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where C > 0 and

(1.5) 0 ≤ p <
d+ 2

d
.

It is well known (see, e.g., [8], [11]) that, for each x ∈ L2(O), equation (1.1) has a
unique strong solution X ∈ L2(Ω;C([0, T ];L2(O))∩L2((0, T )×Ω;H1

0 (O)). (Sharper
results are given in [1].) Here we shall study equation (1.1) in the case where the
initial data x is a bounded Radon measure on O (for instance, a Dirac measure δ or
a linear combination of Dirac measures). This case is delicate because one cannot
expect for (1.1) a strong solution in such a situation, but only a weak solution of
distributional type. In the deterministic case, such a result was first obtained by H.
Brezis and A. Friedman [4] and it is known that condition (1.5) is maximal.

As regards the stochastic parabolic equations with measure initial data by our
knowledge only the case of linear heat equations with Lipschitzian multiplicative
noise was studied so far. (See [6], [7].)
Notation. Lq(O), Lq(Q)), 1≤ q ≤∞, are standard spaces of q-integrable Lebesgue
functions onO and, respectively, Q norms |·|q. Denote by C(O) the space of continu-

ous functions on the closure O of O and by C0(O) = C0

the space {y ∈ C(O); y = 0 on ∂O}. By C1,2
0 (Q) denote the space

{y ∈ C(Q); ∂y∂t ,
∂y
∂xi
, ∂2y
∂xi∂xj

∈ C(O); i, j = 1, ..., d on Σ}. By D′(Q) denote the

space of distributions on Q, that is, the dual of C∞
0 (Q). W 1,q

0 (O) =W 1,q
0 , 1 ≤

q ≤ ∞, is the Sobolev space {y ∈ Lq(O); ∂y
∂xi

∈ Lq(O), i = 1, ..., d} with the dual

W−1,q′(O), 1
q + 1

q′ = 1. Mb(O) = Mb is the space of bounded Radon measures on

O, that is, the dual (C0(O))∗ of the space C0(O) = C0. Given a Banach space Z,
we denote by C([0, T ];Z) the space of all continuous functions u : [0, T ] → Z and
by Lp(0, T ;Z), 1 ≤ p ≤ ∞, the space of Bochner p-integrable Z-valued functions on
[0, T ]. The norm of the Banach space Z will be denoted by ∥ · ∥Z and the duality

functional between Z and the dual space Z∗ by Z∗ ⟨·, ·⟩Z . We set also yt =
∂y
∂t .

2. The main result

We begin with the definition of the weak solution for equation (1.1) with initial
data x ∈ Mb(O). We denote by (Ft)t≥0 the natural filtration corresponding to W .

Definition 2.1. The process X : [0, T ] → L1(O) is said to be a weak solution to
equation (1.1) if X is (Ft)t≥0-adapted and the following conditions hold.

(2.1) X ∈ C([0, T ];L1(O)), P-a.s.,

(2.2) lim
t→0

∫
O
X(t, ξ)ψ(ξ)dξ = Mb

⟨x, ψ⟩C0
, ∀ψ ∈ C0,

(2.3)

∫
Q
X(t, ξ)(Xt(t, ξ) + ∆X (t, ξ)dt dξ =

∫
Q
φ(X(t, ξ)))X (t, ξ))dt dξ

−
∫
Q
X (t, ξ)X(t, ξ)dW (t)− Mb

⟨x,X (0)⟩C0
,

∀X ∈C2,1
0 (Q),X (T, 0) = 0,
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(2.4) φ(X) ∈ L1(Q), P-a.s.,

(2.5) E
∫ T

0

∫
O
|X(t, ξ)|2dt dξ <∞.

We note that under the above conditions on X the Itô integral arising in (2.3) is
well defined.

We note that, if X is a strong solution to equation (1.1) (which is the case if
x ∈ L2(O)), then conditions (2.1)–(2.5) automatically hold.

Theorem 2.2 which follows is the main result.

Theorem 2.2. Under hypotheses (i), (ii), for each x ∈ Mb(O), there is a unique
weak solution X to (1.1), which satisfies

(2.6) E
∫ T

0
∥X(t)∥p

W 1,q
0

dt ≤ C∥x∥pMb
,

where q ∈
[
1, pd

(p−1)d+p

)
. If x ∈ L1(O), then X ∈ ([0, T ];L1(O)).

It follows by (2.1)-(2.2) that the solution X is Mb-valued continuous on [0, T ],
where Mb = Mb(O) is endowed with the standard weak-star topology. On the
other hand, it follows that, on (0, T ], t → X(t) is L1(O)-valued continuous P-a.s.
As mentioned earlier, the standard example is that where x is the Dirac mass.

3. Proof of Theorem 2.2

By the transformation

X = eW y

one reduces equation (1.1) to the random parabolic equation (see, e.g., [1])

(3.1)

∂y

∂t
− e−W∆(eW y) + e−W η(eW y) + µy = 0 in D′(Q),

y(0, ·) = x in O,
y(t, ξ) = 0 on Σ,

where

µ(ξ) =
1

2

∞∑
j=1

µ2je
2
j (ξ), ξ ∈ O.

Equivalently,

(3.1)′

∂y

∂t
−∆y + ay + b · ∇y + e−Wφ(eW y) = 0 in D′(Q),

y(0, ·) = x in O,
y = 0 on Σ,

where
a(t, ξ) = µ(ξ)− e−W∆(eW ),

b(t, ξ) = −2∇W (t, ξ).
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We fix ω ∈ Ω and treat (3.1) (or, equivalently, (3.1)′) as a parabolic equation in
Q = (0, T )×O. Our main purpose here is to prove the existence of a solution y to
(3.1)′ for x ∈ Mb(O).

Taking into account hypotheses (i)–(ii) and the fact that the operator z → −∆z+
η(z) is monotone, coercive and bounded from V = H1

0 (O) to V ′ = H−1(O), we infer
(see Theorem 1 in [1]) that (3.1) has, for each x ∈ L2(O), a unique (Ft)t≥0-adapted
solution y : [0, T ]×O × Ω → R which satisfies

(3.2)
y ∈ L2((0, T )× Ω;H1

0 (O)),
∂y

∂t
∈ L2((0, T )× Ω;H−1(O))

y ∈ C([0, T ];L2(O)), ∀ω ∈ Ω.

We also have

Lemma 3.1. The following estimates hold P-a.s., ω ∈ Ω,

(3.3) ∥y∥L∞(0,T ;L1(Q)) + ∥e−Wφ(eW y)∥L1(Q) + ∥y∥pLp(Q) ≤ C1(ω)|x|1,

(3.4) ∥y∥Lr(0,T ;W 1,q(O)) ≤ C2(ω)|x|1,

where Ci ∈ Lℓ(Ω), i = 1, 2, ∀ℓ ≥ 1, and

(3.5) 1 ≤ r, q <∞;
2

r
+
d

q
> d+ 1.

Proof. Estimate (3.3) follows in a standard way by multiplying equation (3.1)′ by
sgn y or, more precisely, by ζ(y), where ζ is a smooth approximation of the signum
function

sgn y =
y

|y|
for y ̸= 0, sgn 0 = 0,

and integrating on Q. Taking into account that ∂
∂t |y| = yt sgn y and

−
∫
O
∆y sgn y dξ ≥ 0, φ(eW y)sgn y = |φ(eW y)|,

we get via Gronwall’s lemma that (3.3) holds.
To get (3.4), we shall use a duality argument first used in [5] (see also [2]). Namely,

we rewrite (3.1)′ as

(3.6)

∂y

∂t
−∆y + ay + b · ∇y = f

def
== e−Wφ(eW y) in Q,

y(0) = x in O,
y = 0 on Σ,

and consider the backward linear parabolic equation

(3.7)

∂z

∂t
+∆z − az + div(bz) = div h in Q,

z(T ) = 0 in O,
z = 0 on Σ,
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where h = {hi}di=1 ∈ (C∞(O))d. Equation (3.7) has, for each such h, a unique

solution z ∈ L2(0, T ;H1
0 (O)∩H2(O)) with ∂z

∂t ∈ L2(Q). Moreover, we have (see [9],
Theorem III 7.1, p. 181) that z ∈ L∞(Q) and

∥z∥L∞(Q) ≤ C3(ω)∥h∥(Ls(0,T ;W 1,ℓ
0 (O)))d

,

where
2

s
+
d

ℓ
< 1, 1 < s, ℓ <∞,

and

(3.8) 0 ≤ C3(ω) ≤ C(sup{|W (t, ξ)|; (t, ξ) ∈ Q}+ 1).

If multiply (3.6) by z and take into account (3.3), (3.7), we get∫
Q
y div h dξ dt =

∫
Q
f z dt dξ ≤ C3∥f∥L2(Q)∥h∥(Ls(0,T ;W 1,ℓ))d

≤ C3C1|x|1
d∑

j=1

∥hi∥Ls(0,T ;W 1,ℓ
0 )

.

By duality, this yields (3.4), (3.5) as claimed. □

Proposition 3.2. Let x ∈ Mb. Then there is a unique (Ft)t≥0-adapted process
y : [0, T ] → L1(O) which satisfies

(3.9)

∫
Q
(y(Xt + eW∆(e−WX )− µX )− e−Wφ(eW y)X )dt dξ

= −Mb
⟨x,X (0)⟩C0

, ∀X ∈ C2,1
0 (Q), X (T ) = 0,

(3.10) y ∈ L∞(0, T ;L1(O)) ∩ C((0, T ];L1(O)) ∩ Lp(0, T ;W 1,q
0 ),

(3.11) lim
t→0

∫
O
y(t, ξ)ψ(ξ)dξ = Mb

⟨x, ψ⟩C0
, ∀ψ ∈ C0,

(3.12) E
∫
Q
|φ(eW y)|dt dξ <∞,

(3.13) E
∫
Q
|y(t, ξ)|2dt dξ <∞,

where q ∈
[
1, pd

(p−1)d+p

)
. Moreover, estimates (3.3), (3.4) hold and, if x ∈ L1(O),

then y ∈ C([0, T ];L1(O)). Such a function is called the weak solution to (3.1).

Proof. We fix x ∈ Mb and consider a sequence {xn} ⊂ L2(O) such that, for n→ ∞,
xn → x weak-star in Mb, that is,

(3.14) lim
n→∞

∫
O
xnX dξ = Mb

⟨x,X⟩C0
, ∀X ∈ C0,

(3.15) lim sup
n→∞

|xn|1 ≤ ∥x∥Mb
.
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Let yn ∈ C([0, T ];L2(O))∩L2(0, T ;H1
0 (O))∩W 1,2([0, T ];H−1(O)) be the corres-

ponding solution to equation (3.1)′. By Lemma 3.1, we have

∥yn∥L∞(0,T ;L1(O)) + ∥yn∥Lp(0,T ;W 1,q
0 (O))

+ ∥e−Wφ(eW yn)∥L1(Q) ≤ C(ω)|xn|1, C ∈
⋂
q>1

Lq(Ω),

and, therefore,

(3.16)
lim sup
n→∞

{
∥yn∥L∞(0,T ;L1(O)) + ∥yn∥Lp(0,T ;W 1,q

0 (O))

+∥e−Wφ(eW yn)∥L1(Q)

}
≤ C(ω)∥x∥Mb

for

(3.17)
2

p
+
d

q
> d+ 1.

Recalling that by the Rellich–Kondrachov theorem (see, e.g., [3], p. 285) W 1,q
0 (O)

is compactly embedded in Lp∗(O) for 1 < p∗ < dq
d−q , it follows by (3.17) that we

have

(3.18) W 1,q
0 (O) ⊂ Lp(O), for 1

q <
1
d − 1

p

with dense and compact embedding. In particular, it follows by (1.4), (3.16), (3.18)
that there is α ∈ (1,∞) such that

(3.19) lim sup
n→∞

∥e−Wφ(eW yn)∥Lα(0,T ;Lα(O)) <∞

and

(3.20) lim sup
n→∞

∥e−W∆(eW yn)∥Lp(0,T ;W−1,q′ (O)) <∞,

where 1
q′ = 1− 1

q . By (1.1), we also have

(3.21) lim sup
n→∞

∥∥∥∥∂yn∂t
∥∥∥∥
Lα(0,T ;Lα(O)+W−1,q′ (O))

<∞.

Taking into account that

W 1,q
0 (O) ⊂ Lp(O) ⊂ Lα(O) +W−1,q′(O)

with the compact embedding of W 1,q
0 (O) into Lp(O), it follows by estimates (3.16),

(3.21) that the sequence {yn}∞n=1 is compact in Lp(0, T ;Lp(O)) = Lp(Q) (see The-
orem 5.1 in [10], Chapter 2).

Hence, on a subsequence, again denoted {n}, we have

(3.22) yn −→ y strongly in Lp(Q) weakly in Lp(0, T ;W 1,q
0 (O))

(3.23) e−Wφ(eW yn) −→ e−Wφ(eW y) strongly in L1(Q)

(3.24)
dyn
dt

−→ dy

dt
in D′(Q)

(3.25) e−W∆(eW yn) −→ e−W∆(eW y) weakly in Lp(0, T ;W−1,q
0 (O)).
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Moreover, multiplying the equation

(3.26)

∂yn
∂t

− e−W∆(eW yn) + e−Wnφ(eW yn) + µ, yn(0) = xn in O,

yn = 0 on Σ,

by X ∈ C2,1
0 (Q) with X (T ) = 0 and integrating on Q, it follows by (3.23), (3.25)

that y satisfies equation (3.9).
By estimates (3.16) and by (3.23), (3.24), it is also clear that y satisfies (3.10),

(3.12), (3.13). (In fact, the later is implied by (3.16) if one takes into account that,

under our conditions on q, it follows that W 1,q
0 (O) ⊂ L2(O).)

It remains to prove Mb(O)-continuity condition (3.11). To this end, we note that
by (3.26), written as (3.1)′ with y = yn, we have

(3.27)
yn(t) = S(t)xn −

∫ t

0
S(t−s)(ayn(s)+b · ∇yn(s)+e−Wφ(eW yn(s)))ds,

t ∈ [0, T ],

where S(t) is the C0-semigroup on L1(O) generated by the operator ∆ with the
domain {y ∈ L1(O);∆y ∈ L1(O) = 0 on ∂O}.

By (3.22), (3.23), it follows that

(3.28)

∫
O
y(t, ξ)ψ(ξ)dξ = lim

n→∞

{∫
O
S(t)xn(ξ)ψ(ξ)dξ

−
∫ t

0
ds

∫
O
S(t−s)(ayn(s, ξ)+b · ∇yn(s, ξ)+e−Wφ(eW yn(s, ξ)))ψ(ξ)dξ

}
= Mb

⟨S∗(t)x, ψ⟩C0

−
∫ t

0
ds

∫
O
S(t− s)(ay(s, ξ) + b · ∇y(s, ξ) + e−Wφ(eW y(s, ξ)))ψ(s)dξ,

∀ψ ∈ C0(O),

where S∗(t) : Mb(O) → Mb(O) is the dual of the semigroup S(t). We note that
S is not a continuous semigroup on Mb(O) but it is, however, continuous in t with
respect to the weak-star topology of Mb(O). (See [12], p. 39.) Then, by (3.28), it
follows that

lim
t→0

∫
O
y(t, ξ)ψ(ξ)dξ = Mb

⟨x, ψ⟩C0
, ∀ψ ∈ C0,

as claimed.
Taking into account that, by (3.27), we have

y(t) = S∗(t)x−
∫ t

0
S(t− s)(ay(s) + b · ∇y(s) + e−Wφ(eW y(s)))ds, ∀t ∈ [0, T ],

and that S∗(t) = S(t) on (0,∞), it follows also that, if x ∈ L1(O), then y ∈
C([0, T ];L1(O)). Since yn are (Ft)t≥0-adapted and, as shown below, the limit y is
itself an (Ft)t≥0-adapted. This completes the proof of the existence.
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Uniqueness. Let y1, y2 be two weak solutions satisfying (3.10)–(3.12). We set
z = y1 − y2 and g = e−W (φ(eW y1)− φ(eW y2)). By (3.9),

(3.29)

∫
Q
z(Xt +∆X − aX + div(bX ))dt dξ = −

∫
Q
gX dt dξ,

∀X ∈ C2,1
0 (Q), X (T ) = 0.

Formally, we see by (3.29) that, for X = sgn z, we get

|z(t)|1 ≤ C

∫ t

0
|z(t)|1ds,

that is, z ≡ 0, because∫
Q
∆z sgn z ≤ 0,

∫
Q
g sgn z dt dξ ≥ 0,

by monotonicity of g, and a, b are smooth and bounded. This heuristic (formal)
argument can be transformed in a rigorous one as in [3] if one take X = ζε(zε),
where ζε is a smooth approximation of the signum function and zε is a smooth
approximation of z. The details are omitted. □
Proof of Theorem 2.2. Let y be the weak solution to equation (3.1) given by Propo-
sition 3.2. By the uniqueness of the solution y, it follows that the sequence {yn}
arising in (3.22)–(3.25) is independent on ω ∈ Ω and, since yn is (Ft)t≥0-adapted, it
follows that y is (Ft)t≥0-adapted, too. Taking into account that by the Itô formula
we have (see [1])

d(eW y) = eWdy + eW y dW + µeW ,

we get

eW y dX = d(eW yX )−X eWdy −X eW y dW − µX eW y, ∀X ∈ C2,1
0 (Q),

and substituting in (3.9), it follows that X satisfies (2.3). As regards (2.1), (2.2),
(2.4), (2.5), these follow by the corresponding properties of y given in Proposition
3.2. The uniqueness of the solution X follows as in the previous case by choosing
an appropriate function X in (2.3). This completes the proof. □
Remark 3.3. Theorem 2.2 extends mutatis mutandis to equation (3.1) with addi-
tive Gaussian noise, that is,

(3.30)
dX −∆X dt+ φ(X)dt = dW in (0, T )×O,
X(0) = x in O, X = 0 on Σ.

Indeed, by the substitution y = X −W , one reduces equation (3.30) to the random
parabolic equation

(3.31)
yt −∆y + φ(y +W ) = ∆W in (0, T )×O,
y(0) = x in O, y = 0 on Σ.

The treatment of equation (3.31) is similar to that of equation (3.1) if one takes
into account that ∆W,φ(W ) are regular and φ is monotonically nondecreasing.
So, proceeding as above, one proves that (3.30) has, under assumptions (i), (ii), a
unique weak solution X but we omit the details.



STOCHASTIC SEMILINEAR PARABOLIC EQUATIONS 255

Remark 3.4. Inspecting the proof, we see that Theorem 2.2 remains true if φ is
merely a maximal monotone (multivalued) graph in R satisfying the growth con-
ditions (1.4)-(1.5). In particular, it is true for discontinuous monotonically nonde-
creasing functions φ of the form

φ(r) =

m∑
i=1

aiH(r − ri)φi(r), ∀r ∈ R,

where φi satisfy condition (1.4), ai ≥ 0, {ri}mi=1 ⊂ R, andH is the Heviside function.
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