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EQUILIBRIUM AND GIBBS MEASURES FOR FLOWS

LUIS BARREIRA AND CARLLOS HOLANDA

ABSTRACT. We construct equilibrium and Gibbs measures in the context of the
nonadditive thermodynamic formalism for flows. More precisely, we consider the
class of almost additive families of potentials and after establishing an appropriate
version of the classical variational principle for the topological pressure, we obtain
the existence and uniqueness of equilibrium and Gibbs measures for hyperbolic
flows and families with bounded variation.

1. INTRODUCTION

We first recall some of the main components of the classical thermodynamic
formalism. The notion of the topological pressure P(¢) of a continuous function ¢
with respect to a map f: X — X was introduced by Ruelle in [12] for expansive
maps and by Walters in [14] in the general case. They also established a variational
principle for the topological pressure:

f%¢>=sup(huuv+—[;¢du>,

o
with the supremum taken over all f-invariant probability measures p on X, denoting
by h,u(f) the Kolmogorov-Sinai entropy of f with respect to p. An f-invariant
probability measure p on X is called an equilibrium measure for ¢ if

H@=%W+A¢w

These measures and particularly their Gibbs property play an important role in
the dimension theory and multifractal analysis of dynamical systems. We refer the
reader to the books [3,6,9,13] for details and further references.

The nonadditive thermodynamic formalism was introduced in [1] as a generaliza-
tion of the classical thermodynamic formalism, essentially replacing the topological
pressure P(¢) by the topological pressure P(®) of a sequence of continuous func-
tions ® = (¢, )nen. This formalism contains as a particular case a new formulation
of the subadditive thermodynamic formalism introduced by Falconer in [7]. More-
over, for additive sequences it recovers the notion of topological pressure introduced
by Pesin and Pitskel’ in [10] as well as the notions of lower and upper capacity topo-
logical pressures introduced by Pesin in [8] for an arbitrary set. The nonadditive
thermodynamic formalism also plays a corresponding role in the dimension the-
ory of dynamical systems. In particular, [1] includes a version of the variational

2020 Mathematics Subject Classification. 28D20, 37D35.
Key words and phrases. Thermodynamic formalism, topological pressure, flows.



38 L. BARREIRA AND C. HOLANDA

principle for the topological pressure (for discrete time), although with restrictive
assumptions on the sequence ®. This justifies the interest in looking for more gen-
eral classes of sequences of functions for which it is still possible to establish a
variational principle, including in the case of flows.

Our main objective is precisely to consider a new class of families for which it is
still possible not only to establish a variational principle for the topological pressure,
but also to discuss the existence and uniqueness of equilibrium and Gibbs measures.
This is the class of almost additive families: a family of functions (a¢)s>0 is said to
be almost additive with respect to a flow (¢;)icr if there exists a constant C' > 0
such that

—CHas+asops <apys <ap+aso gy +C

for every t,s > 0. In particular, we establish the following variational principle
for the topological pressure. We denote by M the set of all ®-invariant probability
measures on X and we refer to Section 2 for the notion of tempered variation.

Theorem 1.1. Let ® be a continuous flow on a compact metric space X and let a
be an almost additive family of continuous functions with tempered variation such
that supycpo 4 l|atlloc < 00 for some s > 0. Then

1
(1.1) P(a) = sup <hu(<I>) + lim / at d,u) .
To the possible extent we follow the proof of Theorem 4.3.1 in [4]. In order to
obtain the lower bound for the topological pressure, we first show that

P(a) > h,(®) —|—tli)r&% ; at dp
for each ergodic measure p € M. Since we need to use Birkhoff’s ergodic theorem
with respect to the time-1 map, but p need not be ergodic with respect this map,
we consider an ergodic decomposition of p with respect to the time-1 map.

We also consider the particular case of hyperbolic flows and we establish the
existence and uniqueness of the equilibrium measure of an almost additive family
of continuous functions with bounded variation as well as its Gibbs property. We
say that a ®-invariant measure g on X is an equilibrium measure for the almost
additive family a (with respect to the flow ®) if the supremum in (1.1) is attained
at u, that is, if

P(a) = h,(®) + lim % at dy.

t—o00 X

The notion of a Gibbs measure requires introducing the somewhat technical notion
of a Markov system (see Section 3.1). Our main result is the following theorem.

Theorem 1.2. Let A be a hyperbolic set for a topologically mizing C* flow ® and let
a be an almost additive family of continuous functions on A with bounded variation
such that P(a) =0 and sup,cp 4 [|atllec < 00 for some s > 0. Then:

(1) there exists a unique equilibrium measure for a;
(2) there exists a unique invariant Gibbs measure for a;
(3) the two measures are equal and are ergodic.
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Note that there is no loss of generality in assuming that P(a) = 0. Indeed, let
b = (bt)r>0 be an almost additive family of continuous functions on A with bounded
variation such that sup;cjg g [|bt]lc < 00 for some s > 0. Then let a = (at)i>0 be
the family of continuous functions on A defined by

Qg :bt—P(b)t

for each ¢t > 0. Clearly, a is almost additive, has bounded variation and satisfies
supyefo,s) llatlloc < o0 and P(a) = 0. For each ®-invariant probability measure u

on A we have .

1
/ ardp = / by dp — P(b).
tJx tJx
This readily implies that a and b have the same equilibrium measures. The idea of
the proof of Theorem 1.2 is to consider an almost additive sequence

Cn(T) = s, () (%)
on the base Z C A of a Markov system, where 7,,(z) is the nth-return time to Z
(see Section 3.1 for details). The desired result can then be obtained from a corre-
sponding result on the base.
To the possible extent, and up to the need of some nontrivial modifications in
the case of flows, our arguments are inspired by work in [2] for discrete time.

2. VARIATIONAL PRINCIPLE

In this section we consider the nonadditive topological pressure for a flow and
we establish a version of the variational principle for an almost additive family of
continuous functions.

We first recall the notion of nonadditive topological pressure for a flow. Let
® = (¢1)er be a continuous flow on a compact metric space (X, d). Moreover, let
a = (at)e>0 be a family of continuous functions a;: X — R with tempered variation.
This means that

lim lim M =0,
e—0t—+o0 t
where
Ye(a,€) = sup{|a¢(y) — ar(x)] : y € By(z,e) for some z € X}
taking
(2.1) Bi(z,e) = {y € X : d(¢s(y), ¢s(x)) < € for s € [0,¢]}.

Given € > 0, we say that aset I' C X X ]Rar covers Z C X if
U Bi(z,e) D Z
(z,t)el
and we write
a(z,t,e) =sup{as(y) : y € By(z,e)} for (z,t) €T.
For each Z C X and a € R, let

(2.2) M(Z,a,a,¢) = TE\TOO 1111f( ;er exp(a(z,t,e) — at),
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with the infimum taken over all countable sets I' C X x [T, +00) covering Z. When
a goes from —oo to +00, the quantity in (2.2) jumps from 400 to 0 at a unique
value and so one can define

P(a|z,e) =inf{a € R: M(Z,a,a,e) = 0}.

Moreover, the limit

Pla|z) = lim P(alz, )
e—0

exists and is called the nonadditive topological pressure of the family a on the set Z.
For simplicity of the notation, we shall also write P(a|x) = P(a).

Now we establish a version of the variational principle for the topological pressure
of an almost additive family of continuous functions. We recall that a family a =
(at)e>0 of functions a;: X — R is said to be almost additive (with respect to a
flow @) if there exists a constant C' > 0 such that

—CHar+asod <aprs <ag+asopy+C

for every t,s > 0. We denote by M the set of all ®-invariant probability measures
on X, that is, the probability measures g on X such that

(pe(A)) = p(A)

for any Borel set A C X and any ¢ € R. Moreover, for each u € M, let h,(®) be
the Kolmogorov—Sinai entropy of ® with respect to pu.

Theorem 2.1. Let ® be a continuous flow on a compact metric space X and let a
be an almost additive family of continuous functions with tempered variation such
that supycpo 4 l|atlloc < 00 for some s > 0. Then

(2.3) = pe <h“(q)) - /X Ao, atim) du(:v))

1
= sup (hu(q)) + lim 7] a d,u> .
b's

HEM t—o00

Proof. To the possible extent we follow the proof of Theorem 4.3.1 in [4] while we
also highlight the differences. Since a is almost additive, we have

s +C < (a; +C)+aso ¢+ C

for s,t > 0. Thus, (a, + C)pen is subadditive and it follows from Kingman’s
subadditive ergodic theorem that for each measure p € M the limit

a(x) = lim (ap(z)/n)

n—o0

exists for p-almost every € X. Now let [x] be the integer part of the real number z.
Again since a is almost additive, we have

(2.4) —C+ayg+a_gody <ar <ap+a_o¢y+C
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for t > 0. Taking N € N such that 1/N < s (with s as in the statement of the
theorem), we obtain

at(z) _ap (z) < (at—[t] ° ¢[t])(3’3) I g
t - t t
< SUP¢e[0,1] llat]oo 9
- t t
N o0
< 1V SUPtefo.1/N] llacll . NC
- t t
Ns 0o
o Nsuppy el NC
- t t
Taking the limit when t — oo gives
(2.5) Jim “tix) - “[”t(x) ~0.
Since
lim a1 (@) = lim ma[ﬂ (@) = lim ) (7) = a(x),
t—o0 t t—oo ¢ [t] t—o0 [t]
it follows from (2.5) that
tim 249 _ 5(0)
t—oo T
for p-almost every x € X. Moreover,
[t -1 [t]-1
—C[t] + Z ayo ¢ <ap < Z ai o ¢ + Clt]
k=0 k=0

and so |apy/[t]] < |la1]lec + C. Hence, it follows from Lebesgue’s dominated conver-
gence theorem that ap)/[t] — @ in L*(X, 1) when ¢ — oo and

.1 Y .o
(2.6) tlgglo [ﬂ/xam du—/xadu—/xtllglo 0 dpu.

Finally, by (2.4) we have

1 1] 1
i fon = fon

IN

1 C
’t/ as[1] © Ppy) dﬂ' + ?M(X)
X

IA

1 C
TH(X) sup [las]loc + —p(X)
s€[0,1]

and so, using (2.6), we obtain

1 oMt _ . ag(x)
tlggog Xatdﬂ_tlglolot[t]/xamdﬂ_/xtg%o t dpa()-

This shows that the two limits in (2.3) exist and are equal.
Now we establish the inequality

1
(2.7) P(a) < sup <hu(<1>) + lim / ay d,u> .
,U«GM t—o00 t X
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Given z € X, we define a probability measure on X by

1 t
Pt = t/o Oy (z) S,

where 0, is the probability measure concentrate on y. Let also V(z) be the set of
all sublimits of the family (yt4+)+>0. The following result can be obtained as in the
proof of Theorem 10.1.5 in [4].

Lemma 2.2. Given x € X and p € V(x), there exists an increasing sequence

(tn)nen such that
ag, () o1
= lim - | a;dp.

lim
n—oo

We also need the following technical property (see [6] for a corresponding result
in the additive case).

Lemma 2.3. Let I' C X x {1} be a finite cover of X. For the open cover V =
{Vi,...,V;} of X, where V; = Bi(xj,e/2) with (z;,1) € T, there exist m,T € N
with T' arbitrary large and a sequence U = V;, ---V;,, such that:

(1) x € (/) ¢—r41Vi, and

.1
ar(z) <T (tli)rglot/)(atdu—i-é) ;
(2) there erists a subset V€ (V™)K of U of length km > T — m such that
H(V) <m(hu(®)+9).

Proof of the lemma. By Lemma 2.2, given § > 0, we have

1
at, () — lim - | adp

<0

for any sufficiently large n. So one can take T arbitrarily large such that

1
< im —
ap(z) <T (tlgglo , /X a dp + 5>
and the first property follows. The second property can be obtained as in the proof
of Lemma 4.3.2 in [4]. O

Given 0 > 0, m € N and u € R, let X,,, be the set of points x € X satisfying
the two properties in Lemma 2.3 for some measure p € V(z) with

1
u—0< lim - ardp < u—+ 9.
Moreover, let n be the number of all sequences U € VI with these two properties
for some point x € X,,,. Taking

1
¢ = sup (h#(@)) + lim ;[ a du)
X

LEM t—o00

and
a>c+30+ lim %(a’e)j
t—+ t

—+00




EQUILIBRIUM AND GIBBS MEASURES FOR FLOWS 43
one can proceed as in the proof Theorem 4.3.1 in [4] to obtain
nr < exp[T (h (@) +20)]
for any sufficiently large T and so also
M(Xmu,a,a,6) =0 and o> P(a|x,,,,€)

Finally, taking points ui,...,u, such that for each uw € [infa,supa] there exists
Jje{l,...,r} with |[u —u;| <, we have

r
X=U UXnu

meNi=1
and so
P(a) = lim P(a,e) = lim sup P(alx,,,, ,€)
e—0 e—0 m,i
< ¢+ lim lim %( ) + 30 = ¢+ 36.
e—0t—o0 t

Since ¢ is arbitrary, we conclude that P(a) < ¢ and so inequality (2.7) holds.

To obtain the reverse inequality P(a) > ¢, to the possible extent we adapt corre-
sponding arguments in the proof of Lemma 4.3.5 in [4], although this step requires
an additional ingredient. The reason is that we are considering an ergodic measure
1 with respect to the flow, but we need to use the ergodic theorem with respect to
the time-1 map. Since p need not be ergodic with respect this map, we consider an
ergodic decomposition of u with respect to the time-1 map.

Lemma 2.4. For each ergodic measure y € M, we have

1
> i — .
Pla) = h(®) + Jim ¢ [
Proof of the lemma. Given £ > 0, there exist § € (0,¢), a measurable partition
§={C1,...,Cp} of X and an open cover V = {Vp,...,Vi} of X for some k > m
such that:

(1) diam C; <, VCCZ- and p(C; \ Vi) < 8% fori=1,...,m;
(2) the set B = [JF

We consider a measure v in the ergodic decomposition of u with respect to the
time-1 map ¢;. The ergodic decomposition is described by a measure 7 in the
space M’ of ¢-invariant probability measures that is concentrated on the ergodic
measures (with respect to ¢1). Note that v(F) < § for v in a set My € M’ of
positive 7-measure such that 7(Mgz) — 1 when § — 0.

For each x € X and n € N, let s,(x) be the number of integers | € [0,n) such
that ¢! () € E. By Birkhoff’s ergodic theorem, since v is ergodic for ¢ we have

. Vi has measure p(E) < 62

i=m+

Sp ()

(2.8) lim = lim Z xe(d)(z / xedv =v(E)
X

n—-+oo n n—+oo n
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for v-almost every x € X. On the other hand, by Lemma 2.2, there exists an
increasing sequence of integers (t,)nen such that

1
(2.9) lim o4, (2) = lim - | a;du

n—oo 1, t—oo t [x
for p-almost every z € X. By (2.8) and (2.9) together with Egorov’s theorem, there
exist v € Mg, N1 € N and a measurable set A; C X with v(A;) > 1 — § such that

1
an(2) — lim - atdu‘ <4

sn ()

(2.10) <20 and

for every x € A; and n > N;p. For the partition
n .
&=\ 617(),
j=0

one can use the Shannon—McMillan—Breiman theorem and again Egorov’s theorem
to conclude that there exist Ny € N and a measurable set Ay C X with v(Ag) > 1—4¢
such that

(2.11) v(&n()) < exp[(—hu(¢1,8) +0)n]

for every x € As and n > Nj, where §,(z) is the element of &, containing x. We
take N = max{Ny, No} and A = A1 N Ag. Then v(A) > 1—2¢ and by construction,
(2.10) and (2.11) hold for every x € A and n > N.

Let A be a Lebesgue number of the cover V and take € > 0 with 22 < A. Given
a € R, take N > N such that for each n > N there exists a set I' C X x [n, +00)
covering X with

Z exp(a(z,t,2) —at) — M(X,a,0,8)| <.
(z,t)el

Without loss of generality, we also assume that N is so large such that

’}’l(a,E) < m Vt(aag)_'_é-
l t—4oo ¢

for all I > N. Moreover, given | € N, let
I ={(z,t) €T : Bi(z,e) N A # 0}

and let B; = U, y)er Bt(z,€). Following arguments in [4], it follows from the first
inequality in (2.10) and (2.11) that

cardI'; > v(B; N A) exp [y (¢1, &)l — (1 + 2log card £)16]
for | € N. This implies that (see [4])

1 —
P(a,g) = hy(¢1,¢) + lim / ardp — lim M
t—oo t X

t—+oo t
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Now we consider measurable partitions & and open covers V; as before with e = 1/I.
For each [, take 2 > 0 such that 22; < 1/ is a Lebesgue number of the cover V.
Since diam & — 0 when [ — +o00, we have

Jim by (61,6) = hu(61).

Since the family a has tempered variation, we obtain

P(a) = l_l)igloo P(a,z;)

1 —
> lim hy(¢1,&) + lim - / ardp— lim Tm @)
l—+o0 t—oo t Jx

l—+400 t——+00 t
1
= hy(¢1) + tliglo n /X ag dj.

Integrating with respect to v gives

1
P(a) 2/ hy(¢1)dr(v) + lim / ag dp
M(g t—o00 t X
and letting  — 0 yields the inequality

P(a) Z/Jvt' hy (1) dT(V)—i_tlLI&i/Xatdu

1
= hu(¢1) +/ bdp = hy,(®) + lim / az dp.
VA t—oo t X

This completes the proof of the lemma. 0

Now we consider the set

X,={veX: :V(z)={u}}
When g € M is ergodic, X, is a nonempty ®-invariant set and p(X,) = 1. Hence,
it follows from Lemma 2.4 that
P(a) = P(alx,)

1
> hu(‘I’\xu)thlggot/Xﬂ as dp

1
=h,(®) + lim — [ a;dp.

When p € M is arbitrary, we can decompose X into ergodic components and use
the previous argument to show that

1
P(a) > sup (| h, (P lim — | azdp .
@ > sup (@) + jim [ o)
This completes the proof of the theorem. O

We say that a ®-invariant measure p, is an equilibrium measure for the almost

additive family a (with respect to the flow @) if the supremum in (2.3) is attained
at ug, that is, if

1
(2.12) P(a) = hy,(®) + lim T a disg.

t—o00 X
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The following result gives a criterion for the existence of equilibrium measures in
this context.

Theorem 2.5. Let ® be a continuous flow on a compact metric space X such that
the map g — h,(®) is upper semicontinuous. Then each almost additive family a
of continuous functions with tempered variation such that sup,cp 4 [|atllcc < 00 for
some s > 0 has at least one equilibrium measure.

Proof. Since a,, + C' is a subadditive sequence , the real sequence | (an +C)dp is
also subadditive. Then

1 1
lim / an dp = lim /(an—FC)du
X X

n—oo N n—oo N

1

(2.13) < / (an + C)du
nJx

1/ C
=— [ apdp+ —.
n Jx n

Similarly, the sequence [ y(an — C) dp is supadditive and so

1 1
(2.14) lim / an dp > / and,ufg.
X nJx

n—oo N n

It follows from (2.13) and (2.14) that

1 1 C
lim/and,u—/and,ulg.
n—oon Jx nJx n

Now let p,, be a sequence of measures converging to p. Then

1 1 C
lim / G Afby — / andﬂm' < —
n—oon Jx n Jx n

for every m,n € N. Letting m — oo and then n — oo, we obtain

1 1
lim lim / Gn Ay, = lim / G, At
m—oon—co N Jx n—ocon Jx

This shows that the map

1
p— lim — [ a;dy

is continuous for each almost additive family a. Together with the upper semicon-
tinuity of the map p + h,(®), this implies that the map

1
p— hy(®) + lim T a du

t—o0 X

is upper semicontinuous. Hence, in view of the compactness of M there exists a
measure [, € M satisfying (2.12). O

3. HYPERBOLIC FLOWS

In this section we consider the particular case of hyperbolic flows and we describe
a general condition for the uniqueness of the equilibrium measure of an almost
additive family of continuous functions with tempered variation as well as for its
Gibbs property.
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3.1. Basic notions. Let ® = (¢;)icr be a C' flow on a smooth manifold M. A
compact ®-invariant set A C M is called a hyperbolic set for ® if there exists a
splitting
TAM = E°® E" @ E°
and constants ¢ > 0 and A € (0, 1) such that for each x € A:
(1) the vector (d/dt)¢s(z)|i—o generates E°(x);
(2) for each t € R we have

de @ E°(x) = E5(¢r(x)) and  degpE"(x) = E*(dr(2));
(3) ||dz@ev|| < eXf||v|| for v € E*(z) and t > 0;
(4) ||dzp—1v]| < cA|v|| for v € E¥(z) and t > 0.

Given a hyperbolic set A for a flow @, for each x € A and any sufficiently small
€ > 0 we define

A%(2) = {y € B(z,) : d(6y(y), &1(x)) " 0 when ¢ > +00}
and
A'(z) ={y € B(w,¢) : d(¢+(y), ¢(x)) \y 0 when ¢t — —o0}.
Moreover, let
Vi(x) C A%(x) and V%) C A%(x)
be the largest connected components containing x. These are smooth manifolds,
called respectively (local) stable and unstable manifolds of size € at the point z,
satisfying:
(1) T,V¥(z) = E*(x) and T,V"(z) = E*(z);
(2) for each ¢ > 0 we have
oe(Vo(x)) C V3 (de(x)) and ¢ (V¥(x)) C V¥ (d—i(2));
(3) there exist k > 0 and p € (0,1) such that for each ¢ > 0 we have

d(oe(y), de(@)) < kp'd(y,x) for y € V*(w)
and
d(¢-1(y), p—1(x)) < kp'd(y,x) fory € V"(x).
We recall that a set A is said to be locally mazimal (with respect to a flow ®) if
there exists an open neighborhood U of A such that

A=) ¢u(U).
teR
Given a locally maximal hyperbolic set A and a sufficiently small ¢ > 0, there
exists 6 > 0 such that if x,y € A satisfy d(x,y) < J, then there exists a unique
t =t(x,y) € [—¢,¢] such that
[2,9] = V(6u(2)) N V()

is a single point in A.

Now we make some preparations to introduce the notion of a Markov system.
Consider an open smooth disk D C M of dimension dim M — 1 that is transverse

to ® and take z € D. Let U(z) be an open neighborhood of z diffeomorphic to
D x (—¢,e). Then the projection 7p: U(xz) — D defined by wp(é(y)) = y is
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differentiable. We say that a closed set R C AN D is a rectangle if R = int R and
mp([z,y]) € R for z,y € R.

Consider rectangles Ry, ..., Ry C A (each contained in some open smooth disk
transverse to the flow) such that

RiﬂRj:(?RiﬂaRj fori;éj.

Let Z = Ule R;. We assume that there exists € > 0 such that:

(1) A= Ui, ?:(2);
(2) whenever i # j, either

¢e(Ri) NR; =0 forallte[0,e]
or
$e(Rj)NR; =0 foralltel0,e].
We define the function 7: A — R(J)r by
7(xz) = min{t > 0: ¢¢(z) € Z},
and the transfer map T: A — Z by
(3.1) T(x) = ¢r(z)(2).
The restriction Tz of T' to Z is invertible and we have T"(x) = ¢, (;)(7), where

n—1

(@) =) r(T'(@)).

i=0
The collection Ry, ..., Ry is said to be a Markov system for ® on A if
T(int(V*(x) N R;)) C int(V(T'(x)) N Ry)
and
T (int(V*(T(2)) N R;)) C int(V*(2) N R;)

for every z € int T(R;) Nint R; and i,j = 1,...,k. By work of Bowen [5] and
Ratner [11], any locally maximal hyperbolic set A has Markov systems of arbitrarily
small diameter and the function 7 is Hélder continuous on each domain of continuity.

Given a Markov system Ry, ..., Ry for a low ® on a locally maximal hyperbolic
set A, we consider the k x k matrix A with entries

o {1 if int T(R;) N Ry # 0,
10 otherwise,
where T is the map in (3.1). We also consider the set
Ya={(ittigir-) t Qipipy, =1forne Z} C {1,...,k}*
and the shift map o: ¥4 — ¥4 defined by
o(- i) = (- jo- ),

where j, = in,41 for each n € Z. We denote by >, the set of X 4-admissible
sequences of length n, that is, the finite sequences (i; - - -i,) for which there exists
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(-+-Jojijz--+) € X4 such that (i1...iy) = (j1---Jn). Finally, we define a coding
map w: X4 — Z by
m(-evigeer) = ﬂ Ri_, i
neL

where

n
Ri ., = ﬂ TZ_Z int Ril~
l=—n
The following properties hold:

(1) roo=Tom;
(2) 7 is Holder continuous and onto;
(3)  is one-to-one on a full measure set with respect to any ergodic measure of

full support and on a residual set.

Given 3 > 1, we equip X4 with the distance dg defined by

B ifw # W,
ds(w, o) = {0 if w = W'

where n = n(w,w’) € NU {0} is the smallest integer such that i,(w) # i,(w) or
i—n(w) #i_p(w’). One can always choose 8 so that 7 o7 is Lipschitz.

Now let v be a Tz-invariant probability measure on Z. One can show that v
induces a ®-invariant probability measure p on A such that

T(z

Iz )(9 o ¢s)(x) ds dv
(3.2) /A gyt — g

for any continuous function g: A — R. In fact, any ®-invariant probability measure
won A is of this form for some Tz-invariant probability measure v on Z. Abramov’s
entropy formula says that

(3.3) h(®) = };(TTQ

By (3.2) and (3.3) we obtain
ho(Ty) + [, I, dv
JyTdv ’

hu(®) + / gdp =
A
where

7(z)
L@ = [ o sas

3.2. Technical preparations. In this section we make a few technical prepara-
tions. We start by considering the sequence of functions ¢, : Z — R defined by

(3.4) en(@) = 7, ) (2):

Lemma 3.1. The sequence ¢ = (cn)nen 1S almost additive with respect to the
map 1.
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FIGURE 1. d(¢s(x), ¢s(y)) < C6 for s € [0, 7, (y)].

Proof. Notice that

(3.5) Cntm(T) = ar, 0 (2)(T) = Ar (0) 4 (T7(2)) ()

for n,m € N. Since a is almost additive with respect to ®, by (3.5) we have
Cnm(T) < ary (1) (%) + A (70 (2)) (D1 (2) (7)) + C

= Qr, (x) ($) + Az, (T (x)) (Tn(m)) +C

= cp(z) + e (T"(x)) + C.
Similarly, we have also

Cntm(T) 2 Ar, (2) (z) + aTm(T"(x))(Tn<x)) -C
= cp(x) + e (T"(x)) — C.

This shows that ¢ is an almost additive sequence with respect to 1. O

Now we consider the sets By(x,¢) in (2.1) with X = A.

Lemma 3.2. Given § > 0, there exists a Markov system Rq,..., Ri and a constant
C > 0 such that
Ri,n-uin C BTn(y) (yv 05)

for everyn e N andy € R

i -

Proof. Since the rectangles of a Markov system can have arbitrarily small diameters,
for each § > 0 there exist Ry,..., R; such that

(3.6) R; C B(z,0) for every z € R;.
Given x,y € R;_,..i,, we have T*(x), T*(y) € R;, for k € {0,...,n}. On the other
hand, by (3.6),
Ri, € B(T*(y),0)
and so d(T*(x), T*(y)) < & for k € {0,1,...,n}. Finally, by the uniform continuity
)

of (t,z) — ¢¢(x) on compact sets, there exists C' = C(§) > 0 (independent of n)
such that

d(¢s(x),ds(y)) < C6 for s € [0, 7 (y)]
(see Figure 1). This yields the desired statement. O
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Given § > 0 and a Markov system as in Lemma 3.2, we consider the numbers

V() = sup{Jea(@) — ealy)] : 2,y € Riyoiy }
for n € N. We recall that a family of functions a is said to have bounded variation
if for every x > 0 there exists € > 0 such that

lat(x) — at(y)| < K  whenever y € By(x,¢).
We shall always assume that Cd < .

Lemma 3.3. If a has bounded variation and sup;c(g 4 |atlloc < 00 for some s >0,
then sup, ey Vo(c) < oo (in particular, ¢ has tempered variation).

Proof. Take z,y € R;_,,..;, and w,w’ € ¥4 such that T'(z) = n(c(w)) and T(y) =

7(o(w)). Choosing S > 1 so that 7o 7 is Lipschitz, say with Lipschitz constant
L > 0, one can write

n—1 n—1
(@) = Ta(y)] = | Y 7(TH(x) = Y 7(T'(y))
1=0 1=0
n—1
<Y Hrom) (o' (w)) = (rom)(a' (W)
=0
n—1
<D Lds(o' (), 0! ("))
1=0
This implies that there exists D > 0 (independent of z, y and n) such that
(3.7) [T (2) = Ta(y)| < D.

Assuming without loss of generality that 7,,(z) > 7,(y), since the family a is almost
additive, we have

(@) (T) < (@) =7 () (T) + Cry () (Pr (@)= () (7)) + C
Together with (3.7), this implies that
en(2) — en(y) = ar,,(2)(®) — Az, () ()
< !@Tn (@) =70 () ()| F [@r () (D (2) =7 (1) (%)) = Crp () (W) + C
< Sup] lailloo + [@r, () (Dr, (2)—rn(y) (@) — Az, (W) + C

)

(3.8)

< sup HalHOO + ‘aTn(y)(¢Tn(Jf)—Tn(y) ($)) = Gz, (y) (ZC)’
1€[0,D]

+ lar, @) (@) = ar, @) (W) + C.
Since a is almost additive and sup,¢(g 4 [|at||c < oo for some s > 0, we have

(3.9) sup Jlarllo < M
1€[0,D)

for some constant M > 0. Moreover, by the definition of bounded variation,
(3‘10) ’aTn(y) (l‘) - aTn(y)(y)’ < K.

Now note that
Y= ¢—Tn(y) ((b'rn(y) (y)) = ¢—Tn(y) (Tn(y)>
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and define
2:= ¢_r (y) (D1 (2)(T) = O—ppy (i) (T (2)).

Since T"(z), T"(y) € Ri, and the map p — ¢_, (,)(p) is uniformly continuous on
compact sets, there exists 6’ > 0 (depending only on ¢§) such that d(y, z) < §’. Thus,

d(z,z) < d(z,y) +d(y,2) <d+7".

By the uniform continuity of the map (¢,z) — ¢;(x) on the set [0, 7,(y)] x A, there
exists € > 0 such that

d(ps(z), ps(2)) < e for s € [0, 7,(y)].
Again by the bounded variation property, we have
(3.11) ]a.rn(y)(z) — G, (y) ()] < k.
By (3.8) together with (3.9), (3.10) and (3.11), we obtain
en(x) —cen(y) < M+ 26+ C.
Similarly, using the inequality
Oy (1) () 2 Oy ()= () () F Oy (1) (D (1) 7 () (2)) — C,

one can show that

cn(z) —cnly) > —(M + 26+ C).
This yields the desired statement. g

We continue with an auxiliary result. Assume that sup,c(g 4 [|atflco < 0.

Lemma 3.4. For every ®-invariant measure p on A induced by an ergodic Tz-
nvariant measure v on Z, we have

1 1
(3.12) lim — [ a;dp = lim / Cndl/// T dv.
t—=oo t fp n—+oomn [y 7

Proof. Since v is ergodic, the measure p is also ergodic and so by Kingman’s sub-
additive ergodic theorem, we have

Qr,, () \ T . .1
lim ﬂ = lim at(x) = lim — apdp =:1
n—o00 Tn(qj) t—oco t t—oo t fu

for v-almost every x € Z. It follows from Egorov’s theorem that given ¢ > 0,
there exists a measurable set Z. C Z with v(Z;) > 1 — € on which ¢, /7, converges

uniformly to 1. We assume in addition that
/ gy — / oy
- n z n

/ TndV—/TdV
. N z

for all n € N, which is possible since |, L, Tndv=mn S , T dv and since

(3.13) <e and <e

Cn(l‘) B aTn(m)(x) ) Tn(x)

n Tn () n

is a product of uniformly bounded sequences (because sup;cpo 4 [|atllc < o0). In
particular, there exists N € N such that

(n = &)n(@) < en(x) < (0 + &) (2)
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for all x € Z. and n > N. Together with (3.13) this gives

(n—e) </Zrdu—s>—5</zc;zdu<(77+a) (/Zrdy+5>+5

for all n > N. Taking n — oo and then £ — 0, we obtain property (3.12). O

It follows from Lemma 3.4 that

1 .1
(@) + Jim = | adpe= <hU(TZ)+nlggon/chdu> //Zle/.
Note that in Theorem 2.1 one can replace M by the set of ergodic measures (see
Lemma 2.4). Hence, Py(a) = 0 if and only if Pr,(c) = 0. Moreover, if Py(a) = 0,
then p is an equilibrium measure for a if and only if v is an equilibrium measure
for c.

3.3. Existence of Gibbs measures. Now we introduce the notion of a Gibbs
measure for a flow in the present context. A measure p on a hyperbolic set A for a
flow @ is called a Gibbs measure for a if it is induced by a measure v on Z = Ule R;
satisfying

exp [—2nPr, (c) + con(x)]
for some constant K > 1, for every n € N and = € R;_,..;, (recall that ¢,(z) =

r,(z)(z) for n € N and z € Z). Considering the sets
-éllln = U Rifn"'i'rﬂ
i_peio
one can verify that this is equivalent to require that

o V(R i)
(3.14) K< exp [—nPTZ (C) + Cn(x)]

<K

for some constant K > 1, for every n € N and x € ann If the measure v is also
invariant, then
cn(z)  logK 1 ~ cn(z)  logK

< n log V(Ril-"in) < Pr, (c) — + )

P —
Tz (C) n n

which implies that

n n

1 ~ n
hy(Tz,z) := lim ——logv(R;,....,,) = Pr,(c) — lim en(@)
—

n—oo n n—oo n

By the Shannon-McMillan-Breiman theorem, we have

h(Ty) = /Z h(Ty, ) di(z)

= Pr,(c) — /Z lim n() dv(z)

n—oo n

1
= Pr,(c) — lim /chdy

n—oo n
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and so )
Pr,(c) = hy(Tz) + lim / ¢ dv.
z

n—oo N,
This shows that any invariant Gibbs measure satisfying (3.14) is an equilibrium
measure for ¢ with respect to the map T.
Finally, we state our result on the existence of Gibbs measures.

Theorem 3.5. Let A be a hyperbolic set for a topologically mizing C* flow ® and let
a be an almost additive family of continuous functions on A with bounded variation
such that Pe(a) =0 and sup,cpo 4 [latl|c < 00 for some s > 0. Then:

(1) there exists a unique equilibrium measure for a;
(2) there exists a unique invariant Gibbs measure for a;
(3) the two measures are equal and are ergodic.

Proof. We always consider a Markov system with sufficiently small diameter as in
Lemmas 3.2 and 3.3. Let ¢ be the sequence in (3.4).

Lemma 3.6 (see [4, Theorem 10.1.4]). We have

1
Pr,(c) = nlglolo - log Z exp ¢ (i, i)
i1 0n
for any z;,..;, € Ry, ...i,,, for each (i1---i,) € ¥, and n € N.
Now let

hiy..i, = max{expcp(y) : y € Riy.i,} and Hy = Z Ry, -
11t
Moreover, we define a probability measure v, in the algebra generated by the sets
ann by
Vn(Riynin) = huzn/Hn

for each (i1 ---i,) € ¥, and we extend it to the Borel o-algebra B of Z. Let Mz(c)
be the set of all sublimits of the sequence (vy),en. Since Z is compact, Mz(c) is
sequentially compact and so it is nonempty.

Lemma 3.7 (see [4, Lemmas 10.1.10 and 10.1.11]). The following two properties
hold:

(1) each v € Mz(c) is a Gibbs measure for ¢ with respect to Tz ;
(2) any Gibbs measure for ¢ with respect to Ty is ergodic.

Using the former properties, one can now proceed as in the proof of Theo-
rem 10.1.9 in [4] to show that:

(1) there exists a unique equilibrium measure v, for Tz;
(2) there exists a unique invariant Gibbs measure for T'z;
(3) the two measures coincide and are ergodic.

The measure v, induces a ®-invariant probability measure p, on A by (3.2). More-
over, any ®-invariant probability measure p on A is of this form for some T-
invariant probability measure v on Z.

Since Pg(a) = 0, the measure p is an equilibrium measure for a with respect to
® if and only if v is an equilibrium measure for ¢ with respect to Tz. Furthermore,
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one can verify that p is ergodic with respect to ® if and only if v is ergodic with
respect to Tz. This readily implies the three properties in the theorem (note that
lig is the unique equilibrium measure for a). O
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