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The unperturbed stationary problem in our case is given by

(1.3)
d2w0

dx2
+ aw2

0(1− w0)− σ0(x)w0 = 0, x ∈ R.

In the article we will consider the space H2(R) equipped with the norm

(1.4) ∥u∥2H2(R) := ∥u∥2L2(R) +

∥∥∥∥∥d2udx2
∥∥∥∥∥
2

L2(R)

.

By virtue of the standard Sobolev embedding, we have

(1.5) ∥u∥L∞(R) ≤ ce∥u∥H2(R),

where ce > 0 is the constant of the embedding. We first make the following assump-
tion on the parameters of our unperturbed problem along with its solution that we
are going to consider.

Assumption 1.1. Let the constant a > 0 and the function

σ0(x) ∈ C∞(R), limx→±∞σ0(x) = δ > 0.

We also assume that equation (1.3) admits a pulse solution w0(x) > 0, x ∈ R,
satisfying

w0(x) ∈ C∞(R), limx→±∞w0(x) = 0.

Note that it easily follows from Assumption 1.1 that w0(x) ∈ H2(R) since it is
smooth and exponentially decays at the infinities by virtue of the assumption on
σ0(x).

When a perturbation is applied to our stationary problem (1.3), we arrive at

(1.6)
d2w

dx2
+ aw2(1− w)− [σ0(x) + εσ1(x)]w = 0, x ∈ R.

Assumption 1.2. Let the parameter ε ≥ 0 and the nontrivial function

(1.7) σ1(x) ∈ C∞(R), limx→±∞σ1(x) = 0.

We seek solutions of equation (1.6) in the form

(1.8) w(x) = w0(x) + wp(x).

Then, by means of (1.6) along with (1.3), we get

(1.9) L0wp(x) = a(1− 3w0(x))w
2
p(x)− aw3

p(x)− εσ1(x)(w0(x) + wp(x)),

where

(1.10) L0 = − d2

dx2
+ a(3w2

0(x)− 2w0(x)) + σ0(x) : H
2(R) → L2(R).

Under Assumption 1.1, it is easy to see that the essential spectrum of L0 is

(1.11) σess(L0) = [δ,+∞).

If σ0(x) were a constant function on the real line, then the operator L0 would have a

zero mode
dw0

dx
, which easily follows by differentiating both sides of equation (1.3).
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However, in the present article we assume the function σ0(x) to be generic such that
operator (1.10) would have a trivial kernel.

Assumption 1.3. The kernel ker(L0) = {0}.

By means of (1.11) and Assumption 1.3, the operator L−1
0 : L2(R) → H2(R) is

bounded, that is,

(1.12) ∥L−1
0 ∥ <∞.

Let us denote a closed ball in the Sobolev space H2(R) as
(1.13) Bρ := {u ∈ H2(R) | ∥u∥H2(R) ≤ ρ}, ρ > 0.

We look for solutions of problem (1.9) as fixed points of the auxiliary nonlinear
equation

(1.14) L0u(x) = a(1− 3w0(x))v
2(x)− av3(x)− εσ1(x)(w0(x) + v(x)).

For a given function v(x) this is an equation with respect to u(x). We mention that
similar ideas for problems involving non-Fredholm operators in their left sides have
been exploited in [10] and [11]. We introduce the operator T such that u = Tv,
where u is a solution of equation (1.14). Our main result is as follows.

Theorem 1.4. Let Assumptions 1.1, 1.2 and 1.3 hold. Then equation (1.14)
defines the map T : Bρ → Bρ, which is a strict contraction for all 0 < ρ < ρ∗ and
0 < ε < ε∗ for some ρ∗ > 0 and ε∗ > 0. The unique fixed point wp(x) of this map
T is the only solution of problem (1.9) in Bρ such that

(1.15) wp(x) = −εL−1
0 [σ1(x)w0(x)] +O(ε2)

and the resulting solution of equation (1.6) w(x) ∈ H2(R) is given by (1.8).

Note that O(ε2) in the right side of formula (1.15) denotes the terms of the order
ε2 and higher in the H2(R) norm. The proof of Theorem 1.4 is given in the next
section. The existence of solutions of the perturbed equation (1.6) can be studied
using the Implicit Function Theorem.

2. Proof of Theorem 1.4

First of all, we establish the uniqueness of solutions of problem (1.14). Suppose that
there is a v ∈ Bρ such that (1.14) has two different solutions u1, u2 ∈ Bρ. Then
their difference ψ(x) := u1(x)− u2(x) ∈ H2(R) solves the homogeneous problem

(2.1) L0ψ = 0.

By means of Assumption 1.3, equation (2.1) admits only a trivial solution. This
proves the uniqueness of solutions of (1.14).

Next, for arbitrary v(x) ∈ Bρ, we estimate the right side of problem (1.14) in the
absolute value from above by

[a(1 + 3∥w0∥L∞(R))∥v∥L∞(R)+

(2.2) +a∥v∥2L∞(R) + ε∥σ1∥L∞(R)]|v(x)|+ ε∥σ1∥L∞(R)|w0(x)|.
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Note that σ1(x) ∈ L∞(R) due to Assumption 1.2. By means of the Sobolev embed-
ding (1.5), expression (2.2) can be bounded from above by

[a(1 + 3ce∥w0∥H2(R))ce∥v∥H2(R)+

(2.3) +ac2e∥v∥2H2(R) + ε∥σ1∥L∞(R)]|v(x)|+ ε∥σ1∥L∞(R)|w0(x)|.

The fact that v(x) ∈ Bρ yields the upper bound for (2.3) given by

[a(1 + 3ce∥w0∥H2(R))ceρ+

(2.4) +ac2eρ
2 + ε∥σ1∥L∞(R)]|v(x)|+ ε∥σ1∥L∞(R)|w0(x)|.

Therefore, from (1.14) we easily deduce that

∥u∥H2(R) ≤ ∥L−1
0 ∥{[a(1 + 3ce∥w0∥H2(R))ceρ+

(2.5) +ac2eρ
2 + ε∥σ1∥L∞(R)]ρ+ ε∥σ1∥L∞(R)∥w0∥H2(R)}.

Apparently, the estimate

∥L−1
0 ∥{ace(1 + 3ce∥w0∥H2(R))ρ

2+

(2.6) +ac2eρ
3 + ε∥σ1∥L∞(R)(ρ+ ∥w0∥H2(R))} ≤ ρ

can be achieved for all ρ > 0 and ε > 0 small enough. Note that the upper bound
on the values of ε > 0 here will depend on ρ. This means that

(2.7) ∥u∥H2(R) ≤ ρ,

that is, u ∈ Bρ as well. Hence the problem (1.14) defines the map T : Bρ → Bρ for
all ρ > 0 and ε > 0 sufficiently small.

Our goal is to establish that this map is a strict contraction. In fact, let v1,
v2 ∈ Bρ. The argument above gives us u1 = Tv1, u2 = Tv2 ∈ Bρ as well. By means
of equation (1.14) we obtain

(2.8) L0u1(x) = a(1− 3w0(x))v
2
1(x)− av31(x)− εσ1(x)(w0(x) + v1(x)),

(2.9) L0u2(x) = a(1− 3w0(x))v
2
2(x)− av32(x)− εσ1(x)(w0(x) + v2(x)).

Formulas (2.8) and (2.9) give us

L0(u1(x)− u2(x)) = (v1(x)− v2(x)){a(1− 3w0(x))(v1(x) + v2(x))−

(2.10) −a(v21(x) + v1(x)v2(x) + v22(x))− εσ1(x)}.
We estimate the right side of equality (2.10) from above in the absolute value by

|v1(x)− v2(x)|{a(1 + 3∥w0∥L∞(R))(∥v1∥L∞(R) + ∥v2∥L∞(R))+

(2.11) +a(∥v1∥2L∞(R) + ∥v1∥L∞(R)∥v2∥L∞(R) + ∥v2∥2L∞(R)) + ε∥σ1∥L∞(R)}.

With the help of the Sobolev embedding (1.5), expression (2.11) can be bounded
from above by

|v1(x)− v2(x)|{ace(1 + 3ce∥w0∥H2(R))(∥v1∥H2(R) + ∥v2∥H2(R))+

(2.12) +ac2e(∥v1∥2H2(R) + ∥v1∥H2(R)∥v2∥H2(R) + ∥v2∥2H2(R)) + ε∥σ1∥L∞(R)}.
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The fact that v1, v2 ∈ Bρ gives us the upper bound for (2.12) as

(2.13) |v1(x)− v2(x)|{2ace(1 + 3ce∥w0∥H2(R))ρ+ 3ac2eρ
2 + ε∥σ1∥L∞(R)}.

Therefore, by means of (2.10) we arrive at

∥u1 − u2∥H2(R) ≤ ∥L−1
0 ∥{2ace(1 + 3ce∥w0∥H2(R))ρ+

(2.14) +3ac2eρ
2 + ε∥σ1∥L∞(R)}∥v1 − v2∥H2(R).

Evidently, the bound

(2.15) ∥L−1
0 ∥{2ace(1 + 3ce∥w0∥H2(R))ρ+ 3ac2eρ

2 + ε∥σ1∥L∞(R)} < 1

can be attained for all ρ > 0 and ε > 0 sufficiently small. Therefore, the map
T : Bρ → Bρ defined by equation (1.14) is a strict contraction. Its unique fixed point
wp(x) is the only solution of problem (1.9) in the ball Bρ. Note that the function
wp(x) is nontrivial for ε > 0, which easily follows from equation (1.9), since by means
of Assumptions 1.1 and 1.2 the intersection of supports suppσ1(x) ∩ suppw0(x) is
a set of nonzero Lebesgue measure on the real line. Clearly, the resulting solution
w(x) of problem (1.6) given by formula (1.8) belongs to H2(R). Let the radius of
the ball Bρ be small enough, namely,

(2.16) ρ < ∥w0∥H2(R).

Then by means of (1.8) along with (2.16) via the triangle inequality we have

(2.17) ∥w∥H2(R) ≥ ∥w0∥H2(R) − ∥wp∥H2(R) ≥ ∥w0∥H2(R) − ρ > 0

and hence w(x) is nontrivial as well.
Finally, we finish the proof by obtaining the asymptotics for the function wp(x)

to the leading order in the parameter ε. Clearly, (1.9) yields

wp(x) = L0
−1[a(1− 3w0(x))w

2
p(x)−

(2.18) −aw3
p(x)− εσ1(x)wp(x)]− εL0

−1[σ1(x)w0(x)].

Apparently, the leading term in the small parameter ε in the right side of (2.18) is
given by

(2.19) −εL0
−1[σ1(x)w0(x)].

Clearly, (2.19) can be estimated from above in the H2(R) norm by

(2.20) ε∥L−1
0 ∥∥σ1(x)∥L∞(R)∥w0(x)∥H2(R) <∞

under Assumptions 1.1 and 1.2 along with (1.12). Evidently, we have the upper
bound

|a(1− 3w0(x))w
2
p(x)− aw3

p(x)− εσ1(x)wp(x)| ≤ a(1 + 3∥w0∥L∞(R))×

(2.21) ×∥wp∥L∞(R)|wp(x)|+ a∥wp∥2L∞(R)|wp(x)|+ ε∥σ1∥L∞(R)|wp(x)|.

By means of the Sobolev embedding (1.5), the right side of inequality (2.21) can be
estimated from above by

[ace(1 + 3ce∥w0∥H2(R))∥wp∥H2(R)+
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(2.22) +ac2e∥wp∥2H2(R) + ε∥σ1∥L∞(R)]|wp(x)|.

Therefore, the remaining term in the right side of (2.18) can be bounded from above
in the H2(R) norm by

∥L−1
0 ∥[ace(1 + 3ce∥w0∥H2(R))∥wp∥H2(R)+

(2.23) +ac2e∥wp∥2H2(R) + ε∥σ1∥L∞(R)]∥wp∥H2(R) = O(ε2),

namely, the identity (1.15) holds. □

Remark 2.1. We believe that the similar techniques can be used to generalize the
results of the present article to the multidimensional equations analogous to (1.6)
and to the systems of equations of this kind.
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