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the weak closure of a subset Ω of E is weakly compact if and only if Ω is weakly
sequentially compact (we say E is a Eberlein–Šmulian space if it satisfies this prop-
erty; see [2], pg. 549–551), and (ii). for any convex set D ⊆ E if x ∈ D then there
exists a sequence x1, x2, .... in D with xn converging to x.

(b). Note by mistake we unfortunately left out the condition that E has to be a
Eberlein–Šmulian space only in Section 3 in [4].

Remark 2.3. (a). In (2.1) in fact Cw is weakly compact implies A (= Aw = A) is
weakly compact (see the proof below).

(b). From the proof below we see that we can remove the assumption that Q is
closed and convex in the statement of Theorem 2.1 provided we assume co ({x0} ∪
F (Q)) ⊆ Q.

Proof. Let H be the family of all subsets D of Q with co ({x0} ∪ F (D)) ⊆ D.
Note H ̸= ∅ since Q ∈ H (recall F (Q) ⊆ Q, x0 ∈ Q and Q is closed and convex).
Let

D0 = ∩D∈HD and D1 = co ({x0} ∪ F (D0)).

We now show D1 = D0. Now for any D ∈ H we have since D0 ⊆ D that

D1 = co ({x0} ∪ F (D0)) ⊆ co ({x0} ∪ F (D)) ⊆ D,

so as a result D1 ⊆ D0. Also since D1 ⊆ D0 we have F (D1) ⊆ F (D0) so

co ({x0} ∪ F (D1)) ⊆ co ({x0} ∪ F (D0)) = D1,

and as a result D1 ∈ H, so D0 ⊆ D1. Consequently

(2.2) D0 = co ({x0} ∪ F (D0)).

We now claim

(2.3) D0 (= D0 = D0
w) is weakly compact.

Suppose the claim is false. Then from the Eberlein–Šmulian theorem [1], pp. 430,
there exists a sequence y1, y2, .... in D0 without a weakly convergent subsequence.
Let C1 = {y1, y2, ....} and note C1 ⊆ D0. Next we construct a countable set C2 ⊆ D0

with C1 ⊆ C2 and
C1 ⊆ co ({x0} ∪ F (C2)).

To see this first note D0 = co ({x0}∪F (D0)) and C1 ⊆ D0 so each yn (i.e. each ele-
ment of the countable set C1) is the limit of a sequence of finite convex combination
of points from {x0}∪F (D0) so there exists a countable set Q0 ⊆ {x0}∪F (D0) with
yn ∈ co (Q0) for each n i.e. C1 ⊆ co (Q0). In particular there exists a countable set
A2 ⊆ D0 with

(2.4) C1 ⊆ co ({x0} ∪ F (A2)).

Let C2 = C1 ∪A2. Note C1 ⊆ C2, C2 ⊆ D0 (since A2 ⊆ D0 and C1 ⊆ D0) and since
A2 ⊆ C2 we have from (2.4) that

C1 ⊆ co ({x0} ∪ F (C2)).

Proceed (as above) and we obtain countable sets C3, C4, .... with Cn ⊆ D0 for
n ∈ {1, 2, ...}, Cn ⊆ Cn+1 for n ∈ {1, 2, ...} and

Cn ⊆ co ({x0} ∪ F (Cn+1)) for n ∈ {1, 2...}.
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Let C = ∪∞
n=1Cn. For each x ∈ C we have x ∈ Cn for some n ∈ {1, 2, ...} so

x ∈ co ({x0} ∪ F (Cn+1)) ⊆ co ({x0} ∪ F (C)).

Thus C ⊆ co ({x0} ∪ F (C)). Now (2.1) guarantees that Cw is weakly compact.
This is a contradiction since Cw contains the sequence {yn} (note C1 ⊆ C and
Cw ⊆ D0

w = D0) which has no weakly convergent subsequence.
Thus (2.3) holds i.e D0 is weakly compact. Now F : D0 → K(D0) (see (2.2)) has

weakly sequentially closed graph. Now apply Theorem 1.1. □
Remark 2.4. Of course if instead of (2.1) in Theorem 2.1 we assumed

A ⊆ Q, A = co ({x0} ∪ F (A)) implies A is weakly compact

then immediately F has a fixed point in Q (the proof is easier since it follows from
(2.2) and Theorem 1.1); note E being a Banach space can be replaced by any space
where there is an analogue of Theorem 1.1 in this space (for example E could be a
metrizable locally convex linear topological space).

We now present a Mönch type result [3–5] provided an extra assumption is added
(see (2.5) below).

Theorem 2.5. Let E be a Banach space, Q a nonempty closed convex subset of
E, x0 ∈ Q and F : Q → K(Q) has weakly sequentially closed graph. Assume the
following conditions hold:

(2.5)


A ⊆ Q, A = co ({x0} ∪ F (A)), for any
countable set N ⊆ A there exists a countable set
P ⊆ A with co ({x0} ∪ F (N)) ⊆ Pw

and

(2.6)


A ⊆ Q, A = co ({x0} ∪ F (A)) with C ⊆ A
countable and Cw = co ({x0} ∪ F (C)),
implies Cw is weakly compact.

Then F has a fixed point in Q.

Proof. Let H and D0 be as in Theorem 2.1 and note

(2.7) D0 = co ({x0} ∪ F (D0)).

We claim

(2.8) D0 is weakly compact.

Suppose the claim is false. Then there exists a sequence y1, y2, .... in D0 without
a weakly convergent subsequence. Let C1 = {y1, y2, ....}. Next we construct a
countable set C2 ⊆ D0 with C1 ⊆ C2 and

C1 ⊆ co ({x0} ∪ F (C2)) and co ({x0} ∪ F (C1)) ⊆ C2
w.

To see this notice as in Theorem 2.1 there exists a countable set A2 ⊆ D0 with

(2.9) C1 ⊆ co ({x0} ∪ F (A2)).

From (2.5) there exists a countable set P2 ⊆ D0 with

(2.10) co ({x0} ∪ F (C1)) ⊆ P2
w.
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Let C2 = C1 ∪ A2 ∪ P2. Note C1 ⊆ C2, C2 ⊆ D0 (since A2 ⊆ D0, C1 ⊆ D0 and
P2 ⊆ D0) and since A2 ⊆ C2 and P2 ⊆ C2 we have from (2.9) and (2.10) that

C1 ⊆ co ({x0} ∪ F (C1)) and co ({x0} ∪ F (C1)) ⊆ C2
w.

Proceed (as above) and we obtain countable sets C3, C4, .... with Cn ⊆ D0 for
n ∈ {1, 2, ...}, Cn ⊆ Cn+1 for n ∈ {1, 2, ...},

Cn ⊆ co ({x0} ∪ F (Cn+1)) and co ({x0} ∪ F (Cn)) ⊆ Cn+1
w for n ∈ {1, 2...}.

Let C = ∪∞
n=1Cn. Now as in Theorem 2.1 we have

(2.11) C ⊆ co ({x0} ∪ F (C)).

Also since C1 ⊆ C2 ⊆ ..... (so F (C1) ⊆ F (C2) ⊆ ...) we have

co ({x0} ∪ F (C)) = co ({x0} ∪ F (∪∞
n=1Cn)) = co ({x0} ∪ [∪∞

n=1 F (Cn)])

⊆ ∪∞
n=1 co ({x0} ∪ F (Cn)) ⊆ ∪∞

n=1Cn+1
w ⊆ Cw

since Cn ⊆ C for n ∈ {1, 2, ...}. Thus

co ({x0} ∪ F (C)) ⊆ Cw

and this together with (2.11) yields

Cw = co ({x0} ∪ F (C)).

Now (2.6) guarantees that Cw is weakly compact. This is a contradiction since
Cw contains the sequence {yn} which has no weakly convergent subsequence. Thus
(2.8) holds and F : D0 → K(D0) has weakly sequentially closed graph. Now apply
Theorem 1.1. □

Remark 2.6. (a). If for example F is single valued then (2.5) holds. To see
this first note since N ⊆ A that co ({x0} ∪ F (N)) ⊆ co ({x0} ∪ F (A)) = A i.e.
co ({x0} ∪ F (N)) ⊆ A. Next note co ({x0} ∪ F (N)) is weakly separable; to see this
recall F is single valued and the convex hull of a countable set is separable (see [1],
pp. 51, and recall subsets of separable sets in pseudometric spaces are separable or
alternatively adjust slightly the argument in [1], pp. 51) so weakly separable (see (b)
below). Thus there exists a countable set P ⊆ E with P ⊆ co ({x0}∪F (N)) ⊆ Pw.
Now since co ({x0} ∪ F (N)) ⊆ A we have P ⊆ co ({x0} ∪ F (N)) ⊆ A. Note also
that co ({x0} ∪ F (N)) = Pw.

Of course in the argument above we could replace F single valued with maps
F which map countably sets to countable (or separable) sets and then again (2.5)
holds.

(b). If a Hausdorff locally convex space X is separable then it is weakly separable.
To see this let M be countable and dense in X so A = X. Then immediately we
have X = A ⊆ Aw, so X is weakly separable.

In our final two results we will replace A = co ({x0}∪F (A)) with A = co ({x0}∪
F (A)) (this condition is in the spirit of [3–5]) in Theorem 2.1 and Theorem 2.5.
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Theorem 2.7. Let E be a Banach space, Q a nonempty closed convex subset of
E, x0 ∈ Q and F : Q → K(Q) has weakly sequentially closed graph. Assume the
following condition holds:

(2.12)


A ⊆ Q, A = co ({x0} ∪ F (A)) with C ⊆ A
countable and C ⊆ co ({x0} ∪ F (C)),
implies Cw is weakly compact.

Then F has a fixed point in Q.

Remark 2.8. From the proof below we see that we can remove the assumption that
Q is convex in the statement of Theorem 2.7 provided we assume co ({x0}∪F (Q)) ⊆
Q.

Proof. Let H be the family of all subsets D of Q with co ({x0} ∪ F (D)) ⊆ D
and let D0 = ∩D∈HD. Essentially the same argument as in Theorem 2.1 yields
D0 = co ({x0} ∪ F (D0)). A slight adjustment of the argument in Theorem 2.1
guarantees that D0

w is weakly compact. Consider the map F ⋆ : D0
w → K(D0

w)

given by F ⋆(x) = F (x) ∩ D0
w; this is clear once we show the map is well defined

i.e. once we show F ⋆(x) ̸= ∅ for each x ∈ D0
w. To see this first note since D0 =

co ({x0} ∪ F (D0)) that F (D0) ⊆ D0 ⊆ D0
w so D0 ⊆ F−1(D0

w); here F−1(D0
w) =

F l(D0
w) = {z : F (z) ∩ D0

w ̸= ∅}. Now let x ∈ D0
w. Now since D0

w is weakly
compact the Eberlein–Šmulian theorem [2], pg. 549, guarantees that there is a
sequence (xn) in D0 with xn ⇀ x (here ⇀ denotes weak convergence). Take any
yn ∈ F (xn). Now since F (D0) ⊆ D0 we have yn ∈ D. Also since D0

w is weakly
compact the Eberlein–Šmulian theorem guarantees that we may assume without
loss of generality that yn ⇀ y for some y ∈ D0

w. Note yn ∈ F (xn), xn ⇀ x, yn ⇀ y

implies y ∈ F (x) since F has weakly sequentially closed graph. Thus y ∈ F (x)∩D0
w

so x ∈ F−1(D0
w). As a result D0

w ⊆ F−1(D0
w) i.e. F ⋆(x) ̸= ∅ for each x ∈ D0

w.

Note F ⋆ : D0
w → K(D0

w) has weakly sequentially closed graph. Now Theorem
1.1 guarantees a x ∈ D0

w with x ∈ F ⋆(x) ⊆ F (x). □
Theorem 2.9. Let E be a Banach space, Q a nonempty closed convex subset of
E, x0 ∈ Q and F : Q → K(Q) has weakly sequentially closed graph. Assume the
following conditions hold:

(2.13)


A ⊆ Q, A = co ({x0} ∪ F (A)), for any
countable set N ⊆ A there exists a countable set
P ⊆ A with co ({x0} ∪ F (N)) ⊆ Pw

and

(2.14)


A ⊆ Q, A = co ({x0} ∪ F (A)) with C ⊆ A
countable and Cw = co ({x0} ∪ F (C)),
implies Cw is weakly compact.

Then F has a fixed point in Q.

Proof. Let H and D0 be as in Theorem 2.7 and note D0 = co ({x0} ∪ F (D0)). A
slight adjustment of the argument in Theorem 2.5 guarantees that D0

w is weakly
compact. Consider the map F ⋆ : D0

w → K(D0
w) given by F ⋆(x) = F (x) ∩D0

w.
Now apply Theorem 1.1. □
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