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can occur in the form of immediate and delayed hypersensitivity. The basis of
allergy is the immune response (the release of the internal environment of the body
from allergens), accompanied by damage to its tissues. The key role in the immune
response belongs to naive T -helper cells ( [17]). They are divided into different
populations, the most important of which are:

• Th1-cells. They participate in a “cell-mediated immunity”, which usually
deals with infections, viruses, and certain bacteria. These cells are the first
line of defense of the human body from pathogens that enter the body’s cells.
They are characterized by the production of anti-inflammatory cytokines
and are involved in the development of organ-specific autoimmune diseases.

• Th2-cells. They are involved in a “humoral-mediated immunity” that deals
with bacteria, toxins and allergens. These cells are responsible for stimu-
lating the production of specific cells (antibodies) that specifically interact
with extracellular pathogens. They play an important role in the immune
responses to allergies, because they activate the production of IgE anti-
bodies (immunoglobulin E), with the help of which allergic reactions are
provoked ([20]).

In a well-functioning immune system, all T -helper cell populations work together
to keep the immune system balanced. A certain population of cells may become
more active in order to eliminate an external threat, then everything returns to its
initial balanced state. A more detailed description of other populations of T -helper
cells, as well as the interaction of Th1- and Th2-cells, is given in [16,21–23,27].

There are four types of allergic reactions ([31]). We will further focus on the
consideration of only allergic reactions of the first type (IgE-dependent). Their
course is characterized as follows. The first contact with the allergen leads to the
differentiation of naive T -helper cells (for uniformity, T -cells) in the population of
Th1- and Th2-cells, an increase in the activity of the Th2-cell population against the
background of a decrease in the activity of the Th1-cell population (Th2-dependent
immune response). This activity of Th2-cells is accompanied by the formation of a
large number of IgE antibodies, which are fixed on mast cells. Repeated contact
of the allergen with IgE on the surface of mast cells provokes their activation
(degranulation) and a massive release of histamine, heparin, serotonin and other
types of molecules (mediators of allergic reactions) that cause allergy symptoms
and tissue damage around the site of contact with the allergen. Depending on
which mediators predominate and how many are emitted, different manifestations
of allergy develop: from itching and runny nose to allergic rhino-conjunctivitis,
atopic dermatitis, bronchial asthma and even anaphylactic shock (Quincke edema).

The allergic reactions that we consider are diverse in their manifestations and
severity of treatment, they are able to develop in different directions and involve
various organs and tissues of the body.

The creation of effective and safe drugs and methods for treating allergic diseases
is based on knowledge of the mechanisms that underlie the development of the con-
sidered allergic reactions, as well as the use of modern biotechnological approaches
in the development of new drugs. In parallel with the study of the mechanisms of
allergic reactions, a new generation of drugs are being developed, such that various
forms of recombinant allergens or preparations of monoclonal antibodies against key
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molecules of allergic reactions ([23, 25, 33]). Here, mathematical models, described
by systems of differential and difference equations, play a large role. They allow
a better understanding of the mechanisms of occurrence and course of the allergic
reactions. Related to this, scientific publications can be divided into the following
two groups:

• they describe mathematically only the interaction of naive T -cells, Th1- and
Th2-cells with a pathogen (allergen). Here we highlight publications [1–3,
7, 10,26,32,34,35].

• they describe full immune response of the body to pathogens (allergens).
Moreover, the interaction of naive T -cells, Th1- and Th2-cells is part of a
complex process of such a response. Here we note publications [5,6,13,14,18].

Introduction into a mathematical model of allergy of bounded control functions
leads to a control model of allergic disease. Consideration of such controls as in-
tensities or doses of drugs and as the effect of various indirect measures allows us
to evaluate their impact on the treatment of this disease. Finally, the formulation
of a suitable optimal control problem for such a model and the use then of the
Pontryagin maximum principle as a necessary optimality condition for analysis of
the corresponding optimal solutions makes it possible to find the optimal allergy
treatment strategies.

Based on these considerations, in this paper we take as a basis the simplest
mathematical model of the interaction of populations of naive T -cells, Th1- and Th2-
cells with allergens, presented in [1,10,26,32]. Its detailed description in the form of a
system of differential equations, as well as a new normalization of the corresponding
phase variables and parameters, is given in Section 2. The properties of the phase
variables are presented in Section 3. Section 4 contains a detailed analysis of the
stability of equilibria of the system, as well as their bifurcation analysis. Numerical
calculations demonstrating the behavior of the phase variables of this system and
performed using MAPLE-15 software for specific values of the parameters, as well
as their detailed discussion are presented in Section 5. Section 6 describes the
construction of a control mathematical model and the optimal control problem
corresponding to it. The introduced bounded control functions reflect the possible
impacts on the allergic disease of drugs and various indirect measures. The objective
function, which is to be minimized, within the framework of the optimal control
problem sets the balance between populations of Th1- and Th2-cells, and also takes
into account the cost of the used drugs and indirect measures for the entire period
of allergy treatment. This section also shows the application of the Pontryagin
maximum principle to this problem as a necessary optimality condition. This allows
to analytically establish important properties of the corresponding optimal controls.
Section 7 contains the results of numerical calculations performed using BOCOP-
2.0.5 software, which show the behavior of optimal solutions of the optimal control
problem. Finally, Section 8 presents our discussion and conclusions.

2. Description of the model

To create a control mathematical model of allergy treatment, we used the model
proposed in [1,10,26,32] as the basis. It is described by a system of six differential



320 E. V. GRIGORIEVA AND E. N. KHAILOV

equations:

(2.1)



dH̃0

dτ
(τ) = σ − β1H̃0(τ)Ã(τ)C̃1(τ)− β2H̃0(τ)Ã(τ)C̃2(τ)− γH̃0(τ),

dH̃1

dτ
(τ) = ρβ1H̃0(τ)Ã(τ)C̃1(τ)− γH̃1(τ),

dH̃2

dτ
(τ) = ρβ2H̃0(τ)Ã(τ)C̃2(τ)

(
1 + r1C̃1(τ)

)−1
− γH̃2(τ),

dC̃1

dτ
(τ) = α1H̃1(τ)

(
1 + r2C̃2(τ)

)−1
− δC̃1(τ),

dC̃2

dτ
(τ) = α2H̃2(τ)− δC̃2(τ),

dÃ

dτ
(τ) = ϵ− ηÃ(τ)

(
H̃1(τ) + H̃2(τ)

)
− κÃ(τ).

These equations establish the interaction between the respective concentrations

H̃0(τ), H̃1(τ), H̃2(τ), C̃1(τ), C̃2(τ), Ã(τ) per unit volume of naive T -cells, Th1-
and Th2-cells, cytokines secreted by these cells and allergens. As we already know,
Th1- and Th2-cells produce different cytokines. It is important for us that we do not
distinguish different cytokines secreted by Th1-cells denoting the concentration of

all of them by C̃1(τ). In a similar way we denote the concentration of the cytokines

secreted by Th2-cells as C̃2(τ).
In system (2.1), naive T -cells are produced with a rate σ and decay with the

same characteristic time γ−1 as the Th1- and Th2-cells. Stimulated naive T -cells
disappear from the population of such cells; their concentrations in the second and

third equations are proportional to the appropriate products H̃0(τ)Ã(τ)C̃1(τ) and

H̃0(τ)Ã(τ)C̃2(τ)(1 + r1C̃1(τ))
−1, where the last factors reflect the autocrine effect

of the cytokines secreted by the corresponding Th1- and Th2-cells. The parameters
β1 and β2 define the differences in the activation of Th1- and Th2-cells by allergens,
respectively. The value ρ determines a proliferation rate of these cells.

Cytokines decay with a characteristic time δ−1 which is small compared to γ−1.
They are produced at the rates α1 and α2 by the respective populations of Th1- and
Th2-cells. The cross-suppression is described by factors of the form (1+const ·x)−1,
where x defines the concentration of suppressive cytokines. It is easy to see that
such factors tend to 1 for low concentrations. Since the cytokines secreted by Th2-
cells suppress the production of the cytokines secreted by Th1-cells whereas the
cytokines secreted by Th1-cells suppress the proliferation of Th2-cells, there is an

asymmetry in the equations for H̃1(τ) and C̃1(τ) on one side and equations for

H̃2(τ) and C̃2(τ) on the other side.

Concentration Ã(τ) of allergens is supplied at the rate ϵ and is eliminated propor-
tional to the concentrations of Th1- and Th2-cells. Also,we assume that allergens
decay with a characteristic time κ−1.

The life-time of cytokines is short compared to that of naive T -cells, Th1- and
Th2-cells (δ−1 ≪ γ−1). Therefore, cytokines relax fast to a quasi-stationary state
dictated by Th1- and Th2-cells. Hence, from the fourth and fifth equations of
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system (2.1) we obtain the equalities:

C̃1(τ) = α1δ
−1H̃1(τ)

(
1 + α2r2δ

−1H̃2(τ)
)−1

,

C̃2(τ) = α2δ
−1H̃2(τ).

After substitution of these expressions into the remaining equations of system (2.1),
we obtain the system of differential equations:

(2.2)



dH̃0

dτ
(τ) = σ − α1β1δ

−1H̃0(τ)Ã(τ)H̃1(τ)
(
1 + α2r2δ

−1H̃2(τ)
)−1

− α2β2δ
−1H̃0(τ)Ã(τ)H̃2(τ)− γH̃0(τ),

dH̃1

dτ
(τ) = ρα1β1δ

−1H̃0(τ)Ã(τ)H̃1(τ)
(
1 + α2r2δ

−1H̃2(τ)
)−1

− γH̃1(τ),

dH̃2

dτ
(τ) = ρα2β2δ

−1H̃0(τ)Ã(τ)H̃2(τ)

×
(
1 + α1r1δ

−1H̃1(τ)
(
1 + α2r2δ

−1H̃2(τ)
)−1

)−1

− γH̃2(τ),

dÃ

dτ
(τ) = ϵ− ηÃ(τ)

(
H̃1(τ) + H̃2(τ)

)
− κÃ(τ).

Measuring the time in units of γ−1, that is τ = γ−1t, and rescaling the variables
as

(2.3) H̃0 = γη−1H0, H̃1 = γη−1H1, H̃2 = γη−1H2, Ã = δηA,

and introducing the constants:

(2.4)
α = σηγ−2, χ = ϵ(γδη)−1, θ1 = α1β1, θ2 = α2β2,

µ1 = α1r1γ(δη)
−1, µ2 = α2r2γ(δη)

−1, ν = κγ−1,

we rewrite system (2.2) as follows

(2.5)



H ′
0(t) = α− θ1H0(t)A(t)H1(t)

(
1 + µ2H2(t)

)−1

− θ2H0(t)A(t)H2(t)−H0(t),

H ′
1(t) = ρθ1H0(t)A(t)H1(t)

(
1 + µ2H2(t)

)−1
−H1(t),

H ′
2(t) = ρθ2H0(t)A(t)H2(t)

(
1 + µ2H2(t)

)(
1 + µ1H1(t) + µ2H2(t)

)−1

−H2(t),

A′(t) = χ−
(
H1(t) +H2(t) + ν

)
A(t).

In this system, the values α, ρ, χ, ν, θ1, θ2, µ1, µ2 are the given positive parameters.
In addition, we assume that ν satisfies the inequality:

(2.6) αρχmin{θ1; θ2} > ν.

We also note that formulas (2.3) and (2.4) differ from similar expressions pre-
sented in [10,26].
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Finally, based on the physical meaning of phase variables of system (2.5), we add
to it the following initial conditions:

(2.7) H0(0) = H0
0 ≥ 0, H1(0) = H0

1 ≥ 0, H2(0) = H0
2 ≥ 0, A(0) = A0 ≥ 0.

In [1,10,26,32], there are no studies of the properties of solutions for system (2.5)
with initial conditions (2.7). Therefore, the next section fills this significant gap
and presents the properties of such solutions.

3. Properties of solutions of the model

Let us analyze the properties of the solutions to system (2.5). Their nonnegativity
and boundedness would indicate that the system behaves biologically correctly or
it is a biological well-behaved system.

The following lemma ensures the non-negativity of the components of solutions
for system (2.5) with initial conditions (2.7).

Lemma 3.1. All components H0(t), H1(t), H2(t), A(t) are non-negative for all
t > 0.

Proof. Let the components H0(t), H1(t), H2(t), A(t) of an arbitrary solution for
system (2.5), (2.7) be defined on some interval [0, t0). Then, the equations of sys-
tem (2.5) can be rewritten as

H ′
0(t) = α−

{
θ1A(t)H1(t)

(
1 + µ2H2(t)

)−1
+ θ2A(t)H2(t) + 1

}
H0(t)

= α− g0(t)H0(t),

H ′
1(t) =

{
ρθ1H0(t)A(t)

(
1 + µ2H2(t)

)−1
− 1

}
H1(t) = g1(t)H1(t),

H ′
2(t) =

{
ρθ2H0(t)A(t)

(
1 + µ2H2(t)

)(
1 + µ1H1(t) + µ2H2(t)

)−1
− 1

}
H2(t)

= g2(t)H2(t),

A′(t) = χ−
{
H1(t) +H2(t) + ν

}
A(t) = χ− g3(t)A(t),

where the functions g0(t), g1(t), g2(t), and g3(t) denote the corresponding ex-
pressions in braces. These new equations can be considered as the linear non-
autonomous differential equations of the first order with the corresponding non-
negative initial conditions (2.7) and positive heterogeneities for the first and fourth
equations and without such heterogeneities for the second and third equations.
Then, their solutions H0(t), H1(t), H2(t), A(t) are non-negative for all t ∈ (0, t0).
This can be easily verified, for example, by direct integration of each differential
equation using the constant variation method ([11]).

Hence, the non-negativity of the components H0(t), H1(t), H2(t), A(t) of an
arbitrary solution for system (2.5), (2.7) on the interval (0, t0) is justified. □

We note that the non-negative octant R4
+ is an invariant region of system (2.5).

It is also important to show that all state variables of system (2.5) are bounded for
all t. This will ensure that the studied model is well-posed and realistic to represent
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the considered cell populations. The following lemma gives us the boundedness of
the solutions of system (2.5).

Lemma 3.2. All non-negative solutions of system (2.5) enter the region Λ ⊂ R4
+

and are ultimately bounded. Λ is defined as

Λ =
{
(H0,H1,H2, A)

⊤ ∈ R4
+ : 0 ≤ H0 ≤ α, H1 ≥ 0, H2 ≥ 0,

0 ≤ A ≤ ν−1χ, ρH0 +H1 +H2 ≤ αρ
}
,

where the symbol ⊤ denotes the transpose.

Proof. Let us consider the first equation of system (2.5). Using Lemma 3.1, we have
the inequality:

(3.1) H ′
0(t) ≤ α−H0(t).

By applying Theorem 4.1 ([11]), we obtain the inequality:

0 ≤ H0(t) ≤ α− (α−H0(0)) e
−t, t > 0,

from which it follows H0(t) ≤ α if H0(0) ≤ α.
Similarly, by Lemma 3.1, from the fourth equation of system (2.5) we find the

inequality:

(3.2) A′(t) ≤ χ− νA(t).

The same theorem leads us to the inequality:

0 ≤ A(t) ≤ ν−1χ−
(
ν−1χ−A(0)

)
e−νt, t > 0,

which implies that A(t) ≤ ν−1χ if A(0) ≤ ν−1χ.
Next, let us consider the auxiliary function W (t) = ρH0(t) +H1(t) +H2(t) and

then calculate its derivative using the corresponding equations of system (2.5). As
a result, after necessary transformations, we find the inequality:

(3.3) W ′(t) ≤ αρ−W (t).

Theorem 4.1 ([11]) again gives us the inequality:

0 ≤W (t) ≤ αρ− (αρ−W (0)) e−t, t > 0,

from which we obtain W (t) ≤ αρ if W (0) ≤ αρ. This means that ρH0(t) +H1(t) +
H2(t) ≤ αρ, when ρH0(0) +H1(0) +H2(0) ≤ αρ.

Thus, all solutions (H0(t),H1(t),H2(t), A(t))
⊤ of system (2.5) that start in Λ,

remain in this set for all t > 0. It means that Λ is an invariant set of this system.
Moreover, the region Λ is bounded and hence all mentioned solutions are ultimately
bounded as well.

Finally, all solutions (H0(t),H1(t),H2(t), A(t))
⊤ with non-negative initial condi-

tions (2.7) finally come into the region Λ and stay in it. The second property is
actually justified, because we have just shown the invariance of this set. The first
property is provided by the definition of the region Λ and the following relationships:

(3.4)

H ′
0(t)

∣∣∣
H0=α

≤ 0, A′(t)
∣∣∣
A=ν−1χ

≤ 0,

ρH ′
0(t) +H ′

1(t) +H ′
2(t)

∣∣∣
ρH0+H1+H2=αρ

≤ 0,
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result from inequalities (3.1)–(3.3). Moreover, inequalities like (3.4) will also
hold for points outside the region Λ. They show the motion of the phase point
(H0(t),H1(t),H2(t), A(t))

⊤ toward this set. This guarantees the boundedness of
all solutions (H0(t),H1(t),H2(t), A(t))

⊤ of system (2.5) with non-negative initial
conditions (2.7). □

4. Stability analysis

Here we will discuss the existence of possible equilibria in Λ ⊂ R4
+ and their

stability analysis.

4.1. Existence of the equilibria. To find the possible equilibria, we consider the
system of equations:

(4.1)



α−
(
θ1AH1

(
1 + µ2H2

)−1
+ θ2AH2 + 1

)
H0 = 0,(

ρθ1H0A
(
1 + µ2H2

)−1
− 1

)
H1 = 0,(

ρθ2H0A
(
1 + µ2H2

)(
1 + µ1H1 + µ2H2

)−1
− 1

)
H2 = 0,

χ−
(
H1 +H2 + ν

)
A = 0,

that follows from system (2.5). Analyzing the second and third equations of this
system, we see that, depending on the vanishing of the variables H1 and H2, the
following four cases are possible.

Case 1. Let H1 = 0 and H2 = 0. Then, from the first and fourth equations of
system (4.1), we find the corresponding values H0 = α and A = ν−1χ. Therefore,
there is the equilibrium:

∆0 =
(
α, 0, 0, ν−1χ

)⊤
,

which is located on the boundary of the region Λ.

Case 2. Let H1 = 0 and H2 > 0. Then, the first, third and forth equations of
system (4.1) give us the equilibrium:

∆1 =

(
αρ+ ν

ρ(χθ2 + 1)
, 0,

αρχθ2 − ν

χθ2 + 1
,
χθ2 + 1

θ2(αρ+ ν)

)⊤
.

It is easy to see that inequality (2.6) guarantees the location of ∆1 on the boundary
of the region Λ.

Case 3. Let H1 > 0 and H2 = 0. Then, the first, second and forth equations of
system (4.1) lead us to the equilibrium:

∆2 =

(
αρ+ ν

ρ(χθ1 + 1)
,
αρχθ1 − ν

χθ1 + 1
, 0,

χθ1 + 1

θ1(αρ+ ν)

)⊤
,

which, again due to inequality (2.6), is located on the boundary of the region Λ.

Case 4. LetH1 > 0 andH2 > 0. We introduce an auxiliary variable z = ρH0A ≥ 0.
Then, the second equation of system (4.1) implies the expression:

(4.2) H2 = µ−1
2 (θ1z − 1),
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when z > θ−1
1 . The third equation of the same system leads us to equality:

(4.3) H1 = µ−1
1 θ1z(θ2z − 1),

which is valid for z > θ−1
2 . Therefore, the consequence arguments of this case we will

carry out for z > z0, where z0 = min{θ−1
1 ; θ−1

2 }. Let us note that relationship (2.6)
implies the inequality:

(4.4) z0 < z1,

where z1 = αρχν−1.
Next we substitute formulas (4.2) and (4.3) into the last equation of system (4.1).

As a result, the following formula can be obtained:

(4.5) A = χ
[
µ−1
1 θ1z(θ2z − 1) + µ−1

2 (θ1z − 1) + ν
]−1

.

Substituting (4.5) into the definition of the variable z, we find the expression:

(4.6) H0 = (ρχ)−1z
[
µ−1
1 θ1z(θ2z − 1) + µ−1

2 (θ1z − 1) + ν
]
.

Now, let us write through the variable z the first equation of system (4.1). For
this, we substitute formulas (4.2), (4.3) and (4.5), (4.6) into it. After the necessary
transformations, the following equation can be found:

(4.7) q(z) = h(z),

where the functions q(z) and h(z) are defined as

q(z) = αρχz−1 − ν,

h(z) = µ−1
1 θ1(z + χ)(θ2z − 1) + µ−1

2 (χθ2 + 1)(θ1z − 1).

Next, we study the solvability of equation (4.7) for z > z0.
For this, let us establish the properties of the functions q(z) and h(z). It is easy to

see that the function q(z) is a hyperbola for which the following limit relationships
hold:

lim
z→+0

q(z) = +∞, lim
z→+∞

q(z) = −ν,

as well as the equality q(z1) = 0. This equality and (4.4) imply the inequality
q(z0) > 0.

The function h(z) is a parabola opened upwards for which we have the relation-
ship:

h(0) = −µ−1
1 χθ1 − µ−1

2 (χθ2 + 1) < 0.

Its derivative h′(z) is determine by the formula:

h′(z) = µ−1
1 θ1(θ2z − 1) + µ−1

1 θ1θ2(z + χ) + µ−1
2 θ1(χθ2 + 1).

Now, let us look at all possible relations between the parameters θ1 and θ2. The
following three situations occur.

(a) Let θ1 = θ2 = θ, then z0 = θ−1. It is easy to see that h(z0) = 0 and
h′(z0) > 0. The properties of the functions q(z) and h(z) lead us to the
conclusion that on the interval [z0, z1] the function q(z) decreases from the
positive value q(z0) to a zero value at z = z1, and the function h(z), on
the contrary, increases from a zero value at z = z0 to the positive value
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h(z1). Therefore, on the interval (z0, z1) there is a unique solution z⋆ for
equation (4.7).

(b) Let θ1 < θ2, then z0 = θ−1
1 . It is easy to calculate that

h(z0) = (µ1θ1)
−1(χθ1 + 1)(θ2 − θ1) > 0,

h′(z0) = µ−1
1 (θ2 − θ1) + µ−1

1 θ2(χθ1 + 1) + µ−1
2 θ1(χθ2 + 1) > 0.

Therefore, the properties of the functions q(z) and h(z) lead us to the fol-
lowing conclusion. On the interval [z0, z1] the function q(z) decreases from
the positive value q(z0) to a zero value at z = z1, and the function h(z),
on the contrary, increases from the positive value h(z0) to also the positive
value h(z1). Moreover, equation (4.7) has for z > z0 a unique solution z⋆ if
the inequality:

(4.8) q(z0) > h(z0)

holds, which due to the definitions of the functions q(z), h(z) and the value
z0 leads us to the inequality:

(4.9) θ2 < f(θ1),

where the function f(θ1) is given by the formula:

f(θ1) = θ1 + µ1θ1(αρχθ1 − ν)(χθ1 + 1)−1.

It is easy to see that this function is increasing and convex.
(c) Let θ1 > θ2, then z0 = θ−1

2 . Again we calculate the values:

h(z0) = (µ2θ2)
−1(χθ2 + 1)(θ1 − θ2) > 0,

h′(z0) =
(
µ−1
1 + µ−1

2

)
θ1(χθ2 + 1) > 0.

Therefore, we again carry out the corresponding arguments of the previous
situation with the only difference that by the definition of the value z0,
inequality (4.8) implies the inequality:

(4.10) θ1 < g(θ2),

where the function g(θ2) is determined by the formula:

g(θ2) = θ2 + µ2θ2(αρχθ2 − ν)(χθ2 + 1)−1,

from which it is clear that this function is also increasing and convex.

Inequalities (4.9) and (4.10) imply the introduction in the positive quarter R2
+ of

the coordinate system (θ1, θ2) the following sets:

A =
{
(θ1, θ2)

⊤ : θ1 > 0, θ2 > 0, θ2 > f(θ1)
}
,

B =
{
(θ1, θ2)

⊤ : θ1 > 0, θ2 > 0, θ1 < g(θ2), θ2 < f(θ1)
}
,

C =
{
(θ1, θ2)

⊤ : θ1 > 0, θ2 > 0, θ1 > g(θ2)
}
.

Their location is given on Figure 1. In addition, we select the curves θ2 = f(θ1)
and θ1 = g(θ2) located in R2

+.
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1

θ1 
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θ
2 
=  f (θ

1
)

Figure 1. The location of sets A, B and C in the positive quadrant R2
+.

The considered situations (a)–(c) show that equation (4.7) for z > z0 has a unique
solution z⋆ ∈ (z0, z1), if only the point (θ1, θ2)

⊤ is in the set B. If it is located in
the sets A and C, or on the curves θ2 = f(θ1) and θ1 = g(θ2), the required solution
is absent.

Then, for (θ1, θ2)
⊤ ∈ B there exists the equilibrium:

∆⋆ = (H⋆
0 ,H

⋆
1 ,H

⋆
2 , A⋆)

⊤ ,

which is located inside the region Λ. Here the values H⋆
0 , H

⋆
1 , H

⋆
2 and A⋆ are

defined through the root z⋆ due to formulas (4.2), (4.3) and (4.5), (4.6). If the point
(θ1, θ2)

⊤ is in the sets A and C or on the curves θ2 = f(θ1) and θ1 = g(θ2), then
this equilibrium does not exist.

We also note that the analysis of Case 4 is not presented in [10,26].

4.2. Local stability. For local stability analysis we will evaluate the Jacobian
matrix J at every equilibrium ∆0, ∆1, ∆2 and ∆⋆. Let us study each equilibrium
separately.

• Let us consider the equilibrium ∆0. The corresponding Jacobian matrix J(∆0)
is written as follows

−1 −αχθ1ν−1 −αχθ2ν−1 0
0 ν−1(αρχθ1 − ν) 0 0
0 0 ν−1(αρχθ2 − ν) 0
0 −ν−1χ −ν−1χ −ν

 .

The behavior of trajectories of system (2.5) near the equilibrium ∆0 depends on the
eigenvalues of this Jacobian matrix. It is easy to see that by (2.6) it has two positive
eigenvalues ν−1(αρχθ1 − ν) and ν−1(αρχθ2 − ν), and also two negative eigenvalues
(−1) and (−ν). Therefore, as follows from the results of § 5.8 ([28]), the equilibrium
∆0 is unstable.
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• Let us consider the equilibrium ∆1. The corresponding Jacobian matrix J(∆1)
has the form:

−αρ(χθ2+1)
αρ+ν − θ1(χθ2+1)

ρθ2[(χθ2+1)+µ2(αρχθ2−ν)] −1
ρ − θ2(αρ+ν)(αρχθ2−ν)

ρ(χθ2+1)2

0
(

θ1(χθ2+1)
θ2[(χθ2+1)+µ2(αρχθ2−ν)] − 1

)
0 0

ρ(αρχθ2−ν)
αρ+ν −µ1(αρχθ2−ν)

χθ2+1 0 θ2(αρ+ν)(αρχθ2−ν)
(χθ2+1)2

0 − χθ2+1
θ2(αρ+ν) − χθ2+1

θ2(αρ+ν) −χθ2(αρ+ν)
χθ2+1

 .

Again, the behavior of trajectories of system (2.5) near the equilibrium ∆1 depends
on the eigenvalues of this Jacobian matrix, which, as it is easy to see, after the
necessary transformations satisfy the equation:

(4.11)

[
λ−

(
θ1(χθ2 + 1)

θ2 [(χθ2 + 1) + µ2(αρχθ2 − ν)]
− 1

)]
×
[
λ3 +

(
χθ2(αρ+ ν)

χθ2 + 1
+
αρ(χθ2 + 1)

αρ+ ν

)
λ2

+

(
αρχθ2 +

αρχθ2 − ν

χθ2 + 1
+
αρχθ2 − ν

αρ+ ν

)
λ+ (αρχθ2 − ν)

]
= 0.

Analyzing this equation we see that due to the definition of the function θ1 = g(θ2),
one eigenvalue is given by the formula:

(4.12) λ =
χθ2 + 1

θ2 [(χθ2 + 1) + µ2(αρχθ2 − ν)]
(θ1 − g(θ2)),

and the other three eigenvalues are the roots of the cubic equation:

(4.13)

λ3 +

(
χθ2(αρ+ ν)

χθ2 + 1
+
αρ(χθ2 + 1)

αρ+ ν

)
λ2

+

(
αρχθ2 +

αρχθ2 − ν

χθ2 + 1
+
αρχθ2 − ν

αρ+ ν

)
λ+ (αρχθ2 − ν) = 0,

in which by (2.6) all coefficients are positive. Moreover, the determinant of the
matrix: (

χθ2(αρ+ν)
χθ2+1 + αρ(χθ2+1)

αρ+ν

)
1

(αρχθ2 − ν)
(
αρχθ2 +

αρχθ2−ν
χθ2+1 + αρχθ2−ν

αρ+ν

)
constructed from the coefficients of equation (4.13), is also positive. When this fact
is proven, the following equality is useful:

αρχθ2 − ν =
αρ(χθ2 + 1)

αρ+ ν
· αρχθ2 − ν

χθ2 + 1
+
χθ2(αρ+ ν)

χθ2 + 1
· αρχθ2 − ν

αρ+ ν

− αρχθ2 − ν

χθ2 + 1
· αρχθ2 − ν

αρ+ ν
.

Then, due to the Routh-Hurwitz criterion ([9]), all the roots of equation (4.13) have
negative real parts. Therefore, by virtue of formula (4.12), the local asymptotic
stability or instability of the equilibrium ∆1 depends on where the point (θ1, θ2)

⊤

is in R2
+. If it is in the set A or B, or on the curve θ2 = f(θ1), then the equilibrium

∆1 is locally asymptotically stable, and if the point (θ1, θ2)
⊤ falls into the set C,
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then this equilibrium is unstable. Finally, if (θ1, θ2)
⊤ is on the curve θ1 = g(θ2),

then the eigenvalue given by formula (4.12) becomes zero and nothing can be said
about the stability of the equilibrium ∆1. More detailed studies are needed.

• Let us consider the equilibrium ∆2. The corresponding Jacobian matrix J(∆2)
is written as follows

−αρ(χθ1+1)
αρ+ν −1

ρ

(
µ2(αρχθ1−ν)
ρ(χθ1+1) − θ2

ρθ1

)
− θ1(αρ+ν)(αρχθ1−ν)

ρ(χθ1+1)2

ρ(αρχθ1−ν)
αρ+ν 0 −µ2(αρχθ1−ν)

χθ1+1
θ1(αρ+ν)(αρχθ1−ν)

(χθ1+1)2

0 0
(

θ2(χθ1+1)
θ1[(χθ1+1)+µ1(αρχθ1−ν)] − 1

)
0

0 − χθ1+1
θ1(αρ+ν) − χθ1+1

θ1(αρ+ν) −χθ1(αρ+ν)
χθ1+1

 .

Again, the behavior of trajectories of system (2.5) near the equilibrium ∆2 depends
on the eigenvalues of this Jacobian matrix, which, as it is easy to see, after the
necessary transformations satisfy the equation:

(4.14)

[
λ−

(
θ2(χθ1 + 1)

θ1 [(χθ1 + 1) + µ1(αρχθ1 − ν)]
− 1

)]
×
[
λ3 +

(
χθ1(αρ+ ν)

χθ1 + 1
+
αρ(χθ1 + 1)

αρ+ ν

)
λ2

+

(
αρχθ1 +

αρχθ1 − ν

χθ1 + 1
+
αρχθ1 − ν

αρ+ ν

)
λ+ (αρχθ1 − ν)

]
= 0.

Analyzing this equation we see that it is similar to equation (4.11). Then, due to
the definition of the function θ2 = f(θ1), one eigenvalue is given by the formula:

(4.15) λ =
χθ1 + 1

θ1 [(χθ1 + 1) + µ1(αρχθ1 − ν)]
(θ2 − f(θ1)),

and the remaining three eigenvalues satisfy a cubic equation similar to (4.13). There-
fore, all the arguments made earlier are true here. According to them, the local
asymptotic stability or instability of the equilibrium ∆2 depends, by virtue of for-
mula (4.15), on where the point (θ1, θ2)

⊤ is in R2
+. If it is in the set B or C, or

on the curve θ1 = g(θ2), then the equilibrium ∆2 is locally asymptotically stable,
and if the point (θ1, θ2)

⊤ falls into the set A, then the equilibrium ∆2 is unstable.
Finally, if (θ1, θ2)

⊤ is on the curve θ2 = f(θ1), then the eigenvalue determined by
formula (4.15) becomes zero and nothing can be said about stability. More detailed
studies are needed.

• Let us consider the equilibrium ∆⋆. Using the equations of system (4.1), we
write the corresponding Jacobian matrix J(∆⋆) in terms of the values H⋆

0 , H
⋆
1 , H

⋆
2 ,

A⋆ as follows
− α

H⋆
0

−1
ρ

(
µ2H⋆

1
ρ2θ1H⋆

0A⋆
− θ2H

⋆
0A⋆

)
−α−H⋆

0
A⋆

H⋆
1

H⋆
0

0 − µ2H⋆
1

ρθ1H⋆
0A⋆

H⋆
1

A⋆
H⋆

2
H⋆

0
− µ1H⋆

2
ρ2θ1θ2(H⋆

0A⋆)2
µ1µ2H⋆

1H
⋆
2

ρ3θ21θ2(H
⋆
0A⋆)3

H⋆
2

A⋆

0 −A⋆ −A⋆ − χ
A⋆

 .

As with the previous equilibria, the behavior of trajectories of system (2.5) near the
equilibrium ∆⋆, when it exists, depends on the eigenvalues of this Jacobian matrix,
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which are the roots of the corresponding characteristic equation:

(4.16) λ4 − d1λ
3 + d2λ

2 − d3λ+ d4 = 0,

where d1 is the trace of the matrix J(∆⋆), and d4 is its determinant. The coef-
ficients d2 and d3 are found by the corresponding formulas through the elements
of the matrix J(∆⋆) ([9]). We note that the equations (4.11) and (4.14) are also
characteristic equations for the corresponding matrices J(∆1) and J(∆2).

Now we evaluate the determinant of the matrix J(∆⋆). To do this, we first extract
the values H⋆

1 , H
⋆
2 , (−A⋆) from its second, third, and fourth rows, respectively.

Then, from its first and last columns, the corresponding values (H⋆
0 )

−1 and A−1
⋆ are

extracted as well. As a result, we have the determinant:

d4 = −H⋆
1H

⋆
2 (H

⋆
0 )

−1

×


−α −1

ρ

(
µ2H⋆

1
ρ2θ1H⋆

0A⋆
− θ2H

⋆
0A⋆

)
−(α−H⋆

0 )

1 0 − µ2

ρθ1H⋆
0A⋆

1

1 − µ1

ρ2θ1θ2(H⋆
0A⋆)2

µ1µ2H⋆
1

ρ3θ21θ2(H
⋆
0A⋆)3

1

0 1 1 χ
A⋆

 .
Now, we subtract the first column from the last column in it, and then decompose
the resulting determinant on the last column. After the necessary transformations,
we have the expression:

d4 =−H⋆
1H

⋆
2

[(
µ1

ρ2θ1θ2(H⋆
0A⋆)2

+
µ2

ρθ1H⋆
0A⋆

+
µ1µ2H

⋆
1

ρ3θ21θ2(H
⋆
0A⋆)3

)
+

χ

H⋆
0A⋆

(
µ1 + 1

ρ2θ1H⋆
0A⋆

+
αµ1µ2

ρ3θ21θ2(H
⋆
0A⋆)3

)]
,

which is negative. Therefore, the characteristic equation (4.16) has at least one
positive root. Then, according to the results of § 5.8 ([28]), the equilibrium ∆⋆ is
unstable, when it exists.

Finally, we summarize all the previously obtained results in Table 1.

(θ1, θ2)
⊤ ∈ A θ2 = f(θ1) (θ1, θ2)

⊤ ∈ B θ1 = g(θ2) (θ1, θ2) ∈ C
∆0 unstable unstable unstable unstable unstable
∆1 local local local it is necessary

asymptotically asymptotically asymptotically further unstable
stable stable stable investigations

∆2 it is necessary local local local
unstable further asymptotically asymptotically asymptotically

investigations stable stable stable
∆⋆ does not exist does not exist unstable does not exist does not exist

Table 1. Final results on the stability of equilibria.
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4.3. Bifurcation analysis. Bifurcation can be observed in the behavior of the
equilibria ∆1, ∆2 and ∆⋆, when the point (θ1, θ2)

⊤ moves in the positive quadrant
R2
+ between the regions A, B and C. The above analysis of the existence of the

root z⋆ for equation (4.7) on the interval (z0, z1) can be supplemented by a natural
possibility z⋆ = z0. Moreover, if θ1 > θ2, then it is obvious that z⋆ = θ−1

2 . For-
mulas (4.2), (4.3) and (4.5), (4.6) show that the point (θ1, θ2)

⊤ falls on the curve
θ1 = g(θ2), and the equilibrium ∆⋆ coincides with ∆1. Otherwise, when θ1 < θ2,
then z⋆ = θ−1

1 . These formulas lead us to the conclusion that the point (θ1, θ2)
⊤ is

on the curve θ2 = f(θ1), and the equilibrium ∆⋆ coincides with ∆2.
Bifurcation is observed when the point (θ1, θ2)

⊤ being in the region B, where
the equilibrium ∆⋆ exists and is unstable, and ∆1, ∆2 are simultaneously locally
asymptotically stable, moves, for example, to the boundary between the regions B
and C (see Figure 1). Then, the equilibrium ∆⋆ also moves to ∆1 and coincides
with it as soon as the point (θ1, θ2)

⊤ falls on the curve θ1 = g(θ2). In this case,
the equilibrium ∆1 ceases to be locally asymptotically stable and becomes unstable,
when the point (θ1, θ2)

⊤ appears in the region C. A similar behavior is observed
when this point moves toward the boundary θ2 = f(θ1) between the regions A and
B (see Figure 1). Then the equilibrium ∆⋆ again moves to ∆2 and coincides with
it as soon as the point (θ1, θ2)

⊤ appears on the curve θ2 = f(θ1). In this case, the
equilibrium ∆2 ceases to be locally asymptotically stable and becomes unstable,
when this point is in the region A.

5. Numerical results for uncontrolled system

Let us add to system (2.5) the positive initial conditions:

(5.1) H0(0) = H0
0 > 0, H1(0) = H0

1 > 0, H2(0) = H0
2 > 0, A(0) = A0 > 0,

and then we will consider it on a given time interval [0, T ].
Then, the continuation of the solution to system (2.5) with the initial condi-

tions (5.1) and the bounds of change of its components are established by the
following lemma.

Lemma 5.1. The solution (H0(t),H1(t),H2(t), A(t))
⊤ for system (2.5) with initial

conditions (5.1) is defined on the entire interval [0, T ] and on which its components
satisfy the inequalities:

(5.2)
0 < H0(t) < Hmax

0 , 0 < H1(t) < Hmax
1 ,

0 < H2(t) < Hmax
2 , 0 < A(t) < Amax,

where
Hmax

0 = H0
0 + αT, Amax = A0 + χT,

Hmax
1 = H0

1e
ρθ1Hmax

0 AmaxT , Hmax
2 = H0

2e
ρθ2Hmax

0 AmaxT .

Proof. Let the solution (H0(t),H1(t),H2(t), A(t))
⊤ be defined on some interval

[0, t1), which is the maximum possible interval of its existence. Then, the posi-
tivity of the components H0(t), H1(t), H2(t), A(t) is justified as in Lemma 3.1.
The right bounds in the first and last inequalities from (5.2) follow from differen-
tial inequalities (3.1), (3.2) and their subsequent integration with the corresponding
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initial conditions from (5.1). For the second and third inequalities from (5.2), the
following differential inequalities can be written:

H ′
1(t) < ρθ1H

max
0 AmaxH1(t), H ′

2(t) < ρθ2H
max
0 AmaxH2(t).

Integrating them with the corresponding initial conditions from (5.1), we find the
right bounds in the second and third inequalities from (5.2).

Thus, we substantiated the validity of inequalities (5.2) on the maximum pos-
sible interval [0, t1) of existence of the solution (H0(t),H1(t),H2(t), A(t))

⊤. If
t1 > T , then the required fact is established. If t1 ≤ T , then this fact fol-
lows from inequalities (5.2) and the possibility of continuation of the solution
(H0(t),H1(t),H2(t), A(t))

⊤ for the entire interval [0, T ] ([11]). □

Figures 2–7 show the graphs of the components H0(t), H1(t), H2(t), A(t) of
the solution (H0(t),H1(t),H2(t), A(t))

⊤ obtained by numerically integrating the
system (2.5) with the initial conditions (5.1). We wrote a computer program in
MAPLE-15 for the following values of the parameters:

α = 10.0 ρ = 8.0 ν = 0.001 χ ∈ {0.1; 1.0; 5.0}
µ1 = 0.2 µ2 = 0.1 θ1 = 1.0 θ2 = 1.02 T = 30
H0

0 = 10.0 H0
1 = 10.0 H0

2 = 20.0 A0 ∈ {0.05; 15.0}

These parameter’s values were adopted from [1,26,32].
It is easy to check that θ1 = 1.0 and θ2 = 1.02 belong to the region B, i.e.

(θ1, θ2)
⊤ ∈ B. Hence, theoretically we can observe either ∆1 or ∆2 equilibria

that both are asymptotically stable in this region. Figures 2–4 correspond to the
high initial concentration of the allergen A0 = 15.0 and Figures 5–7 to a relatively
small concentration of the allergen, A0 = 0.05. In the presented graphs, we also
emphasized the importance of the allergen influx rate on the solutions of the system.
Thus Figures 2 and 5 show the graphs of H0(t), H1(t), H2(t) and A(t) for χ = 0.1
(the lowest influx rate), Figures 3 and 6 for χ = 1.0 (an average influx rate) and
Figures 4 and 7 for χ = 5.0 (the highest influx rate). The concentration of the
allergen is shown in blue in a separate graph on the right for each case.

Please note that for the selected initial conditions, the system trajectory is ap-
proaching only its equilibrium ∆1. This equilibrium point is characterized by zero
value for the second component, H1. However, the allergen concentration does not
ever become zero, but is given by the formula of (χθ2 + 1)/(θ2 (αρ+ ν)). For ex-
ample, for χ = 0.1 and A0 = 15.0 (Figure 2) it should be close to 0.0134, while for
χ = 5.0 and A0 = 15.0 (Figure 4) it should approach the value of 0.075, which are,
of course, hard to see in the graphs compared to the initial value of the allergen
(15.0). The dynamics of the allergen and its nonzero equilibrium value is clearly
seen in Figures 5–7 at the small initial value of the allergen (A0 = 0.05) and different
influx rates. Thus, in Figure 5 for the influx rate of the allergen χ = 0.1, we can
see that the concentration of the allergen is approaching the value of 0.0135, that
also can be approximated by the same formula above.

Figures 2–4 correspond to the value A0 = 15.0, and Figures 5–7 relate to the
value A0 = 0.05. Figures 2 and 5 show the graphs of the functions H0(t), H1(t),
H2(t), A(t) for χ = 0.1, Figures 3 and 6 give the graphs of the same functions for
χ = 1.0, and finally, Figures 4 and 7 depict the graphs of such functions for χ = 5.0.
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On each such figure, on the left there are the graphs of the functions H0(t), H1(t),
H2(t), and on the right there is the graph of the function A(t): H0(t) is shown as
a red curve, H1(t) as blue and H2(t) as a green curves, A(t) is shown in blue.

Figure 2. Graphs of the functions H0(t), H1(t), H2(t) (left) and
A(t) (right) for χ = 0.1 and A0 = 15.0.

Figure 3. Graphs of the functions H0(t), H1(t), H2(t) (left) and
A(t) (right) for χ = 1.0 and A0 = 15.0.

Analyzing the graphs presented in Figures 2–7, we can make the following con-
clusions:
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Figure 4. Graphs of the functions H0(t), H1(t), H2(t) (left) and
A(t) (right) for χ = 5.0 and A0 = 15.0.

Figure 5. Graphs of the functions H0(t), H1(t), H2(t) (left) and
A(t) (right) for χ = 0.1 and A0 = 0.05.

• with an increase of the influx rate χ of the allergen, the values of H2(t)
become larger, and the values of H1(t) smaller. Thus, the absolute value of
the difference between H2(t) and H1(t) increases. (This is clearly seen on
the left in Figures 2–4 (A0 = 15.0), or in Figures 5–7 (A0 = 0.05)).

• with an increase of the influx rate χ of the allergen, H0(t), H1(t) and H2(t)
move to their saturation states more quickly.

• allergen concentration A(t) drops to a very small but non-zero value, reach-
ing a state of equilibrium. At the same time, with an increase of the influx
rate χ of allergens, this saturation is achieved faster.

Therefore, the “organism” modeled by system (2.5) reacts differently to allergen’s
invasion and, depending on the initial concentration of the allergen and its influx
rate, exhibits slightly different dynamics. However, eventually the system does
approach its asymptotically stable equilibrium that does not represent “healthy”
state. Instead it moves the system into unhealthy, allergic state.
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Figure 6. Graphs of the functions H0(t), H1(t), H2(t) (left) and
A(t) (right) for χ = 1.0 and A0 = 0.05.

Figure 7. Graphs of the functions H0(t), H1(t), H2(t) (left) and
A(t) (right) for χ = 5.0 and A0 = 0.05.

6. Optimal control problem and its analysis

As it was noted in the Introduction, during allergy, Th2-cells dominate over Th1-
cells. Recovering means the transition of these cells to a state, in which a balance
is established between Th1- and Th2-cells, that is, in some sense, H1(t) ≈ H2(t).

The numerical calculations from Section 5 showed that even if the influx rate χ of
the allergen is small, the immune system cannot recover by itself. Moreover, neither
equilibrium ∆1 nor ∆2 is suitable for healthy immune state. Therefore, external
intervention is necessary, for example, with medication and other indirect measures
of impact. And then, the question arises about the effective (optimal) schedule for
drug administration together with other indirect impacts.
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6.1. Statement of the optimal control problem. Taking into account all the
above, we will introduce into system (2.5), (5.1) control functions that will reflect
the effect of drugs and other indirect impacts on allergy symptoms. During allergy,
the mentioned balance between Th1- and Th2-cells can be restored again by the
following acts:

• suppression of Th2-cells or decrease in the concentration of Th2-cells through
drugs;

• stimulation of Th1-cells that means an increase in the concentration of Th1-
cells with drugs;

• reducing the influx rate of allergens that means to reduce their concentration
due to indirect impacts or drugs.

These acts carried out by introducing into system (2.5), (5.1) the appropriate
control functions of time u(t), v(t) and w(t) satisfying the restrictions:

(6.1) 0 ≤ u(t) ≤ umax < 1, 0 ≤ v(t) ≤ vmax < 1, 0 ≤ w(t) ≤ wmax < 1.

As a result, we obtain the control system of differential equations:

(6.2)



H ′
0(t) = α− θ1(1 + v(t))H0(t)A(t)H1(t)

(
1 + µ2H2(t)

)−1

− θ2(1− u(t))H0(t)A(t)H2(t)−H0(t),

H ′
1(t) = ρθ1(1 + v(t))H0(t)A(t)H1(t)

(
1 + µ2H2(t)

)−1
−H1(t),

H ′
2(t) = ρθ2(1− u(t))H0(t)A(t)H2(t)

(
1 + µ2H2(t)

)
×
(
1 + µ1H1(t) + µ2H2(t)

)−1
−H2(t),

A′(t) = χ(1− w(t))−
(
H1(t) +H2(t) + ν

)
A(t),

H0(0) = H0
0 , H1(0) = H0

1 , H2(0) = H0
2 , A(0) = A0,

which we will consider on a given time interval [0, T ]. Here the values H0
0 , H

0
1 , H

0
2

and A0 are positive. Controls u(t) and v(t) are included in the first three equations
of this system, where the corresponding coefficients α2, β2 and α1, β1 determine
the production rates of Th2- and Th1-cells (see formulas in (2.4)). Control w(t) is
included only in the last equation of system (6.2). We note that when u(t) ≡ 0,
v(t) ≡ 0 and w(t) ≡ 0, this system is the original uncontrolled system (2.5).

The set of admissible controls Ω(T ) is all possible triples of Lebesgue measurable
functions (u(t), v(t), w(t)), which for almost all t ∈ [0, T ] satisfy inequalities (6.1).

It is easy to see that for each solution (H0(t),H1(t),H2(t), A(t))
⊤ for system (6.2)

corresponding to the triple (u(t), v(t), w(t)) of the admissible controls, Lemma 5.1
holds. This allows us on the set Ω(T ) to consider for system (6.2) the problem of
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minimizing the following objective function:

(6.3)

J(u(·), v(·), w(·)) = 0.5

T∫
0

(
H1(t)−H2(t)

)2
dt

+ 0.5

T∫
0

(
au2(t) + bv2(t) + cw2(t)

)
dt,

where a, b, c are the positive weighting coefficients. We note that in (6.3) the first
term reflects the balance between Th1- and Th2-cells, and the second term gives
the total cost of allergy treatment.

The boundedness of the components H0(t), H1(t), H2(t), A(t) of the solution
(H0(t),H1(t),H2(t), A(t))

⊤ (see (5.2)) and Theorem 4 ( [15], Chapter 4) ensures the
existence of the optimal solution in the minimization problem (6.3), which consists
of:

• the optimal controls u∗(t), v∗(t) and w∗(t),
• the corresponding components H∗

0 (t), H
∗
1 (t), H

∗
2 (t), A∗(t) of the optimal

solution (H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t))

⊤ to system (6.2) for these controls.

6.2. Pontryagin maximum principle. For the analysis of the controls u∗(t),
v∗(t), w∗(t) and the corresponding solution (H∗

0 (t),H
∗
1 (t),H

∗
2 (t), A∗(t))

⊤ we apply
the Pontryagin maximum principle ([24]).

First, we will perform all the necessary auxiliary actions:
• First, we rewrite system (6.2) as

(6.4)



H ′
0(t) = H0(t)f0(H0(t),H1(t),H2(t), A(t), u(t), v(t))

= H0(t)
(
αH−1

0 (t)− θ1(1 + v(t))A(t)H1(t)
(
1 + µ2H2(t)

)−1

− θ2(1− u(t))A(t)H2(t)− 1
)
,

H ′
1(t) = H1(t)f1(H0(t),H1(t),H2(t), A(t), v(t))

= H1(t)
(
ρθ1(1 + v(t))H0(t)A(t)

(
1 + µ2H2(t)

)−1
− 1

)
,

H ′
2(t) = H2(t)f2(H0(t),H1(t),H2(t), A(t), u(t))

= H2(t)
(
ρθ2(1− u(t))H0(t)A(t)

(
1 + µ2H2(t)

)
×
(
1 + µ1H1(t) + µ2H2(t)

)−1
− 1

)
,

A′(t) = A(t)f3(H1(t),H2(t), A(t), w(t))

= A(t)
(
χ(1− w(t))A−1(t)−H1(t)−H2(t)− ν

)
,

H0(0) = H0
0 , H1(0) = H0

1 , H2(0) = H0
2 , A(0) = A0.
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• Second, using this system, we define the Hamiltonian:

Q(H0,H1,H2, A, u, v, w, ψ0, ψ1, ψ2, ψ3) = f0 (H0,H1,H2, A, u, v)H0ψ0

+ f1 (H0,H1,H2, A, v)H1ψ1 + f2 (H0,H1,H2, A, u)H2ψ2

+ f3 (H1,H2, A, w)Aψ3 − 0.5
(
(H1 −H2)

2 + au2 + bv2 + cw2
)
,

where ψ0, ψ1, ψ2, ψ3 are the adjoint variables.
• Third, we evaluate all the required partial derivatives of the Hamiltonian with

respect to variables H0, H1, H2, A:

Q′
H0

(H0,H1,H2, A, u, v, w, ψ0, ψ1, ψ2, ψ3) = f0 (H0,H1,H2, A, u, v)ψ0

+
∂f0
∂H0

(H0,H1,H2, A, u, v)H0ψ0 +
∂f1
∂H0

(H0,H1,H2, A, v)H1ψ1

+
∂f2
∂H0

(H0,H1,H2, A, u)H2ψ2,

Q′
H1

(H0,H1,H2, A, u, v, w, ψ0, ψ1, ψ2, ψ3) = f1 (H0,H1,H2, A, v)ψ1

+
∂f0
∂H1

(H0,H1,H2, A, u, v)H0ψ0 +
∂f1
∂H1

(H0,H1,H2, A, v)H1ψ1

+
∂f2
∂H1

(H0,H1,H2, A, u)H2ψ2 +
∂f3
∂H1

(H1,H2, A, w)Aψ3 − (H1 −H2) ,

Q′
H2

(H0,H1,H2, A, u, v, w, ψ0, ψ1, ψ2, ψ3) = f2 (H0,H1,H2, A, u)ψ2

+
∂f0
∂H2

(H0,H1,H2, A, u, v)H0ψ0 +
∂f1
∂H2

(H0,H1,H2, A, v)H1ψ1

+
∂f2
∂H2

(H0,H1,H2, A, u)H2ψ2 +
∂f3
∂H2

(H1,H2, A, w)Aψ3 + (H1 −H2) ,

Q′
A(H0,H1,H2, A, u, v, w, ψ0, ψ1, ψ2, ψ3) = f3 (H1,H2, A, w)ψ3

+
∂f0
∂A

(H0,H1,H2, A, u, v)H0ψ0 +
∂f1
∂A

(H0,H1,H2, A, v)H1ψ1

+
∂f2
∂A

(H0,H1,H2, A, u)H2ψ2 +
∂f3
∂A

(H1,H2, A, w)Aψ3,

and also with respect to controls u, v and w:

Q′
u(H0,H1,H2, A, u, v, w, ψ0, ψ1, ψ2, ψ3)

=
∂f0
∂u

(H0,H1,H2, A, u, v)H0ψ0 +
∂f2
∂u

(H0,H1,H2, A, u)H2ψ2 − au,

Q′
v(H0,H1,H2, A, u, v, w, ψ0, ψ1, ψ2, ψ3)

=
∂f0
∂v

(H0,H1,H2, A, u, v)H0ψ0 +
∂f1
∂v

(H0,H1,H2, A, v)H1ψ1 − bv,

Q′
w(H0,H1,H2, A, u, v, w, ψ0, ψ1, ψ2, ψ3)

=
∂f3
∂w

(H1,H2, A, w)Aψ3 − cw.

Then, by the Pontryagin maximum principle, for optimal controls u∗(t), v∗(t),
w∗(t) and the corresponding optimal solution (H∗

0 (t),H
∗
1 (t),H

∗
2 (t), A∗(t))

⊤, there
exists the vector-function ψ∗(t) = (ψ∗

0(t), ψ
∗
1(t), ψ

∗
2(t), ψ

∗
3(t))

⊤, such that:
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• ψ∗(t) is the nontrivial solution of the adjoint system:

• the controls u∗(t), v∗(t) and w∗(t) maximize the Hamiltonian

(6.6) Q(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u, v, w, ψ

∗
0(t), ψ

∗
1(t), ψ

∗
2(t), ψ

∗
3(t))
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with respect to u ∈ [0, umax], v ∈ [0, vmax] and w ∈ [0, wmax] for almost all t ∈ [0, T ],
and therefore the following relationships hold:

(6.7) u∗(t) =


umax , if ξu(t) ≥ umax,

ξu(t) , if 0 < ξu(t) < umax,

0 , if ξu(t) ≤ 0,

(6.8) v∗(t) =


vmax , if ξv(t) ≥ vmax,

ξv(t) , if 0 < ξv(t) < vmax,

0 , if ξv(t) ≤ 0,

(6.9) w∗(t) =


wmax , if ξw(t) ≥ wmax,

ξw(t) , if 0 < ξw(t) < wmax,

0 , if ξw(t) ≤ 0,

where

(6.10)

ξu(t) = a−1

(
∂f0
∂u

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t), v∗(t))H

∗
0 (t)ψ

∗
0(t)

+
∂f2
∂u

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t))H

∗
2 (t)ψ

∗
2(t)

)
,

ξv(t) = b−1

(
∂f0
∂v

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t), v∗(t))H

∗
0 (t)ψ

∗
0(t)

+
∂f1
∂v

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), v∗(t))H

∗
1 (t)ψ

∗
1(t)

)
,

ξw(t) = c−1 ∂f3
∂w

(H∗
1 (t),H

∗
2 (t), A∗(t), w∗(t))A∗(t)ψ

∗
3(t)

are the so-called the indicator functions ( [29]), which determine the behavior of the
corresponding optimal controls u∗(t), v∗(t) and w∗(t) according to formulas (6.7)–
(6.9).

To simplify consequent arguments, we introduce new adjoint variables ϕ∗0(t),
ϕ∗1(t), ϕ

∗
2(t), ϕ

∗
3(t) by the following formulas:

ϕ∗0(t) = H∗
0 (t)ψ

∗
0(t), ϕ∗1(t) = H∗

1 (t)ψ
∗
1(t),

ϕ∗2(t) = H∗
2 (t)ψ

∗
2(t), ϕ∗3(t) = A∗(t)ψ

∗
3(t).

Then using systems (6.4) and (6.5), after necessary calculations, we find the new
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adjoint system:

(6.11)

ϕ∗0
′(t) =− ∂f0

∂H0
(H∗

0 (t),H
∗
1 (t),H

∗
2 (t), A∗(t), u∗(t), v∗(t))ϕ

∗
0(t)

− ∂f1
∂H0

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), v∗(t))ϕ

∗
1(t)

− ∂f2
∂H0

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t))ϕ

∗
2(t),

ϕ∗1
′(t) =− ∂f0

∂H1
(H∗

0 (t),H
∗
1 (t),H

∗
2 (t), A∗(t), u∗(t), v∗(t))ϕ

∗
0(t)

[3pt]− ∂f1
∂H1

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), v∗(t))ϕ

∗
1(t)

− ∂f2
∂H1

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t))ϕ

∗
2(t)

− ∂f3
∂H1

(H∗
1 (t),H

∗
2 (t), A∗(t), w∗(t))ϕ

∗
3(t) +H∗

1 (t)(H
∗
1 (t)−H∗

2 (t)),

ϕ∗2
′(t) =− ∂f0

∂H2
(H∗

0 (t),H
∗
1 (t),H

∗
2 (t), A∗(t), u∗(t), v∗(t))ϕ

∗
0(t)

− ∂f1
∂H2

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), v∗(t))ϕ

∗
1(t)

− ∂f2
∂H2

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t))ϕ

∗
2(t)

− ∂f3
∂H2

(H∗
1 (t),H

∗
2 (t), A∗(t), w∗(t))ϕ

∗
3(t)−H∗

2 (t)(H
∗
1 (t)−H∗

2 (t)),

ϕ∗3
′(t) =− ∂f0

∂A
(H∗

0 (t),H
∗
1 (t),H

∗
2 (t), A∗(t), u∗(t), v∗(t))ϕ

∗
0(t)

− ∂f1
∂A

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), v∗(t))ϕ

∗
1(t)

− ∂f2
∂A

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t))ϕ

∗
2(t)

− ∂f3
∂A

(T ∗
1 (t), T

∗
2 (t), A∗(t), w∗(t))ϕ

∗
3(t),

ϕ∗0(T ) = 0, ϕ∗1(T ) = 0, ϕ∗2(T ) = 0, ϕ∗3(T ) = 0.

At the same time, formulas (6.10) for indicator functions ξu(t), ξv(t) and ξw(t) are
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rewritten in the form:

(6.12)

ξu(t) = a−1

(
∂f0
∂u

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t), v∗(t))ϕ

∗
0(t)

+
∂f2
∂u

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t))ϕ

∗
2(t)

)
,

ξv(t) = b−1

(
∂f0
∂v

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), u∗(t), v∗(t))ϕ

∗
0(t)

+
∂f1
∂v

(H∗
0 (t),H

∗
1 (t),H

∗
2 (t), A∗(t), v∗(t))ϕ

∗
1(t)

)
,

ξw(t) = c−1 ∂f3
∂w

(H∗
1 (t),H

∗
2 (t), A∗(t), w∗(t))ϕ

∗
3(t) .

Study of relationships (6.7)–(6.9) show that for all values of t ∈ [0, T ], the max-
imum of Hamiltonian (6.6) is reached with unique values u = u∗(t), v = v∗(t),
w = w∗(t). Therefore, Theorem 6.1 in [8] implies the continuity of control u∗(t),
v∗(t) and w∗(t). Adding to this result the analysis of the adjoint system (6.11),
formulas (6.12), and again relationships (6.7)–(6.9) leads us to the validity of the
following theorems.

Theorem 6.1. The optimal controls u∗(t), v∗(t) and w∗(t) are continuous functions
on the interval [0, T ], which satisfy the equalities:

u∗(T ) = 0, v∗(T ) = 0, w∗(T ) = 0.

Theorem 6.2. Let the inequality H∗
1 (T ) ̸= H∗

2 (T ) hold. Then, there exists such
a value t⋆ ∈ [0, T ) that on the interval (t⋆, T ) the optimal controls u∗(t) and v∗(t)
either simultaneously take the value 0, if H∗

1 (T ) > H∗
2 (T ); or take positive values

from the corresponding intervals (0, umax) and (0, vmax), if H
∗
1 (T ) < H∗

2 (T ).

Systems (6.4) and (6.11), relationships (6.7)–(6.9), together with formulas (6.12)
form the boundary value problem for the maximum principle. The optimal con-
trols u∗(t), v∗(t) and w∗(t) satisfy this boundary value problem together with the
corresponding optimal solution (H∗

0 (t),H
∗
1 (t),H

∗
2 (t), A∗(t))

⊤. Moreover, arguing
as in [12, 19, 30], it is possible to justify the uniqueness of these controls due to
the boundedness of the state and adjoint variables and the Lipschitz properties of
systems (6.4) and (6.11) defining these variables and relationships (6.7)–(6.9) that
establish such controls.

7. Numerical results for the optimal control problem

The following values of the parameters and initial conditions for system (6.2) and
the control restrictions from (6.1) were adopted from [1, 26, 32] and then used for
numerical calculations in the optimal control problem (6.3):

α = 10.0 ρ = 8.0 ν = 0.001 χ ∈ {0.1; 1.0; 5.0}
θ1 = 1.0 θ2 = 1.02 µ1 = 0.2 µ2 = 0.1
a = 0.5 b = 0.5 c = 0.5 T = 30
umax = 0.8 vmax = 0.8 wmax = 0.8
H0

0 = 10.0 H0
1 = 10.0 H0

2 = 20.0 A0 ∈ {0.05; 15.0}



OPTIMAL STRATEGIES OF ALLERGY TREATMENT 343

All numerical calculations were conducted using BOCOP-2.0.5. Their results are
shown in the following figures.

BOCOP-2.0.5 ( [4]) is an optimal control interface, implemented in MATLAB, for
solving optimal control problems with general path and boundary constraints and
free or fixed final time. By a time discretization, such problems are approximated
by finite-dimensional optimization problems, which are then solved by well-known
software IPOPT, using sparse exact derivatives computed by ADOL-C. IPOPT is
the open-source software package for large-scale nonlinear optimization. In BOCOP-
2.0.5, we set the number of time steps to 5000 and the tolerance to 10−14, and we
use the sixth-order Lobatto III C discretization rule (see for details [4]).
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Figure 8. Optimal solution and optimal controls for χ = 0.1 and
A0 = 15.0: upper row: H∗

0 (t), H
∗
1 (t), H

∗
2 (t); lower row: u∗(t), v∗(t),

w∗(t).

As it was previously noted, (θ1, θ2)
⊤ ∈ B, where θ1 and θ2 are the coefficients

of the natural growth rates of Th1- and Th2-cells, respectively. The relationship
chosen for the values of θ1 and θ2 (θ2 > θ1) implies that systems (2.5) and (6.2)
model a potentially allergic symptomatic organism, in which Th2-cells have higher
growth rate than Th1-cells.

Figures 8–10 correspond to the value A0 = 15.0, and Figures 11–13 relate to the
value A0 = 0.05. Figures 8 and 11 show the graphs of the optimal solutions H∗

0 (t),
H∗

1 (t), H
∗
2 (t) and the optimal controls u∗(t), v∗(t), w∗(t) for χ = 0.1, Figures 9

and 12 give the graphs of the optimal solutions and controls for χ = 1.0, and finally,
Figures 10 and 13 depict the graphs of such solutions and controls for χ = 5.0.
In each such figure, on the upper row there are the graphs of the solutions H∗

0 (t),
H∗

1 (t), H
∗
2 (t) and on the lower row there are the graphs of the controls u∗(t), v∗(t),

w∗(t).
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Figure 9. Optimal solution and optimal controls for χ = 1.0 and
A0 = 15.0: upper row: H∗

0 (t), H
∗
1 (t), H

∗
2 (t); lower row: u∗(t), v∗(t),

w∗(t).
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Figure 10. Optimal solution and optimal controls for χ = 5.0 and
A0 = 15.0: upper row: H∗

0 (t), H
∗
1 (t), H

∗
2 (t); lower row: u∗(t), v∗(t),

w∗(t).
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Figure 11. Optimal solution and optimal controls for χ = 0.1 and
A0 = 0.05: upper row: H∗

0 (t), H
∗
1 (t), H

∗
2 (t); lower row: u∗(t), v∗(t),

w∗(t).
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Figure 12. Optimal solution and optimal controls for χ = 1.0 and
A0 = 0.05: upper row: H∗

0 (t), H
∗
1 (t), H

∗
2 (t); lower row: u∗(t), v∗(t),

w∗(t).
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Figure 13. Optimal solution and optimal controls for χ = 5.0 and
A0 = 0.05: upper row: H∗

0 (t), H
∗
1 (t), H

∗
2 (t); lower row: u∗(t), v∗(t),

w∗(t).

We also performed numerical calculations for the case when χ = 5.0 and θ1 = 1.0,
θ2 = 1.52. In this case, system (6.2) models an organism more sensitive to allergic
reactions. It still means that (θ1, θ2)

⊤ ∈ B. Their results are shown in Figures 14
and 15. Figure 14 gives the graphs of the optimal solutions H∗

0 (t), H
∗
1 (t), H

∗
2 (t)

and the optimal controls u∗(t), v∗(t), w∗(t) for A0 = 15.0, Figure 15 depicts the
graphs of the optimal solutions and controls for A0 = 0.05. In each such figure, on
the upper row there are the graphs of the solutions H∗

0 (t), H
∗
1 (t), H

∗
2 (t) and on the

lower row there are the graphs of the controls u∗(t), v∗(t), w∗(t) as well.
By analyzing the graphs presented on Figures 8–15, we can make the following

conclusions.

• Behavior of the components H∗
1 (t) and H∗

2 (t) of the optimal solution
(H∗

0 (t),H
∗
1 (t),H

∗
2 (t), A∗(t))

⊤ corresponding to the concentrations of Th1-
and Th2-cells is characterized by the starting spark that is gradually de-
creasing and leading to a stable, almost constant state lasted to the end of
the treatment period [0, T ].

• Similar behavior is related to the optimal controls u∗(t) and v∗(t). In case
of A0 = 0.05 both controls u∗(t) and v∗(t) first take the maximum possible
value of 0.8 and then decrease to the constant minimal value that is almost
zero for the lower influx rates (0.1 and 1.0) and is higher (close to 0.2) for
the influx rate of 5.0. In case of A0 = 15.0, both optimal controls u∗(t) and
v∗(t) start from some high values but these values are less than the maximal
possible value of 0.8. In fact, while u∗(t) starts at approximately 0.5 for all
influx rates of the allergen, the optimal control v∗(t) behaves differently for
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Figure 14. Optimal solutions and optimal controls for χ = 5.0,
θ1 = 1.0, θ2 = 1.52, A0 = 15.0: upper row: H∗

0 (t), H
∗
1 (t), H

∗
2 (t);

lower row: u∗(t), v∗(t), w∗(t).
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Figure 15. Optimal solutions and optimal controls for χ = 5.0,
θ1 = 1.0, θ2 = 1.52, A0 = 0.05: upper row: H∗

0 (t), H
∗
1 (t), H

∗
2 (t);

lower row: u∗(t), v∗(t), w∗(t).
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different influx rates. For example, v∗(t) starts for 0.09 (that is much less
than 0.8) for χ = 0.1, and at values 0.3 − 0.35 for higher influx rates and
quickly goes to zero at χ = 0.1 and to the minimal constant values of 0.3
and 0.1 for χ = 1 and χ = 5, respectively.

• For the behavior of the optimal control w∗(t) (that is responsible for all direct
(drugs of new generation) and indirect measures (escape the allergen, reduce
possible interaction of the system with the allergen)) we can distinguish the
following two cases:
a) average or high influx rate of the allergen. In this case the highest value

of w∗(t) is 0.01 − 0.04 that is much less than 0.8, the upper boundary
for this control. In Figures 9, 10 and 12–15 the optimal control w∗(t)
is very similar to the type of the optimal controls u∗(t) and v∗(t) and
first it takes the high values and then quickly decreases to the lower,
nonzero value.

b) low influx rate of the allergen, χ = 0.1. This case is presented in
Figures 8 and 11. If the initial concentration of the allergen is high
(A0 = 15.0), then all precautious measures must be taken almost im-
mediately and then w∗(t) optimal takes the maximum value over the
entire time period. If the initial concentration of the allergen is low
(A0 = 0.05) in this case, w∗(t) optimal almost immediately (after day 1)
takes its maximum value of 0.8, that is kept the following 18 days, then
it is gradually reduced to the value of 0.1 and then increases back to
0.8, is kept at that level for couple of days and then quickly goes to
zero during the last day of the time interval.

• An increase of the ratio θ2/θ1 leads to an increase of the saturated level of
the control u∗(t) compared to that for the control v∗(t).

• With an increase in the duration of the treatment period [0, T ], the be-
havior of the optimal controls and the components of the optimal solution
corresponding to them do not qualitatively change.

8. Discussion and conclusions

In this paper, in order to construct a controllable mathematical model for treating
allergic reactions of an immediate type, the model of interaction between popula-
tions of naive T -cells, Th1- and Th2-cells with an allergens, based on the works [1,
10,26,32], is investigated in detail. Sections 2 and 3 are devoted to the description
of the system of differential equations defining this model, as well as the justification
of the properties of the phase variables of this system. A detailed stability analysis
of equilibria together with their bifurcation analysis is presented in Section 4. The
behavior of phase variables at specific values of the model parameters is demon-
strated in Section 5 using numerical calculations performed in MAPLE-15 software.
We found that the “organism” modeled by system (2.5) reacts differently on the
allergen’s invasion and, depending on the initial concentration of the allergen and its
influx rate, shows slightly different dynamics. However, eventually the system does
approach its asymptotically stable equilibrium that does not represent “healthy”
state. Instead it moves the system into unhealthy, allergic state. Naturally, this
allergy state can be changed only by taking drugs that either suppress the activity
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of Th2-cells or activate Th1-cells. Obviously, we can eliminate allergic state by re-
moving the allergen. Mathematically we have to create a control model. Section 6
describes the construction of a control mathematical model and on its basis the
formulation of the corresponding optimal control problem, as well as the applica-
tion of the necessary optimality condition in the form of the Pontryagin maximum
principle. This allows us to analytically establish important properties of optimal
solutions to this problem. The results of numerical calculations using BOCOP-2.0.5
software and their analysis are given in Section 7.

In our model, the optimal controls u∗(t) and v∗(t) represent the optimal drug
intake schedule for treating allergy symptoms under different initial conditions of
the system, its tendency to develop an allergy (θ2 > θ1), the initial concentration
of the allergen, A0 and its influx rate, χ. Based on the analytical and numerical
investigations, it looks like if an organism (person) is exposed to allergen, then first,
both medications (that suppress activity of Th2-cells and those that stimulate Th1-
cells) must be taken at their highest doses, and then the dose of both drugs should
be drastically reduced to the minimum. In fact, this is exactly what many allergic
people do: if they feel itching or other typical allergy symptoms, they usually take
the maximum dose of antihistamine (benadryl) and steroid (prednisone) and then
continue to take a less strong allergy medicine in a minimum dose, for a month.

Regarding the optimal control w∗(t), in general, the strategy is similar to that for
two other optimal controls. Since the highest value of the optimal control w∗(t) for
influx rate χ = 1.0 or χ = 5.0 is less than 0.04, then this control does not play a very
important role in treating allergy. However, there are some difference in the optimal
control w∗(t) occurs when the influx rate of the allergen is very low, χ = 0.1. In this
case, the optimal control w∗(t) takes its highest value of 0.8 for almost the entire
time interval [0, T ]. Thus, if the influx rate is 0.1, all three optimal controls u∗(t),
v∗(t) and w∗(t) are important to help with allergy symptoms. Assume that a person
has an allergy to cats. Then Figures 8 and 11 can represent the cases when a person,
potentially allergic to cats, moves in with her (his) friend who has a cat. Figure 8
represents the case when a person allergic to cats, stroked the cat and played with
it and so gets right away a huge amount of allergen (say A0 = 15.0), then began to
have an allergy (coughing and sneezing). Hence, she (he) does not play with the cat
anymore and even isolates from the cat in a different room. Figure 11 represents a
case when an allergic person does not play with the cat or stroke it, but since the cat
is present in the place, gets exposed to a lower allergen concentration of A0 = 0.05.
Assume that there is no cat around but there still some influx of the allergen in
the area. In this case our recommendation would be to take highest dose of drug 1,
maybe drug 2 and the maximum dose of drug 3 (control w∗(t)) and isolate yourself
from the cat.

Thus, in the case of low allergen influx rate (χ = 0.1), we found that the op-
timal strategy related to optimal control w∗(t) is different from those at χ = 1.0
and χ = 5.0. This could be explained by cell interactive mechanisms reported in
some immunology study. In fact, in [17] some studies show that immune cell in-
teraction through signaling cytokines goes by mechanisms that depends on allergen
influx rate and allergen concentration. Moreover, it was reported that high allergen
concentrations sometimes make allergic reaction to go by a different scenario that
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activate Th1-cells instead with the use of IgG (immunoglobulin G) that do not lead
to inflammation and allergy symptoms. They also reported that small allergen con-
centrations certainly activate Th2-cells so as IgE (immunoglobulin E) that provokes
degranulation of mast cells and causes acute allergic symptoms. Contrarily, IgG
helps to switch the dominative action of Th2-cells to Th1-cells and slow down IgE
phase of allergic reaction, and hence to reduce the inflammation and hyperactivity.

In this paper, it was established that if contact with the allergen cannot be elimi-
nated, and there is no treatment leading to a full recovery from allergy, the optimal
strategy is to take the highest doses of the antihistamine drugs right away and
then continue it at lower doses for a month. Our future study can look at immune
disorders as characteristic symptoms within a controllable subspace in which the
T -cells, mast cells, IgE and IgG are deterministic components of an information
transmission channel.
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