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is imposed on f (z, .) . Under these general conditions, we produce two constant
sign smooth solutions for problem (1.1) . This way, we extend Theorem 1 of Zhang-
Liang [27], where the authors produce a positive solution (without any regularity
claim) under considerable more restrictive conditions on the reaction term f (z, x) .
Then by strengthening the hypotheses on f (z, .) (we assume that for a.a. z ∈ Ω,
f (z, .) ∈ C1 (R)) and by using tools from the theory of critical groups (Morse
theory), we generate a third nontrivial smooth solution.

Three solutions theorems for Dirichlet p−Laplacian equations were proved by
Gasinski-Papageorgiou [11], Guo-Liu [12], Liu [17], Liu-Liu [18], Papageor-giou-
Papageorgiou [19], using a sign condition on the reaction. For (p, 2)-equations
there have been various recent multiplicity results, but for different settings. We
mention the works of Aizicovici-Papageorgiou-Staicu [2], [3], [4], Liang-Han-Li [14],
Papageorgiou-Rădulescu [20], Papageorgiou-Vetro-Vetro [22], Papageorgiou-Winkert
[23], Sun [25], Sun-Zhang-Su [26].

2. Mathematical background

Let X be a Banach space and X∗ be its topological dual. By ⟨., .⟩ we denote the

duality brackets for the pair (X∗, X) . Also
w−→ will designate weak convergence in

X.
The main spaces in the analysis of problem (1.1) are the Sobolev space W 1,p

0 (Ω)

and the Banach space C1
0 (Ω). By ∥.∥ we will denote the norm ofW 1,p

0 (Ω). According
to the Poincaré inequality (see, Gasinski-Papageorgiou [9], p.216), we can say that

∥u∥ = ∥Du∥p for all u ∈W 1,p
0 (Ω).where ∥.∥p stands for the Lp-norm.

The Banach space C1
0 (Ω) =

{
u ∈ C1

(
Ω
)
: u (z) = 0 for all z ∈ ∂Ω

}
is ordered

with positive (order) cone

C+ =
{
u ∈ C1

0

(
Ω
)
: u (z) ≥ 0 for all z ∈ Ω

}
.

This cone has a nonempty interior given by

intC+ =

{
u ∈ C+ : u (z) > 0 for all z ∈ Ω,

∂u

∂n
= (Du, n)RN < 0 on ∂Ω

}
,

where n (.) is the outward unit normal on ∂Ω.

Recall that a function φ ∈ C1
(
W 1,p

0 (Ω)
)
is said to satisfy the Cerami condition

(C-condition, for short) if the following property holds:

”every sequence {un}n≥1 ⊆W 1,p
0 (Ω) such that {φ (un)}n∈N ⊂ R is bounded and

(1 + ∥un∥)φ′ (un) → 0 in X∗as n→ ∞
admits a strongly convergent subsequence”.

For r ∈ (1,∞) , by Ar : W 1,r
0 (Ω) → W−1,r′(Ω) :=

(
W 1,r

0 (Ω
)∗

(1r +
1
r′ = 1), we

denote the nonlinear map defined by

(2.1) ⟨Ar (u) , h⟩ =
∫
Ω
|Du|r−2 (Du,Dh)RN dz for all u, h ∈W 1,r

0 (Ω) .

When r = 2, then we write A2 = A ∈ L
(
H1

0 (Ω),H
−1
0 (Ω)

)
. The next lemma

summarizes the main properties of Ar (see [9]).
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Lemma 2.1. The map Ar : W 1,r
0 (Ω) → W−1,r′(Ω) defined by (2.1) is bounded

(that is, maps bounded sets to bounded sets), continuous, strictly monotone (hence
maximal monotone, too), and of type (S)+, that is, for every sequence {un}n≥1 ⊆ X

such that un
w−→ u and

lim sup
n→∞

⟨Ar (un) , un − u⟩ ≤ 0,

one has

un → u in W 1,r
0 (Ω) as n→ ∞.

We will also use the spectra of
(
−∆p,W

1,p
0 (Ω)

)
and of

(
−∆,H1

0 (Ω)
)
. So, we

consider the following nonlinear eigenvalue problem:

(2.2) −∆ru (z) = λ̂ |u (z)|r−2 u (z) in Ω, u |∂Ω= 0 (1 < r <∞) .

We say that λ̂ ∈ R is an eigenvalue for problem (2.2) , if there exists a nontrivial

solution û ∈ W 1,p
0 (Ω), known as an eigenfunction corresponding to λ̂. The set of

eigenvalues of (2.2) is denoted by σ̂ (r) .

We know that problem (2.2) admits a smallest eigenvalue λ̂1 (r) > 0 which has
the following properties:

(a) λ̂1 (r) is isolated (that is, there exists ε > 0 such that there are no eigenvalues

in
(
λ̂1 (r) , λ̂1 (r) + ε

)
);

(b) λ1 (r) is simple (that is, if û, v̂ ∈W 1,r
0 (Ω) are eigenfunctions corresponding

to λ̂1 (r) , then û = ξv̂ with ξ ∈ R\ {0});
(c) One has

(2.3) λ̂1 (r) = inf

{
∥Du∥rr
∥u∥rr

: u ∈W 1,r
0 (Ω) , u ̸= 0

}
> 0.

In (2.3) the infimum is achieved on the corresponding one-dimensional eigenspace
(see (b)). The elements of this eigenspace do not change sign. By û1 (r) we de-
note the positive Lr− normalized (that is, ∥û1 (r)∥r = 1) positive eigenfunction

corresponding to λ̂1 (r) . The nonlinear regularity theory and the nonlinear maxi-
mum principle (see, for example, Gasinski-Papageorgiou [9], pp.737-738) imply that
û1 (r) ∈ int C+. These properties lead to the following straightforward lemma (see
Gasinski-Papageorgiou ( [10], Problem 5.67, p.857).

Lemma 2.2. If ξ ∈ L∞ (Ω) , ξ (z) ≤ λ̂1 (r) for a.a.z ∈ Ω, ξ ̸= λ̂1 (r), then

∥Du∥rr −
∫
Ω
ξ (z) |u (z)|r dz ≥ C0 ∥u∥r for some C0 > 0, all u ∈W 1,r

0 (Ω) .

The Lyusternik-Schnirelmann minimax scheme (see Gasinski-Papageorgiou [9],

Section 5.5) generates a whole strictly increasing sequence
{
λ̂k (r)

}
k≥1

of eigenval-

ues of (2.2) such that λ̂k (r) → +∞ as k → ∞. These eigenvalues are known as
variational eigenvalues. We do not known if this sequence exhausts the spectrum
of (2.2) .
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Here we will use the variational eigenvalues obtained by using in the Lyusternik-
Schnirelmann scheme, the Fadell-Rabinowitz cohomological index denoted by ind (·)
(see [8]). We mention that if û is an eigenfunction corresponding to any eigenvalue

λ̂ ̸= λ̂1 (r) , then û ∈ C1
0

(
Ω
)
and û is nodal (that is, sign changing).

If r = 2, then {λ̂k (2)}k≥1 exhausts the spectrum, all eigenvalues have finite

dimensional eigenspaces E(λ̂k (2)) ⊆ C1
0 (Ω) and

H1
0 (Ω) =

⊕
k≥1

E
(
λ̂k (2)

)
(orthogonal direct sum).

We will also use a weighted version of (2.2) . So, let η ∈ L∞ (Ω) , η (z) ≥ 0 for
a.a.z ∈ Ω, η ̸= 0, and consider the following nonlinear eigenvalue problem

(2.4) −∆ru (z) = λ̃η (z) |u (z)|r−2 u (z) in Ω, u |∂Ω= 0.

The same results can be deduced for (2.4) and in this case the variational char-

acterization of the principal eigenvalue λ̃1 (r,m) > 0 is

(2.5) λ̃1 (r, η) = inf

{
∥Du∥rr∫

Ω η (z) |u (z)|
r dz

: u ∈W 1,r
0 (Ω) , u ̸= 0

}
.

Again the infimum in (2.5) is realized on the corresponding one dimensional
eigenspace. As before by û1 (r, η) ∈ int C+ we denote the positive, Lr− normalized

eigenfunction corresponding to λ̃1 (r, η) > 0. The aforementioned properties lead

easily to the following strict monotonicity property of the map η → λ̃1 (r, η):

Lemma 2.3. If η1, η2 ∈ L∞ (Ω) , 0 ≤ η1 (z) ≤ η2 (z) for a.a.z ∈ Ω , η1 ̸= 0,
η2 ̸= η1, then

λ̃1 (r, η2) < λ̃1 (r, η1) .

Now let us recall some basic facts about critical groups. So, let X be a Banach
space, φ ∈ C1 (X,R) and c ∈ R. We introduce the following sets:

φc = {u ∈ X : φ (u) ≤ c} ,
Kφ =

{
u ∈ X : φ′ (u) = 0

}
(the critical set of φ),

and

Kc
φ = {u ∈ Kφ : φ (x) = c} .

Also, given a topological pair (Y1, Y2) with Y2 ⊂ Y1 ⊂ X and k ∈ N0, by
Hk (Y1, Y2) we denote the k

th- relative singular homology group for the pair (Y1, Y2)
with integer coefficients.

Now, if u ∈ Kc
φ is isolated, then the critical groups of φ at u are defined by

Ck (φ, u) = Hk (φ
c ∩ U, (φc ∩ U) \ {u}) for all k ∈ N0.

Here U is an isolating neighborhood of u, that is, Kφ ∩ φc ∩ U = {u} . The
excision property of singular homology implies that this definition of critical groups
is independent of the choice of the isolating neighborhood U .
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If φ ∈ C1 (X,R) satisfies the C−condition and inf φ (Kφ) > −∞, then we can
define the critical groups of φ at infinity by

Ck (φ,∞) = Hk (X,φ
c) for all k ∈ N0 and with c < inf φ (Kφ) .

This definition is independent of the choice of the level c < inf φ (Kφ) (see
Papageorgiou-Rădulescu-Repovs [21], p.402). If Kφ = {u0} , then Ck (φ,∞) =
Ck (φ, u0) for all k ∈ N0. Also, if Ck0 (φ,∞) ̸= 0, then we can find u0 ∈ Kφ such
that Ck (φ, u0) ̸= 0.

Finally, let us outline some basic notation. If x ∈ R, then we set x± = max {±x, 0}
and then for u ∈W 1,p

0 (Ω) , we define u± (.) = u (.)± . We know that

u± ∈W 1,p
0 (Ω) , u = u+ − u− and |u| = u+ + u−.

Given a measurable function g : Ω×R →R (for example a Carathéodory function),
by Ng (·) we denote the Nemytski (superposition) map corresponding to g, that is,

Ng (u) (·) = g (·, u (·)) for all u ∈W 1,p
0 (Ω) .

By |·|N we denote the Lebesgue measure on RN , by σ (p) ⊆ (0,∞) the spectrum

of
(
−∆p,W

1,p
0 (Ω)

)
, and by δk,m the Kronecker symbol, defined by

δk,m =

{
1 if k = m,
0 if k ̸= m,

where k, m ∈ N0.

3. Solutions of constant sign

In this section we produce two constant sign smooth solutions for problem (1.1)
(a positive solution and a negative solution). The hypotheses on the reaction f (z, x)
are the following:

(Hf )1 : f : Ω × R →R is a Carathéodory function such that f (z, 0) = 0 for a.a.
z ∈ Ω and
(i) there exists a function a ∈ L∞ (Ω) such that

|f (z, x)| ≤ a (z)
(
1 + |x|p−1

)
for a.a. z ∈ Ω, all x ∈ R ;

(ii) there exists η ∈ L∞ (Ω) such that

η (z) ≥ λ̂1 (p) for a.a. z ∈ Ω, η ̸= λ̂1 (p) ,

lim inf
x→±∞

f (z, x)

|x|p−2 x
≥ η (z) uniformly for a.a. z ∈ Ω;

(iii) there exists a function θ ∈ L∞ (Ω) such that

θ (z) ≤ λ̂1 (2) for a.a. z ∈ Ω, θ ̸= λ̂1 (2) ,

lim sup
x→0

f (z, x)

x
≤ θ (z) uniformly for a.a. z ∈ Ω.

Remark. We stress that no global sign condition is imposed on f (z, ·) , in con-
trast to most works in the literature producing solutions with fixed signs (see the
references mentioned in the Introduction).
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Proposition 3.1. If hypotheses (Hf )1 hold, then problem (1.1) has at least two
nontrivial constant sign solutions u0 ∈ int C+ and v0 ∈ −int C+.

Proof. Let F (z, x) =
∫ x
0 f (z, s) ds and consider the the C1-functional φ+ :W 1,p

0 (Ω) →
R defined by

φ+ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω
F
(
z, u+

)
dz for all u ∈W 1,p

0 (Ω) .

Hypotheses (Hf )1 (i) , (iii) imply that given ε > 0, we can find Cε > 0 such that

(3.1) F (z, x) ≤ 1

2
[θ (z) + ε]x2 + Cε |x|p for a.a. z ∈ Ω, all x ∈ R .

Then, for u ∈W 1,p
0 (Ω) , we have

φ+ (u) ≥ 1

2

[
∥Du∥22 −

∫
Ω
θ (z)u2dz − ε ∥u∥2

]
− C1 ∥u∥p

for some C1 = C1 (ε) (see (3.1) )

≥ 1

2
[C2 − ε] ∥u∥2 − C1 ∥u∥p

for some C2 > 0 (see Lemma 2.2).

Choosing ε ∈ (0, C2) , we obtain

(3.2) φ+ (u) ≥ C3 ∥u∥2 − C1 ∥u∥p for some C3 > 0, all u ∈W 1,p
0 (Ω) .

Since p > 2, from (3.2) it follows that there exists ρ ∈ (0, 1) small such that

(3.3) φ+ (u) > 0 = φ+ (0) for all u with 0 < ∥u∥ ≤ ρ.

Hypotheses (Hf )1 (i) , (ii) imply that given ε > 0, we can find Ĉε > 0 such that

F (z, x) ≥ 1

p
[η (z)− ε] |x|p − Ĉε for a.a. z ∈ Ω, all x ∈ R .

Then for t > 0, we have

φ+ (tû1 (p))

=
tp

p
∥Dû1 (p)∥pp +

t2

2
∥Dû1 (p)∥22 −

∫
Ω
F (z, tû1 (p)) dz

≤ tp

p
λ̂1 (p) +

t2

2
∥Dû1 (p)∥22 −

tp

p

∫
Ω
η (z) û1 (p)

p dz +
εtp

p
+ C4

for some C4 = C4 (ε) > 0 (recall that ∥û1 (p)∥p = 1)

=
tp

p

[∫
Ω

(
λ̂1 (p)− η (z)

)
û1 (p)

p dz + ε

]
+
t2

2
∥Dû1 (p)∥22 + C4.

Since û1 (p) ∈ int C+, by the hypothesis on η (·) (see (Hf )1 (ii)), we have

β0 =

∫
Ω

(
λ̂1 (p)− η (z)

)
û1 (p)

p dz > 0.

Therefore

φ+ (tû1 (p)) ≤
tp

p
[−β0 + ε] +

t2

2
∥Dû1 (p)∥22 + C4 for all t > 0.
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Choosing ε ∈ (0, β0) and recalling that 2 < p, we see that

(3.4) φ+ (tû1 (p)) → −∞ as t→ +∞.

Claim. φ+ satisfies the C−condition.

Consider a sequence {un}n≥1 ⊆W 1,p
0 (Ω) such that {φ+ (un)}n≥1 ⊆ R is bounded

and

(3.5) (1 + ∥un∥) (φ+)
′ (un) → 0 in W−1,p′ (Ω) =W 1,p

0 (Ω)∗ as n→ ∞.

From (3.5) we have

(3.6)

∣∣⟨Ap (un) , h⟩+ ⟨A (un) , h⟩ −
∫
Ω f (z, u

+
n )hdz

∣∣ ≤ εn∥h∥
1+∥un∥

for all h ∈W 1,p
0 (Ω) , with εn → 0+.

In (3.6) we choose h = −u−n ∈W 1,p
0 (Ω) . Then∥∥Du−n ∥∥pp + ∥∥Du−n ∥∥22 ≤ εn for all n ∈ N,

hence

(3.7) u−n → 0 in W 1,p
0 (Ω) .

We show that {u+n }n≥1 ⊆W 1,p
0 (Ω) is bounded. Arguing by contradiction, assume

that at least for a subsequence we have

(3.8)
∥∥u+n ∥∥ → ∞, as n→ ∞.

We set yn = u+n
∥u+n∥ , n ∈ N. Then

∥yn∥ = 1, yn ≥ 0, for all n ∈ N.
So, we may assume that

(3.9) yn
w−→ y in W 1,p

0 (Ω) as n → ∞.

Using (3.7) in (3.6) , we obtain∣∣⟨Ap (u+n ) , h⟩+ ⟨A (u+n ) , h⟩ −
∫
Ω f (z, u

+
n )hdz

∣∣
≤ ε′n ∥h∥ for all h ∈W 1,p

0 (Ω) ,with ε′n → 0+.

hence

(3.10)

∣∣∣∣⟨Ap (yn) , h⟩+ 1

∥u+n∥p−2 ⟨A (yn) , h⟩ −
∫
Ω

Nf(u+n )
∥u+n∥p−1hdz

∣∣∣∣ ≤ ε′n∥h∥
∥u+n∥p−1

for all h ∈W 1,p
0 (Ω) , all n ∈ N.

From hypothesis (Hf )1 (i) and (3.8) it is clear that{
Nf (u

+
n )∥∥u+n ∥∥p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

So, if in (3.10) we choose h = yn − y ∈ W 1,p
0 (Ω) , pass to the limit as n → ∞ and

use (3.8) , then
lim
n→∞

⟨Ap (yn) , yn − y⟩ = 0,
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hence

(3.11) yn → y in W 1,p
0 (Ω) and ∥y∥ = 1, y ≥ 0

(see Lemma 2.1). The boundedness of

{
Nf(u+n )
∥u+n∥p−1

}
n≥1

⊆ Lp
′
(Ω) and hypothesis

(Hf )1 (iii) imply that by passing to a subsequence if necessary, we have

(3.12)
Nf (u

+
n )∥∥u+n ∥∥p−1

w−→ η̂ (z) yp−1 in Lp
′
(Ω)

with
η (z) ≤ η̂ (z) ≤ C5 for a.a. z ∈ Ω, and some C5 > 0

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 16).
So, if in (3.10) we pass to the limit as n → ∞ and use (3.11) , (3.8) and (3.12)

we obtain

⟨Ap (y) , h⟩ =
∫
Ω
η̂ (z) yp−1hdz for all h ∈W 1,p

0 (Ω) ,

therefore

(3.13) −∆py (z) = η̂ (z) y (z)p−1 for a.a.z ∈ Ω, y |∂Ω= 0.

Using Lemma 2.3, we have

λ̃1 (p, η̂) ≤ λ̃1 (p, η) < λ̃1

(
p, λ̂1 (p)

)
= 1,

hence y must be nodal (see (3.11)). This contradicts (3.11) . Therefore{
u+n

}
n≥1

⊆W 1,p
0 (Ω) is bounded,

and consequently

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded (see (3.7) ).

So, we may assume that

(3.14) un
w−→ u in W 1,p

0 (Ω) as n → ∞.

Since {Nf (u
+
n )}n≥1 ⊆ Lp

′
(Ω) is bounded (see hypothesis (Hf )1 (i) and (3.14)),

if in (3.6) we choose h = un − u ∈ W 1,p
0 (Ω) and pass to the limit as n → ∞, we

obtain
lim
n→∞

[⟨Ap (un) , un − u⟩+ ⟨A (un) , un − u⟩] = 0,

hence
lim sup
n→∞

[⟨Ap (un) , un − u⟩+ ⟨A (u) , un − u⟩] ≤ 0,

(since A (·) is monotone), therefore

lim sup
n→∞

⟨Ap (un) , un − u⟩ ≤ 0 (cf. (3.14) ),

and consequently

un → u in W 1,p
0 (Ω) ,

(see Lemma 2.1). We conclude that φ+ satisfies the C−condition. This proves the
Claim.
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Then (3.3) , (3.4) and the Claim permit the use of mountain pass theorem (see
for example, Gasinski-Papageorgiou [9], p.648). So, we can find u0 ̸= 0 such that

(3.15) ⟨Ap (u0) , h⟩+ ⟨A (u0) , h⟩ =
∫
Ω
f
(
z, u+0

)
hdz for all h ∈W 1,p

0 (Ω) .

In (3.15) we choose h = −u−0 ∈W 1,p
0 (Ω) and obtain

u0 ≥ 0, u0 ̸= 0.

From (3.15) we have

(3.16) −∆pu0 (z)−∆u0 (z) = f (z, u0 (z)) for a.a.z ∈ Ω, u0 |∂Ω= 0.

From (3.16) and Theorem 7.1, p.286 of Ladyzhenskaia-Uraltseva [13], we have u0 ∈
L∞ (Ω) . Applying Theorem 1 of Lieberman [16], we infer that

u0 ∈ C+\ {0} .

Hypotheses (Hf )1 imply that if ρ = ∥u0∥∞ , then we can find ξ̂ρ > 0 such that

f (z, x) + ξ̂ρx
p−1 ≥ 0 for a.a.z ∈ Ω, all 0 ≤ x ≤ ρ.

From (3.16) , we have

∆pu0 (z) + ∆u0 (z) ≤ ξ̂ρu0 (z)
p−1 for a.a.z ∈ Ω,

hence

u0 ∈ intC+

(see Pucci-Serrin [24], pp.111, 120).

Similarly, using the C1-functional φ− :W 1,p
0 (Ω) → R defined by

φ− (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω
F−

(
z,−u−

)
dz for all u ∈W 1,p

0 (Ω)

and reasoning as above, we produce a negative smooth solution v0 ∈ −int C+. □

4. Three solution theorem

In this section, using critical groups, we produce a third nontrivial smooth solu-
tion for problem (1.1) . As we already mentioned in the Introduction, this requires
more regularity on the reaction f (z, ·) . The new hypotheses on the function f (z, x)
are the following:

(Hf )2 : f : Ω×R →R is a measurable function such that for a.a. z ∈ Ω, f (z, 0) = 0,

f (z, ·) ∈ C1 (R) and
(i) there exists a ∈ L∞ (Ω) such that∣∣f ′x (z, x)∣∣ ≤ a (z)

(
1 + |x|r−1

)
for a.a. z ∈ Ω, all x ∈ R,

with p ≤ r < p∗, where p∗ is the critical Sobolev exponent correspond-
ing to p, i.e.,

p∗ =

{ Np
N−p if p < N,

+∞ if p ≥ N.
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(ii) there exists an integer m ≥ 2 such that

lim
x→±∞

f (z, x)

|x|p−2 x
= λ̂m (p) , lim

x→±∞
[f (z, x)x− pF (z, x)] = +∞

uniformly for a.a. z ∈ Ω;

(iii)

f ′x (z, 0) = lim
x→0

f (z, x)

x
uniformly for a.a. z ∈ Ω

and

f ′x (z, 0) ≤ λ̂1 (2) for a.a. z ∈ Ω, f ′x (·, 0) ̸= λ̂1 (2) .

We introduce the energy (Euler) functional φ : W 1,p
0 (Ω) → R for problem (1.1)

defined by

φ (u) =
1

p
∥Du∥pp +

1

2
∥Du∥22 −

∫
Ω
F (z, u) dz for all u ∈W 1,p

0 (Ω) .

We have φ ∈ C2(W 1,p
0 (Ω)). Also, u0, v0 ∈ Kφ and of course we assume that Kφ is

finite (otherwise we already have an infinity of nontrivial smooth solutions and so
we are done).

Proposition 4.1. If hypotheses (Hf )2 hold, then

Ck (φ, u0) = Ck (φ, v0) = δk,1Z for all k ∈ N0.

Proof. We consider the homotopy h+ : [0, 1]×W 1,p
0 (Ω) → R defined by

h+ (t, u) = (1− t)φ (u) + tφ+ (u) for all t ∈ [0, 1] , u ∈W 1,p
0 (Ω) .

Suppose we could find {tn}n≥1 ⊆ [0, 1] and {un}n≥1 ⊆W 1,p
0 (Ω) such that

(4.1) tn → t, un → u0 in W 1,p
0 (Ω) ,

(
h′+

)
u
(tn, un) = 0 for all n ∈ N.

We have
(4.2)

⟨Ap (un) , h⟩+⟨A (un) , h⟩ =
∫
Ω

[
(1− tn) f (z, un) + tnf

(
u+n

)]
hdz for all h ∈W 1,p

0 (Ω) .

In (4.2) we choose h = un ∈W 1,p
0 (Ω) and use (4.1) to infer that

{un}n≥1 ⊆W 1,p
0 (Ω) is bounded.

Then from Ladyzhenskaia-Uraltseva ( [13], p.286) we know that there exists C6 > 0
such that

∥un∥∞ ≤ C6 for all n ∈ N.
So, invoking Theorem 1 of Lieberman [16], we can find α ∈ (0, 1) and C7 > 0

such that

un ∈ C1,α
0

(
Ω
)
and ∥un∥C1,α

0 (Ω) ≤ C7 for all n ∈ N.

Exploiting the compact embedding of C1,α
0

(
Ω
)
into C1

0

(
Ω
)
, we infer that

un → u0 in C1
0

(
Ω
)
(see (4.1) ).
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Recall that u0 ∈ int C+ (see Proposition 3.1). It follows that un ∈ int C for all
n ≥ n0, hence

{un}n≥n0
⊆ Kφ,

a contradiction (recall that Kφ is finite). Therefore (4.1) cannot occur, and then in-
voking the homotopy invariance property of critical groups (see Gasinski-Papageorgiou
[10], Theorem 5.125, p.836), we have

(4.3) Ck (φ, u0) = Ck (φ+, u0) for all k ∈ N0.

From the proof of Proposition 3.1 we know that u0 ∈ intC+ is a critical point of φ+

of mountain pass type. Therefore Theorem 6.5.8, p.432 of Papageorgiou-Rădulescu-
Repovš [21], implies that

C1 (φ+, u0) ̸= 0

hence

(4.4) C1 (φ, u0) ̸= 0 (see (4.3) ).

Recall that φ ∈ C2
(
W 1,p

0 (Ω)
)
. So, according to Aizicovici-Papageorgiou-Staicu [2]

(see the proof of Theorem 3) and on account of (4.4) , we have

Ck (φ, u0) = δk,1Z for all k ∈ N0.

Similarly using the functional φ− and the homotopy

h− (t, u) = (1− t)φ (u) + tφ− (u) for all t ∈ [0, 1] , u ∈W 1,p
0 (Ω) ,

we show that

Ck (φ, v0) = δk,1Z for all k ∈ N0.

□

Proposition 4.2. If hypotheses (Hf )2 hold, then Cm (φ,∞) ̸= 0.

Proof. Let λ ∈ (λ̂m (p) , λ̂m+1 (p))\σ̂ (p) and consider the C1−functional ψ :

W 1,p
0 (Ω) → R defined by

ψ (u) =
1

p
∥Du∥pp −

λ

p
∥u∥pp for all u ∈W 1,p

0 (Ω) .

We consider the homotopy h (t, u) defined by

h (t, u) = (1− t)φ (u) + tψ (u) for all t ∈ [0, 1] , u ∈W 1,p
0 (Ω) .

Claim. We can find η ∈ R and δ̂ > 0 such that

ht (u) := h (t, u) ≤ η =⇒ (1 + ∥u∥)
∥∥(ht)′ (u)∥∥∗ ≥ δ̂ for all t ∈ [0, 1] .

We argue indirectly. So, suppose the Claim is not true. Since h (·, ·) maps bounded
sets to bounded sets (see hypothesis (Hf )2 (i)), we can find {tn}n≥1 ⊆ [0, 1] and

{un}n≥1 ⊆W 1,p
0 (Ω) such that

(4.5) tn → t, ∥un∥ → ∞, htn (un) → −∞ and (1 + ∥un∥) (htn)
′ (un) → 0.
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Then we have
(4.6)∣∣∣⟨Ap (un) , h⟩+ (1− tn) ⟨A (un) , h⟩ −

∫
Ω

[
(1− tn) f (z, un) + tnλ |un|p−2 un

]
hdz

∣∣∣
≤ εn∥h∥

1+∥un∥ for all h ∈W 1,p
0 (Ω) , with εn → 0.

Let yn = un
∥un∥ , n ∈ N. Then ∥yn∥ = 1 for all n ∈ N and so we may assume that

(4.7) yn
w−→ y in W 1,p

0 (Ω) .

From (4.6) it follows that

(4.8)

∣∣∣⟨Ap (yn) , h⟩+ (1−tn)
∥un∥p−2 ⟨A (yn) , h⟩

−
∫
Ω

[
(1− tn)

Nf (un)

∥un∥p−1 + tnλ |yn|p−2 yn

]
hdz

∣∣∣
≤ εn∥h∥

(1+∥un∥)∥un∥p−1 for all h ∈W 1,p
0 (Ω) , all n ∈ N.

Hypotheses (Hf )2 (i) , (ii) imply that{
Nf (un)

∥un∥p−1

}
n≥1

⊆ Lp
′
(Ω) is bounded.

So, passing to a subsequence if necessary and using hypothesis (Hf )2 (ii) , we obtain

(4.9)
Nf (un)

∥un∥p−1

w−→ λ̂m (p) |y|p−2 y in Lp
′
(Ω)

(see Aizicovici-Papageorgiou-Staicu [1], proof of Proposition 30).

Choosing h = yn − y ∈ W 1,p
0 (Ω) in (4.6) , passing to the limit as n → ∞ and

using (4.7) and (4.9) as before (see the proof of Proposition 3.1), we obtain

lim sup
n→∞

⟨Ap (yn) , yn − y⟩ ≤ 0,

which implies (see Lemma 2.1)

(4.10) yn → y in W 1,p
0 (Ω) , hence ∥y∥ = 1.

So, if in (4.8) we pass to the limit as n→ ∞ and use (4.10) , (4.9) , (4.5) (recall also
that p > 2), we have∣∣∣∣⟨Ap (y) , h⟩ = ∫

Ω
λt |y|p−2 yhdz

∣∣∣∣ for all h ∈W 1,p
0 (Ω) ,

with
λt=(1− t) λ̂m (p) + tλ,

hence

(4.11) −∆py (z) = λt |y (z)|p−2 y (z) for a.a.z ∈ Ω, y |∂Ω= 0.

If λt /∈ σ̂ (p) , then from (4.11) we infer that y = 0, a contradiction (see (4.10)). If
λt ∈ σ̂ (p) , then from (4.10) we see that if

E0 = {z ∈ Ω : y (z) ̸= 0}
then |E0|N > 0. We have

|un (z)| → +∞ for all z ∈ E0,
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hence

f (z, un (z))un (z)− pF (z, un (z)) → +∞ for a.a. z ∈ E0

(see hypothesis (Hf )2 (ii)), therefore

(4.12)

∫
E0

[f (z, un (z))un (z)− pF (z, un (z))] dz → +∞

(by Fatou’s lemma). On account of hypotheses (Hf )2 (i) , (ii) , we see that

(4.13) −C8 ≤ f (z, x)x− pF (z, x) for a.a. z ∈ Ω, all x ∈ R, some C8 > 0.

Hence we have∫
Ω
[f (z, un)un − pF (z, un)] dz

=

∫
E0

[f (z, un)un − pF (z, un)] dz +

∫
Ω\E0

[f (z, un)un − pF (z, un)] dz

≥
∫
E0

[f (z, un)un − pF (z, un)] dz − C8 |Ω|N (see (4.13) )

therefore

(4.14)

∫
Ω
[f (z, un)un − pF (z, un)] dz → +∞ (see (4.12) ).

From (4.5) we have

(4.15)
∥Dun∥pp +

p
2 ∥Dun∥

2
2 −

∫
Ω [(1− tn) pF (z, un) + λtn |un|p] dz

≤ −1 for all n ≥ n0.

Also, if in (4.6) we choose h = un ∈W 1,p
0 (Ω) , then

(4.16)
−∥Dun∥pp − ∥Dun∥22 +

∫
Ω [(1− tn) f (z, un)un + λtn |un|p] dz

≤ εn for all n ∈ N.

Adding (4.15) and (4.16) and recalling that p > 2, we obtain

(4.17) (1− tn)

∫
Ω
[f (z, un)un − pF (z, un)] dz ≤ 0 for all n ≥ n1 ≥ n0.

If t = 1, then λt = λ /∈ σ̂ (p) . So, from (4.11) we infer that y = 0, contradicting
(4.6) . Hence t ̸= 1 and so we may assume that tn < 1 for all n ≥ n1. From (4.17)
we obtain

(4.18)

∫
Ω
[f (z, un)un − pF (z, un)] dz ≤ 0 for all n ≥ n1.

Comparing (4.18) and (4.14) , we have a contradiction. This proves the Claim.
On account of the Claim, and using Theorem 5.1.21, p.334 of Chang [5] (see also

Proposition 3.2 of Liang-Su [15]), we have

Ck (h0,∞) = Ck (h1,∞) for all k ∈ N0,

therefore

(4.19) Ck (φ,∞) = Ck (ψ,∞) for all k ∈ N0.
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Consider the following sets

Dq =
{
u ∈W 1,p

0 (Ω) : ∥Du∥pp < λ ∥u∥pp , ∥u∥ = q
}
, (q > 0) ,

C =
{
u ∈W 1,p

0 (Ω) : ∥Du∥pp ≥ λ ∥u∥pp
}
.

These are symmetric sets and Dq ∩ C = ∅. Let

∂Bq =
{
u ∈W 1,p

0 (Ω) : ∥u∥ = q
}
.

This is a C1− Banach manifold and so it is locally contractible. Note that Dq ⊆ ∂Bq
is relatively open. Hence Dq is locally contractible. Similarly the set W 1,p

0 (Ω) \C is
open and so locally contractible. Recall that ind (·) denotes the Fadell-Rabinowitz

cohomological index (see [8]). Since λ ∈
(
λ̂m (p) , λ̂m+1 (p)

)
\σ̂ (p) we have

ind (Dq) = ind
(
W 1,p

0 (Ω) \C
)
= m.

According to Theorem 3.6 of Cingolani-Degiovanni [7], the sets Dq and C link in
dimension m. So, invoking Theorem 3.2 of [7], we have

(4.20) Cm (ψ, 0) ̸= 0.

But note that Kψ = {0} (recall that λ /∈ σ̂ (p)). Therefore

Ck (ψ, 0) = Ck (ψ,∞) for all k ∈ N0,

hence
Cm (ψ,∞) ̸= 0 (see (4.20) ),

and we conclude that
Cm (φ,∞) ̸= 0 (see (4.19) ).

□
Now we are ready to produce a third nontrivial smooth solution distinct from u0

and v0.

Proposition 4.3. If hypotheses (Hf )2 hold, then problem (1.1) has a third non-

trivial solution y0 ∈ C1
0

(
Ω
)
with y0 /∈ {u0, v0} .

Proof. We already have two constant sign solutions u0 ∈ intC+, v0 ∈ −intC+ (see
Proposition 3.1). From Proposition 4.1, we have

(4.21) Ck (φ, u0) = Ck (φ, v0) = δk,1Z for all k ∈ N0.

As in the proof of Proposition 3.1, we can show that u = 0 is a local minimizer of
φ. Therefore

(4.22) Ck (φ, 0) = δk,0Z for all k ∈ N0.

According to Proposition 4.3, we have Cm (φ,∞) ̸= 0. So, we can find y0 ∈ Kφ such
that

(4.23) Cm (φ, y0) ̸= 0.

By (4.21) , (4.22) and (4.23) and since m ≥ 2, we infer that

y0 /∈ {0, u0, v0} .
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Moreover, by the nonlinear regularity theory, we have

y0 ∈ C1
0

(
Ω
)
.

So, y0 ∈ C1
0

(
Ω
)
is the third nontrivial smooth solution of (1.1) , distinct from u0,

v0. □
We can state the following multiplicity (three solutions) theorem for problem

(1.1) .

Theorem 4.4. If hypotheses (Hf )2 hold, then problem (1.1) has at least three non-
trivial solutions

u0 ∈ intC+, v0 ∈ −intC+, y0 ∈ C1
0

(
Ω
)
.

Remark. It is an interesting open problem whether under the hypotheses of the
above theorem, one can produce a nodal solution.
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