ϵt2 + c
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for all (x, t, s) ∈ Ω×R×
[
−∥v∥L∞(Ω), ∥v∥L∞(Ω)

]
. Of course, from (7) it follows that

lim sup
∥u∥→+∞

J(u, v)

∥u∥2
≤ ϵ

and so

lim sup
∥u∥→+∞

J(u, v)

∥u∥2
≤ 0

since ϵ > 0 is arbitrary. Hence, λJ satisfies (3). Now suppose that there exists
a convex set T ⊆ H1

0 (Ω) ∩ L∞(Ω) dense in H1
0 (Ω) such that, for each v ∈ T , the

problem 
−∆u = λHu(x, u, v(x)) in Ω

u = 0 on ∂Ω

has at most two weak solutions. Then, Theorem 2 ensures the existence of a weak
solution (u∗, v∗) of the problem

−∆u = λHu(x, u, v) in Ω

−∆v = −λHv(x, u, v) in Ω

u = v = 0 on ∂Ω

such that

(8) IλH(u∗, v∗) = inf
u∈H1

0 (Ω)
IλH(u, v∗) = sup

v∈H1
0 (Ω)

IλH(u∗, v).

From (8), in view of Theorem 1 of [3] (see Remark 5, p. 1631), it follows that
u∗, v∗ ∈ L∞(Ω). We show that (u∗, v∗) ̸= (0, 0). If v∗ ̸= 0, we are done. So, assume
v∗ = 0. Since λ > λ∗, we have

(9) inf
u∈H1

0 (Ω)

(
1

2

∫
Ω
|∇u(x)|2dx− λ

∫
Ω
H(x, u(x), 0)dx

)
< 0.

But then, since
∫
ΩH(x, 0, 0)dx = 0, from (9) and the first equality in (8), it follows

that u∗ ̸= 0, and the proof is complete. □

For previous results on problem (PH) (markedly different from Theorem 3) we
refer to [1, 4, 6, 7].

A joint application of Theorem 3 with the main result in [2] gives the following:

Theorem 4. Let H ∈ A satisfy the assumptions of Theorem 3. Moreover, suppose

that infΩ×R2 Hu ≥ 0 and that, for each (x, v) ∈ Ω ×R, the function u → Hu(x,u,v)
u

is strictly decreasing in ]0,+∞[.
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Then, for every λ > λ∗, with λ < λ1
L when (6) holds, the problem

−∆u = λHu(x, u, v) in Ω

−∆v = −λHv(x, u, v) in Ω

u = v = 0 on ∂Ω

has a non-zero weak solution belonging to L∞(Ω)× L∞(Ω).

Proof. Fix λ > λ∗, with λ < λ1
L when (6) holds. Fix also v ∈ C∞

0 (Ω). Since
infΩ×R2 Hu ≥ 0, the bounded weak solutions of the problem

−∆u = λHu(x, u, v(x)) in Ω

u = 0 on ∂Ω

are continuous and non-negative in Ω. As a consequence, in view of Theorem 1
of [2], the problem 

−∆u = λHu(x, u, v(x)) in Ω

u = 0 on ∂Ω

has at most one non-zero bounded weak solution. Now, the conclusion follows
directly from Theorem 3. □

Finally, notice the following corollary of Theorem 4:

Theorem 5. Let F,G : R → R be two C1 functions, with FG − F (0)G(0) ∈ A,
satisfying the following conditions:

(a2) F is non-negative, increasing, limu→+∞
F (u)
u2 = 0 and the function u → F ′(u)

u
is strictly decreasing in ]0,+∞[ ;
(b2) G is positive and convex.

Finally, let α ∈ L∞(Ω), with α > 0. Set

λ∗α =
1

2G(0)
inf

{ ∫
Ω |∇w(x)|2dx∫

Ω α(x)(F (w(x))− F (0))dx
: w ∈ H1

0 (Ω),

∫
Ω
α(x)(F (w(x))− F (0))dx > 0

}
.

Then, for every λ > λ∗α, the problem

−∆u = λα(x)G(v(x))F ′(u) in Ω

−∆v = −λα(x)F (u(x))G′(v) in Ω

u = v = 0 on ∂Ω

has a non-zero weak solution belonging to L∞(Ω)× L∞(Ω).
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Proof. Apply Theorem 4 to the function H : Ω×R2 → R defined by

H(x, u, v) = α(x)(F (u)G(v)− F (0)G(0))

for all (x, u, v) ∈ Ω×R2. Checking that H satisfies the assumptions of Theorem 4
is an easy task. □
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