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principle for the topological pressure (for discrete time), although with restrictive
assumptions on the sequence Φ. This justifies the interest in looking for more gen-
eral classes of sequences of functions for which it is still possible to establish a
variational principle, including in the case of flows.

Our main objective is precisely to consider a new class of families for which it is
still possible not only to establish a variational principle for the topological pressure,
but also to discuss the existence and uniqueness of equilibrium and Gibbs measures.
This is the class of almost additive families: a family of functions (at)t≥0 is said to
be almost additive with respect to a flow (ϕt)t∈R if there exists a constant C > 0
such that

−C + at + as ◦ ϕt ≤ at+s ≤ at + as ◦ ϕt + C

for every t, s ≥ 0. In particular, we establish the following variational principle
for the topological pressure. We denote by M the set of all Φ-invariant probability
measures on X and we refer to Section 2 for the notion of tempered variation.

Theorem 1.1. Let Φ be a continuous flow on a compact metric space X and let a
be an almost additive family of continuous functions with tempered variation such
that supt∈[0,s] ‖at‖∞ < ∞ for some s > 0. Then

(1.1) P (a) = sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
.

To the possible extent we follow the proof of Theorem 4.3.1 in [4]. In order to
obtain the lower bound for the topological pressure, we first show that

P (a) ≥ hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ

for each ergodic measure µ ∈ M. Since we need to use Birkhoff’s ergodic theorem
with respect to the time-1 map, but µ need not be ergodic with respect this map,
we consider an ergodic decomposition of µ with respect to the time-1 map.

We also consider the particular case of hyperbolic flows and we establish the
existence and uniqueness of the equilibrium measure of an almost additive family
of continuous functions with bounded variation as well as its Gibbs property. We
say that a Φ-invariant measure µ on X is an equilibrium measure for the almost
additive family a (with respect to the flow Φ) if the supremum in (1.1) is attained
at µ, that is, if

P (a) = hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ.

The notion of a Gibbs measure requires introducing the somewhat technical notion
of a Markov system (see Section 3.1). Our main result is the following theorem.

Theorem 1.2. Let Λ be a hyperbolic set for a topologically mixing C1 flow Φ and let
a be an almost additive family of continuous functions on Λ with bounded variation
such that P (a) = 0 and supt∈[0,s] ‖at‖∞ < ∞ for some s > 0. Then:

(1) there exists a unique equilibrium measure for a;
(2) there exists a unique invariant Gibbs measure for a;
(3) the two measures are equal and are ergodic.
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Note that there is no loss of generality in assuming that P (a) = 0. Indeed, let
b = (bt)t≥0 be an almost additive family of continuous functions on Λ with bounded
variation such that supt∈[0,s] ‖bt‖∞ < ∞ for some s > 0. Then let a = (at)t≥0 be
the family of continuous functions on Λ defined by

at = bt − P (b)t

for each t ≥ 0. Clearly, a is almost additive, has bounded variation and satisfies
supt∈[0,s] ‖at‖∞ < ∞ and P (a) = 0. For each Φ-invariant probability measure µ
on Λ we have

1

t

∫
X
at dµ =

1

t

∫
X
bt dµ− P (b).

This readily implies that a and b have the same equilibrium measures. The idea of
the proof of Theorem 1.2 is to consider an almost additive sequence

cn(x) = aτn(x)(x)

on the base Z ⊂ Λ of a Markov system, where τn(x) is the nth-return time to Z
(see Section 3.1 for details). The desired result can then be obtained from a corre-
sponding result on the base.

To the possible extent, and up to the need of some nontrivial modifications in
the case of flows, our arguments are inspired by work in [2] for discrete time.

2. Variational principle

In this section we consider the nonadditive topological pressure for a flow and
we establish a version of the variational principle for an almost additive family of
continuous functions.

We first recall the notion of nonadditive topological pressure for a flow. Let
Φ = (ϕt)t∈R be a continuous flow on a compact metric space (X, d). Moreover, let
a = (at)t≥0 be a family of continuous functions at : X → R with tempered variation.
This means that

lim
ε→0

lim
t→+∞

γt(a, ε)

t
= 0,

where

γt(a, ε) = sup
{
|at(y)− at(x)| : y ∈ Bt(x, ε) for some x ∈ X

}
taking

(2.1) Bt(x, ε) =
{
y ∈ X : d(ϕs(y), ϕs(x)) < ε for s ∈ [0, t]

}
.

Given ε > 0, we say that a set Γ ⊂ X × R+
0 covers Z ⊂ X if⋃

(x,t)∈Γ

Bt(x, ε) ⊃ Z

and we write

a(x, t, ε) = sup
{
at(y) : y ∈ Bt(x, ε)

}
for (x, t) ∈ Γ.

For each Z ⊂ X and α ∈ R, let

(2.2) M(Z, a, α, ε) = lim
T→+∞

inf
Γ

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt),
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with the infimum taken over all countable sets Γ ⊂ X × [T,+∞) covering Z. When
α goes from −∞ to +∞, the quantity in (2.2) jumps from +∞ to 0 at a unique
value and so one can define

P (a|Z , ε) = inf
{
α ∈ R : M(Z, a, α, ε) = 0

}
.

Moreover, the limit

P (a|Z) = lim
ε→0

P (a|Z , ε)

exists and is called the nonadditive topological pressure of the family a on the set Z.
For simplicity of the notation, we shall also write P (a|X) = P (a).

Now we establish a version of the variational principle for the topological pressure
of an almost additive family of continuous functions. We recall that a family a =
(at)t≥0 of functions at : X → R is said to be almost additive (with respect to a
flow Φ) if there exists a constant C > 0 such that

−C + at + as ◦ ϕt ≤ at+s ≤ at + as ◦ ϕt + C

for every t, s ≥ 0. We denote by M the set of all Φ-invariant probability measures
on X, that is, the probability measures µ on X such that

µ(ϕt(A)) = µ(A)

for any Borel set A ⊂ X and any t ∈ R. Moreover, for each µ ∈ M, let hµ(Φ) be
the Kolmogorov–Sinai entropy of Φ with respect to µ.

Theorem 2.1. Let Φ be a continuous flow on a compact metric space X and let a
be an almost additive family of continuous functions with tempered variation such
that supt∈[0,s] ‖at‖∞ < ∞ for some s > 0. Then

P (a) = sup
µ∈M

(
hµ(Φ) +

∫
X

lim
t→∞

at(x)

t
dµ(x)

)
= sup

µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
.

(2.3)

Proof. To the possible extent we follow the proof of Theorem 4.3.1 in [4] while we
also highlight the differences. Since a is almost additive, we have

at+s + C ≤ (at + C) + as ◦ ϕt + C

for s, t ≥ 0. Thus, (an + C)n∈N is subadditive and it follows from Kingman’s
subadditive ergodic theorem that for each measure µ ∈ M the limit

ã(x) = lim
n→∞

(an(x)/n)

exists for µ-almost every x ∈ X. Now let [x] be the integer part of the real number x.
Again since a is almost additive, we have

(2.4) −C + a[t] + at−[t] ◦ ϕ[t] ≤ at ≤ a[t] + at−[t] ◦ ϕ[t] + C
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for t > 0. Taking N ∈ N such that 1/N < s (with s as in the statement of the
theorem), we obtain∣∣∣∣at(x)t

−
a[t](x)

t

∣∣∣∣ ≤ ∣∣∣∣(at−[t] ◦ ϕ[t])(x)

t

∣∣∣∣+ C

t

≤
supt∈[0,1] ‖at‖∞

t
+

C

t

≤
N supt∈[0,1/N ] ‖at‖∞

t
+

NC

t

≤
N supt∈[0,s] ‖at‖∞

t
+

NC

t
.

Taking the limit when t → ∞ gives

(2.5) lim
t→∞

∣∣∣∣at(x)t
−

a[t](x)

t

∣∣∣∣ = 0.

Since

lim
t→∞

a[t](x)

t
= lim

t→∞

[t]

t

a[t](x)

[t]
= lim

t→∞

a[t](x)

[t]
= ã(x),

it follows from (2.5) that

lim
t→∞

at(x)

t
= ã(x)

for µ-almost every x ∈ X. Moreover,

−C[t] +

[t]−1∑
k=0

a1 ◦ ϕk ≤ a[t] ≤
[t]−1∑
k=0

a1 ◦ ϕk + C[t]

and so |a[t]/[t]| ≤ ‖a1‖∞ +C. Hence, it follows from Lebesgue’s dominated conver-

gence theorem that a[t]/[t] → ã in L1(X,µ) when t → ∞ and

(2.6) lim
t→∞

1

[t]

∫
X
a[t] dµ =

∫
X
ã dµ =

∫
X

lim
t→∞

a[t]

[t]
dµ.

Finally, by (2.4) we have∣∣∣∣1t
∫
X
at dµ− [t]

t

1

[t]

∫
X
a[t] dµ

∣∣∣∣ ≤ ∣∣∣∣1t
∫
X
at−[t] ◦ ϕ[t] dµ

∣∣∣∣+ C

t
µ(X)

≤ 1

t
µ(X) sup

s∈[0,1]
‖as‖∞ +

C

t
µ(X)

and so, using (2.6), we obtain

lim
t→∞

1

t

∫
X
at dµ = lim

t→∞

[t]

t

1

[t]

∫
X
a[t] dµ =

∫
X

lim
t→∞

at(x)

t
dµ(x).

This shows that the two limits in (2.3) exist and are equal.
Now we establish the inequality

(2.7) P (a) ≤ sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
.
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Given x ∈ X, we define a probability measure on X by

µx,t =
1

t

∫ t

0
δϕs(x) ds,

where δy is the probability measure concentrate on y. Let also V (x) be the set of
all sublimits of the family (µx,t)t>0. The following result can be obtained as in the
proof of Theorem 10.1.5 in [4].

Lemma 2.2. Given x ∈ X and µ ∈ V (x), there exists an increasing sequence
(tn)n∈N such that

lim
n→∞

atn(x)

tn
= lim

t→∞

1

t

∫
X
at dµ.

We also need the following technical property (see [6] for a corresponding result
in the additive case).

Lemma 2.3. Let Γ ⊂ X × {1} be a finite cover of X. For the open cover V =
{V1, . . . , Vr} of X, where Vj = B1(xj , ε/2) with (xj , 1) ∈ Γ, there exist m,T ∈ N
with T arbitrary large and a sequence U = Vi1 · · ·ViT such that:

(1) x ∈
⋂T

r=1 ϕ−r+1Vir and

aT (x) ≤ T

(
lim
t→∞

1

t

∫
X
at dµ+ δ

)
;

(2) there exists a subset V ∈ (Vm)k of U of length km ≥ T − m such that
H(V ) ≤ m(hµ(Φ) + δ).

Proof of the lemma. By Lemma 2.2, given δ > 0, we have∣∣∣∣atn(x)tn
− lim

t→∞

1

t

∫
X
at dµ

∣∣∣∣ < δ

for any sufficiently large n. So one can take T arbitrarily large such that

aT (x) ≤ T

(
lim
t→∞

1

t

∫
X
at dµ+ δ

)
and the first property follows. The second property can be obtained as in the proof
of Lemma 4.3.2 in [4]. □

Given δ > 0, m ∈ N and u ∈ R, let Xm,u be the set of points x ∈ X satisfying
the two properties in Lemma 2.3 for some measure µ ∈ V (x) with

u− δ ≤ lim
t→∞

1

t

∫
X
at dµ ≤ u+ δ.

Moreover, let nT be the number of all sequences U ∈ VT with these two properties
for some point x ∈ Xm,u. Taking

c = sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
and

α > c+ 3δ + lim
t→+∞

γt(a, ε)

t
,
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one can proceed as in the proof Theorem 4.3.1 in [4] to obtain

nT ≤ exp[T (hµ(Φ) + 2δ)]

for any sufficiently large T and so also

M(Xm,u, a, α, ε) = 0 and α > P (a|Xm,u , ε).

Finally, taking points u1, . . . , ur such that for each u ∈ [inf ã, sup ã] there exists
j ∈ {1, . . . , r} with |u− uj | < δ, we have

X =
⋃
m∈N

r⋃
i=1

Xm,ui

and so

P (a) = lim
ε→0

P (a, ε) = lim
ε→0

sup
m,i

P (a|Xm,ui
, ε)

≤ c+ lim
ε→0

lim
t→∞

γt(a, ε)

t
+ 3δ = c+ 3δ.

Since δ is arbitrary, we conclude that P (a) ≤ c and so inequality (2.7) holds.
To obtain the reverse inequality P (a) ≥ c, to the possible extent we adapt corre-

sponding arguments in the proof of Lemma 4.3.5 in [4], although this step requires
an additional ingredient. The reason is that we are considering an ergodic measure
µ with respect to the flow, but we need to use the ergodic theorem with respect to
the time-1 map. Since µ need not be ergodic with respect this map, we consider an
ergodic decomposition of µ with respect to the time-1 map.

Lemma 2.4. For each ergodic measure µ ∈ M, we have

P (a) ≥ hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ.

Proof of the lemma. Given ε > 0, there exist δ ∈ (0, ε), a measurable partition
ξ = {C1, . . . , Cm} of X and an open cover V = {V1, . . . , Vk} of X for some k ≥ m
such that:

(1) diamCj ≤ ε, Vi ⊂ Ci and µ(Ci \ Vi) < δ2 for i = 1, . . . ,m;

(2) the set E =
⋃k

i=m+1 Vi has measure µ(E) < δ2.

We consider a measure ν in the ergodic decomposition of µ with respect to the
time-1 map ϕ1. The ergodic decomposition is described by a measure τ in the
space M′ of ϕ1-invariant probability measures that is concentrated on the ergodic
measures (with respect to ϕ1). Note that ν(E) < δ for ν in a set Mδ ⊂ M′ of
positive τ -measure such that τ(Mδ) → 1 when δ → 0.

For each x ∈ X and n ∈ N, let sn(x) be the number of integers l ∈ [0, n) such
that ϕl

1(x) ∈ E. By Birkhoff’s ergodic theorem, since ν is ergodic for ϕ1 we have

(2.8) lim
n→+∞

sn(x)

n
= lim

n→+∞

1

n

n−1∑
j=0

χE(ϕ
j
1(x)) =

∫
X
χE dν = ν(E)



44 L. BARREIRA AND C. HOLANDA

for ν-almost every x ∈ X. On the other hand, by Lemma 2.2, there exists an
increasing sequence of integers (tn)n∈N such that

(2.9) lim
n→∞

atn(x)

tn
= lim

t→∞

1

t

∫
X
at dµ

for µ-almost every x ∈ X. By (2.8) and (2.9) together with Egorov’s theorem, there
exist ν ∈ Mδ, N1 ∈ N and a measurable set A1 ⊂ X with ν(A1) ≥ 1− δ such that

(2.10)
sn(x)

n
< 2δ and

∣∣∣∣an(x)n
− lim

t→∞

1

t

∫
X
at dµ

∣∣∣∣ < δ

for every x ∈ A1 and n > N1. For the partition

ξn :=
n∨

j=0

ϕ−j
1 (ξ),

one can use the Shannon–McMillan–Breiman theorem and again Egorov’s theorem
to conclude that there exist N2 ∈ N and a measurable set A2 ⊂ X with ν(A2) ≥ 1−δ
such that

(2.11) ν(ξn(x)) ≤ exp [(−hν(ϕ1, ξ) + δ)n]

for every x ∈ A2 and n > N2, where ξn(x) is the element of ξn containing x. We
take N = max{N1, N2} and A = A1∩A2. Then ν(A) ≥ 1−2δ and by construction,
(2.10) and (2.11) hold for every x ∈ A and n > N .

Let ∆ be a Lebesgue number of the cover V and take ε > 0 with 2ε < ∆. Given
α ∈ R, take N ≥ N such that for each n ≥ N there exists a set Γ ⊂ X × [n,+∞)
covering X with ∣∣∣∣∣∣

∑
(x,t)∈Γ

exp(a(x, t, ε)− αt)−M(X, a, α, ε)

∣∣∣∣∣∣ < δ.

Without loss of generality, we also assume that N is so large such that

γl(a, ε)

l
≤ lim

t→+∞

γt(a, ε)

t
+ δ

for all l ≥ N . Moreover, given l ∈ N, let

Γl =
{
(x, t) ∈ Γ : Bl(x, ε) ∩A 6= ∅

}
and let Bl =

⋃
(x,t)∈ΓBt(x, ε). Following arguments in [4], it follows from the first

inequality in (2.10) and (2.11) that

cardΓl ≥ ν(Bl ∩A) exp
[
hν(ϕ1, ξ)l − (1 + 2 log card ξ)lδ

]
for l ∈ N. This implies that (see [4])

P (a, ε) ≥ hν(ϕ1, ξ) + lim
t→∞

1

t

∫
X
at dµ− lim

t→+∞

γt(a, ε)

t
.
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Now we consider measurable partitions ξl and open covers Vl as before with ε = 1/l.
For each l, take εl > 0 such that 2εl < 1/l is a Lebesgue number of the cover Vl.
Since diam ξl → 0 when l → +∞, we have

lim
l→+∞

hν(ϕ1, ξl) = hν(ϕ1).

Since the family a has tempered variation, we obtain

P (a) = lim
l→+∞

P (a, εl)

≥ lim
l→+∞

hν(ϕ1, ξl) + lim
t→∞

1

t

∫
X
at dµ− lim

l→+∞
lim

t→+∞

γt(a, εl)

t

= hν(ϕ1) + lim
t→∞

1

t

∫
X
at dµ.

Integrating with respect to ν gives

P (a) ≥
∫
Mδ

hν(ϕ1) dτ(ν) + lim
t→∞

1

t

∫
X
at dµ

and letting δ → 0 yields the inequality

P (a) ≥
∫
M′

hν(ϕ1) dτ(ν) + lim
t→∞

1

t

∫
X
at dµ

= hµ(ϕ1) +

∫
Z
b dµ = hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ.

This completes the proof of the lemma. □
Now we consider the set

Xµ =
{
x ∈ X : V (x) = {µ}

}
.

When µ ∈ M is ergodic, Xµ is a nonempty Φ-invariant set and µ(Xµ) = 1. Hence,
it follows from Lemma 2.4 that

P (a) ≥ P (a|Xµ)

≥ hµ(Φ|Xµ) + lim
t→∞

1

t

∫
Xµ

at dµ

= hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ.

When µ ∈ M is arbitrary, we can decompose X into ergodic components and use
the previous argument to show that

P (a) ≥ sup
µ∈M

(
hµ(Φ) + lim

t→∞

1

t

∫
X
at dµ

)
.

This completes the proof of the theorem. □
We say that a Φ-invariant measure µa is an equilibrium measure for the almost

additive family a (with respect to the flow Φ) if the supremum in (2.3) is attained
at µa, that is, if

(2.12) P (a) = hµa(Φ) + lim
t→∞

1

t

∫
X
at dµa.



46 L. BARREIRA AND C. HOLANDA

The following result gives a criterion for the existence of equilibrium measures in
this context.

Theorem 2.5. Let Φ be a continuous flow on a compact metric space X such that
the map µ 7→ hµ(Φ) is upper semicontinuous. Then each almost additive family a
of continuous functions with tempered variation such that supt∈[0,s] ‖at‖∞ < ∞ for
some s > 0 has at least one equilibrium measure.

Proof. Since an + C is a subadditive sequence , the real sequence
∫
X(an + C) dµ is

also subadditive. Then

lim
n→∞

1

n

∫
X
an dµ = lim

n→∞

1

n

∫
X
(an + C) dµ

≤ 1

n

∫
X
(an + C) dµ

=
1

n

∫
X
an dµ+

C

n
.

(2.13)

Similarly, the sequence
∫
X(an − C) dµ is supadditive and so

(2.14) lim
n→∞

1

n

∫
X
an dµ ≥ 1

n

∫
X
an dµ− C

n
.

It follows from (2.13) and (2.14) that∣∣∣∣ limn→∞

1

n

∫
X
an dµ− 1

n

∫
X
an dµ

∣∣∣∣ ≤ C

n
.

Now let µm be a sequence of measures converging to µ. Then∣∣∣∣ limn→∞

1

n

∫
X
an dµm − 1

n

∫
X
an dµm

∣∣∣∣ ≤ C

n

for every m,n ∈ N. Letting m → ∞ and then n → ∞, we obtain

lim
m→∞

lim
n→∞

1

n

∫
X
an dµm = lim

n→∞

1

n

∫
X
an dµ.

This shows that the map

µ 7→ lim
t→∞

1

t

∫
X
at dµ

is continuous for each almost additive family a. Together with the upper semicon-
tinuity of the map µ 7→ hµ(Φ), this implies that the map

µ 7→ hµ(Φ) + lim
t→∞

1

t

∫
X
at dµ

is upper semicontinuous. Hence, in view of the compactness of M there exists a
measure µa ∈ M satisfying (2.12). □

3. Hyperbolic flows

In this section we consider the particular case of hyperbolic flows and we describe
a general condition for the uniqueness of the equilibrium measure of an almost
additive family of continuous functions with tempered variation as well as for its
Gibbs property.
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3.1. Basic notions. Let Φ = (ϕt)t∈R be a C1 flow on a smooth manifold M . A
compact Φ-invariant set Λ ⊂ M is called a hyperbolic set for Φ if there exists a
splitting

TΛM = Es ⊕ Eu ⊕ E0

and constants c > 0 and λ ∈ (0, 1) such that for each x ∈ Λ:

(1) the vector (d/dt)ϕt(x)|t=0 generates E0(x);
(2) for each t ∈ R we have

dxϕtE
s(x) = Es(ϕt(x)) and dxϕtE

u(x) = Eu(ϕt(x));

(3) ‖dxϕtv‖ ≤ cλt‖v‖ for v ∈ Es(x) and t > 0;
(4) ‖dxϕ−tv‖ ≤ cλt‖v‖ for v ∈ Eu(x) and t > 0.

Given a hyperbolic set Λ for a flow Φ, for each x ∈ Λ and any sufficiently small
ε > 0 we define

As(x) =
{
y ∈ B(x, ε) : d(ϕt(y), ϕt(x)) ↘ 0 when t → +∞

}
and

Au(x) =
{
y ∈ B(x, ε) : d(ϕt(y), ϕt(x)) ↘ 0 when t → −∞

}
.

Moreover, let
V s(x) ⊂ As(x) and V u(x) ⊂ Au(x)

be the largest connected components containing x. These are smooth manifolds,
called respectively (local) stable and unstable manifolds of size ε at the point x,
satisfying:

(1) TxV
s(x) = Es(x) and TxV

u(x) = Eu(x);
(2) for each t > 0 we have

ϕt(V
s(x)) ⊂ V s(ϕt(x)) and ϕ−t(V

u(x)) ⊂ V u(ϕ−t(x));

(3) there exist κ > 0 and µ ∈ (0, 1) such that for each t > 0 we have

d(ϕt(y), ϕt(x)) ≤ κµtd(y, x) for y ∈ V s(x)

and
d(ϕ−t(y), ϕ−t(x)) ≤ κµtd(y, x) for y ∈ V u(x).

We recall that a set Λ is said to be locally maximal (with respect to a flow Φ) if
there exists an open neighborhood U of Λ such that

Λ =
⋂
t∈R

ϕt(U).

Given a locally maximal hyperbolic set Λ and a sufficiently small ε > 0, there
exists δ > 0 such that if x, y ∈ Λ satisfy d(x, y) ≤ δ, then there exists a unique
t = t(x, y) ∈ [−ε, ε] such that

[x, y] := V s(ϕt(x)) ∩ V u(x)

is a single point in Λ.
Now we make some preparations to introduce the notion of a Markov system.

Consider an open smooth disk D ⊂ M of dimension dimM − 1 that is transverse
to Φ and take x ∈ D. Let U(x) be an open neighborhood of x diffeomorphic to
D × (−ε, ε). Then the projection πD : U(x) → D defined by πD(ϕt(y)) = y is
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differentiable. We say that a closed set R ⊂ Λ ∩D is a rectangle if R = intR and
πD([x, y]) ∈ R for x, y ∈ R.

Consider rectangles R1, . . . , Rk ⊂ Λ (each contained in some open smooth disk
transverse to the flow) such that

Ri ∩Rj = ∂Ri ∩ ∂Rj for i 6= j.

Let Z =
⋃k

i=1Ri. We assume that there exists ε > 0 such that:

(1) Λ =
⋃

t∈[0,ε] ϕt(Z);

(2) whenever i 6= j, either

ϕt(Ri) ∩Rj = ∅ for all t ∈ [0, ε]

or

ϕt(Rj) ∩Ri = ∅ for all t ∈ [0, ε].

We define the function τ : Λ → R+
0 by

τ(x) = min
{
t > 0 : ϕt(x) ∈ Z

}
,

and the transfer map T : Λ → Z by

(3.1) T (x) = ϕτ(x)(x).

The restriction TZ of T to Z is invertible and we have Tn(x) = ϕτn(x)(x), where

τn(x) =
n−1∑
i=0

τ(T i(x)).

The collection R1, . . . , Rk is said to be a Markov system for Φ on Λ if

T (int(V s(x) ∩Ri)) ⊂ int(V s(T (x)) ∩Rj)

and

T−1(int(V u(T (x)) ∩Rj)) ⊂ int(V u(x) ∩Ri)

for every x ∈ intT (Ri) ∩ intRj and i, j = 1, . . . , k. By work of Bowen [5] and
Ratner [11], any locally maximal hyperbolic set Λ has Markov systems of arbitrarily
small diameter and the function τ is Hölder continuous on each domain of continuity.

Given a Markov system R1, . . . , Rk for a flow Φ on a locally maximal hyperbolic
set Λ, we consider the k × k matrix A with entries

aij =

{
1 if intT (Ri) ∩Rj 6= ∅,
0 otherwise,

where T is the map in (3.1). We also consider the set

ΣA =
{
(· · · i−1i0i1 · · · ) : ainin+1 = 1 for n ∈ Z

}
⊂ {1, . . . , k}Z

and the shift map σ : ΣA → ΣA defined by

σ(· · · i0 · · · ) = (· · · j0 · · · ),

where jn = in+1 for each n ∈ Z. We denote by Σn the set of ΣA-admissible
sequences of length n, that is, the finite sequences (i1 · · · in) for which there exists
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(· · · j0j1j2 · · · ) ∈ ΣA such that (i1 . . . in) = (j1 · · · jn). Finally, we define a coding
map π : ΣA → Z by

π(· · · i0 · · · ) =
⋂
n∈Z

Ri−n···in ,

where

Ri−n···in =
n⋂

l=−n

T−l
Z intRil .

The following properties hold:

(1) π ◦ σ = T ◦ π;
(2) π is Hölder continuous and onto;
(3) π is one-to-one on a full measure set with respect to any ergodic measure of

full support and on a residual set.

Given β > 1, we equip ΣA with the distance dβ defined by

dβ(ω, ω
′) =

{
β−n if ω 6= ω′,

0 if ω = ω′,

where n = n(ω, ω′) ∈ N ∪ {0} is the smallest integer such that in(ω) 6= in(ω
′) or

i−n(ω) 6= i−n(ω
′). One can always choose β so that τ ◦ π is Lipschitz.

Now let ν be a TZ-invariant probability measure on Z. One can show that ν
induces a Φ-invariant probability measure µ on Λ such that

(3.2)

∫
Λ
g dµ =

∫
Z

∫ τ(x)
0 (g ◦ ϕs)(x) ds dν∫

Z τ dν

for any continuous function g : Λ → R. In fact, any Φ-invariant probability measure
µ on Λ is of this form for some TZ-invariant probability measure ν on Z. Abramov’s
entropy formula says that

(3.3) hµ(Φ) =
hν(TZ)∫
Z τ dν

.

By (3.2) and (3.3) we obtain

hµ(Φ) +

∫
Λ
g dµ =

hν(TZ) +
∫
Z Ig dν∫

Z τ dν
,

where

Ig(x) =

∫ τ(x)

0
(g ◦ ϕs)ds.

3.2. Technical preparations. In this section we make a few technical prepara-
tions. We start by considering the sequence of functions cn : Z → R defined by

(3.4) cn(x) = aτn(x)(x).

Lemma 3.1. The sequence c = (cn)n∈N is almost additive with respect to the
map TZ .
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Figure 1. d(ϕs(x), ϕs(y)) < Cδ for s ∈ [0, τn(y)].

Proof. Notice that

(3.5) cn+m(x) = aτn+m(x)(x) = aτn(x)+τm(Tn(x))(x)

for n,m ∈ N. Since a is almost additive with respect to Φ, by (3.5) we have

cn+m(x) ≤ aτn(x)(x) + aτm(Tn(x))(ϕτn(x)(x)) + C

= aτn(x)(x) + aτm(Tn(x))(T
n(x)) + C

= cn(x) + cm(Tn(x)) + C.

Similarly, we have also

cn+m(x) ≥ aτn(x)(x) + aτm(Tn(x))(T
n(x))− C

= cn(x) + cm(Tn(x))− C.

This shows that c is an almost additive sequence with respect to TZ . □

Now we consider the sets Bt(x, ε) in (2.1) with X = Λ.

Lemma 3.2. Given δ > 0, there exists a Markov system R1, . . . , Rk and a constant
C > 0 such that

Ri−n···in ⊂ Bτn(y)(y, Cδ)

for every n ∈ N and y ∈ Ri−n···in.

Proof. Since the rectangles of a Markov system can have arbitrarily small diameters,
for each δ > 0 there exist R1, . . . , Rk such that

(3.6) Rj ⊂ B(z, δ) for every z ∈ Rj .

Given x, y ∈ Ri−n···in , we have T k(x), T k(y) ∈ Rik for k ∈ {0, . . . , n}. On the other
hand, by (3.6),

Rik ⊂ B(T k(y), δ)

and so d(T k(x), T k(y)) < δ for k ∈ {0, 1, . . . , n}. Finally, by the uniform continuity
of (t, x) 7→ ϕt(x) on compact sets, there exists C = C(δ) > 0 (independent of n)
such that

d(ϕs(x), ϕs(y)) < Cδ for s ∈ [0, τn(y)]

(see Figure 1). This yields the desired statement. □
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Given δ > 0 and a Markov system as in Lemma 3.2, we consider the numbers

Vn(c) = sup
{
|cn(x)− cn(y)| : x, y ∈ Ri1···in

}
for n ∈ N. We recall that a family of functions a is said to have bounded variation
if for every κ > 0 there exists ε > 0 such that

|at(x)− at(y)| < κ whenever y ∈ Bt(x, ε).

We shall always assume that Cδ < ε.

Lemma 3.3. If a has bounded variation and supt∈[0,s] ‖at‖∞ < ∞ for some s > 0,

then supn∈N Vn(c) < ∞ (in particular, c has tempered variation).

Proof. Take x, y ∈ Ri−n···in and ω, ω′ ∈ ΣA such that T (x) = π(σ(ω)) and T (y) =
π(σ(ω′)). Choosing β > 1 so that τ ◦ π is Lipschitz, say with Lipschitz constant
L > 0, one can write

|τn(x)− τn(y)| =

∣∣∣∣∣
n−1∑
l=0

τ(T l(x))−
n−1∑
l=0

τ(T l(y))

∣∣∣∣∣
≤

n−1∑
l=0

|(τ ◦ π)(σl(ω))− (τ ◦ π)(σl(ω′))|

≤
n−1∑
l=0

Ldβ(σ
l(ω), σl(ω′)).

This implies that there exists D > 0 (independent of x, y and n) such that

(3.7) |τn(x)− τn(y)| ≤ D.

Assuming without loss of generality that τn(x) > τn(y), since the family a is almost
additive, we have

aτn(x)(x) ≤ aτn(x)−τn(y)(x) + aτn(y)(ϕτn(x)−τn(y)(x)) + C.

Together with (3.7), this implies that

cn(x)− cn(y) = aτn(x)(x)− aτn(y)(y)

≤ |aτn(x)−τn(y)(x)|+ |aτn(y)(ϕτn(x)−τn(y)(x))− aτn(y)(y)|+ C

≤ sup
l∈[0,D]

‖al‖∞ + |aτn(y)(ϕτn(x)−τn(y)(x))− aτn(y)(y)|+ C

≤ sup
l∈[0,D]

‖al‖∞ + |aτn(y)(ϕτn(x)−τn(y)(x))− aτn(y)(x)|

+ |aτn(y)(x)− aτn(y)(y)|+ C.

(3.8)

Since a is almost additive and supt∈[0,s] ‖at‖∞ < ∞ for some s > 0, we have

(3.9) sup
l∈[0,D]

‖al‖∞ ≤ M

for some constant M > 0. Moreover, by the definition of bounded variation,

(3.10) |aτn(y)(x)− aτn(y)(y)| ≤ κ.

Now note that
y = ϕ−τn(y)(ϕτn(y)(y)) = ϕ−τn(y)(T

n(y))
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and define
z := ϕ−τn(y)(ϕτn(x)(x)) = ϕ−τn(y)(T

n(x)).

Since Tn(x), Tn(y) ∈ Rin and the map p 7→ ϕ−τn(y)(p) is uniformly continuous on
compact sets, there exists δ′ > 0 (depending only on δ) such that d(y, z) < δ′. Thus,

d(x, z) ≤ d(x, y) + d(y, z) < δ + δ′.

By the uniform continuity of the map (t, x) 7→ ϕt(x) on the set [0, τn(y)]×Λ, there
exists ε > 0 such that

d(ϕs(x), ϕs(z)) < ε for s ∈ [0, τn(y)].

Again by the bounded variation property, we have

(3.11) |aτn(y)(z)− aτn(y)(x)| ≤ κ.

By (3.8) together with (3.9), (3.10) and (3.11), we obtain

cn(x)− cn(y) ≤ M + 2κ+ C.

Similarly, using the inequality

aτn(x)(x) ≥ aτn(x)−τn(y)(x) + aτn(y)(ϕτn(x)−τn(y)(x))− C,

one can show that
cn(x)− cn(y) ≥ −(M + 2κ+ C).

This yields the desired statement. □
We continue with an auxiliary result. Assume that supt∈[0,s] ‖at‖∞ < ∞.

Lemma 3.4. For every Φ-invariant measure µ on Λ induced by an ergodic TZ-
invariant measure ν on Z, we have

(3.12) lim
t→∞

1

t

∫
Λ
at dµ = lim

n→+∞

1

n

∫
Z
cn dν

/∫
Z
τ dν.

Proof. Since ν is ergodic, the measure µ is also ergodic and so by Kingman’s sub-
additive ergodic theorem, we have

lim
n→∞

aτn(x)(x)

τn(x)
= lim

t→∞

at(x)

t
= lim

t→∞

1

t

∫
Λ
at dµ =: η

for ν-almost every x ∈ Z. It follows from Egorov’s theorem that given ε > 0,
there exists a measurable set Zε ⊂ Z with ν(Zε) > 1− ε on which cn/τn converges
uniformly to η. We assume in addition that

(3.13)

∣∣∣∣∫
Zε

τn
n

dν −
∫
Z
τ dν

∣∣∣∣ < ε and

∣∣∣∣∫
Zε

cn
n

dν −
∫
Z

cn
n

dν

∣∣∣∣ < ε

for all n ∈ N, which is possible since
∫
Z τn dν = n

∫
Z τ dν and since

cn(x)

n
=

aτn(x)(x)

τn(x)
· τn(x)

n

is a product of uniformly bounded sequences (because supt∈[0,s] ‖at‖∞ < ∞). In
particular, there exists N ∈ N such that

(η − ε)τn(x) < cn(x) < (η + ε)τn(x)
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for all x ∈ Zε and n > N . Together with (3.13) this gives

(η − ε)

(∫
Z
τ dν − ε

)
− ε <

∫
Z

cn
n

dν < (η + ε)

(∫
Z
τ dν + ε

)
+ ε

for all n > N . Taking n → ∞ and then ε → 0, we obtain property (3.12). □

It follows from Lemma 3.4 that

hµ(Φ) + lim
t→∞

1

t

∫
Λ
at dµ =

(
hν(TZ) + lim

n→∞

1

n

∫
Z
cn dν

)/∫
Z
τ dν.

Note that in Theorem 2.1 one can replace M by the set of ergodic measures (see
Lemma 2.4). Hence, PΦ(a) = 0 if and only if PTZ

(c) = 0. Moreover, if PΦ(a) = 0,
then µ is an equilibrium measure for a if and only if ν is an equilibrium measure
for c.

3.3. Existence of Gibbs measures. Now we introduce the notion of a Gibbs
measure for a flow in the present context. A measure µ on a hyperbolic set Λ for a

flow Φ is called a Gibbs measure for a if it is induced by a measure ν on Z =
⋃k

i=1Ri

satisfying

K−1 ≤
ν(Ri−n···in)

exp [−2nPTZ
(c) + c2n(x)]

≤ K

for some constant K ≥ 1, for every n ∈ N and x ∈ Ri−n···in (recall that cn(x) =
aτn(x)(x) for n ∈ N and x ∈ Z). Considering the sets

R̃i1···in =
⋃

i−n···i0

Ri−n···in ,

one can verify that this is equivalent to require that

(3.14) K̃−1 ≤ ν(R̃i1···in)

exp [−nPTZ
(c) + cn(x)]

≤ K̃

for some constant K̃ ≥ 1, for every n ∈ N and x ∈ R̃i1···in . If the measure ν is also
invariant, then

PTZ
(c)− cn(x)

n
− log K̃

n
≤ − 1

n
log ν(R̃i1···in) ≤ PTZ

(c)− cn(x)

n
+

log K̃

n
,

which implies that

hν(TZ , x) := lim
n→∞

− 1

n
log ν(R̃i1···in) = PTZ

(c)− lim
n→∞

cn(x)

n
.

By the Shannon–McMillan–Breiman theorem, we have

hν(TZ) =

∫
Z
hν(TZ , x) dν(x)

= PTZ
(c)−

∫
Z

lim
n→∞

cn(x)

n
dν(x)

= PTZ
(c)− lim

n→∞

1

n

∫
Z
cn dν
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and so

PTZ
(c) = hν(TZ) + lim

n→∞

1

n

∫
Z
cn dν.

This shows that any invariant Gibbs measure satisfying (3.14) is an equilibrium
measure for c with respect to the map TZ .

Finally, we state our result on the existence of Gibbs measures.

Theorem 3.5. Let Λ be a hyperbolic set for a topologically mixing C1 flow Φ and let
a be an almost additive family of continuous functions on Λ with bounded variation
such that PΦ(a) = 0 and supt∈[0,s] ‖at‖∞ < ∞ for some s > 0. Then:

(1) there exists a unique equilibrium measure for a;
(2) there exists a unique invariant Gibbs measure for a;
(3) the two measures are equal and are ergodic.

Proof. We always consider a Markov system with sufficiently small diameter as in
Lemmas 3.2 and 3.3. Let c be the sequence in (3.4).

Lemma 3.6 (see [4, Theorem 10.1.4]). We have

PTZ
(c) = lim

n→∞

1

n
log

∑
i1···in

exp cn(xi1···in)

for any xi1···in ∈ Ri1···in, for each (i1 · · · in) ∈ Σn and n ∈ N.

Now let

hi1···in = max
{
exp cn(y) : y ∈ Ri1···in

}
and Hn =

∑
i1···in

hi1···in .

Moreover, we define a probability measure νn in the algebra generated by the sets
Ri1···in by

νn(Ri1···in) = hi1···in/Hn

for each (i1 · · · in) ∈ Σn and we extend it to the Borel σ-algebra B of Z. Let MZ(c)
be the set of all sublimits of the sequence (νn)n∈N. Since Z is compact, MZ(c) is
sequentially compact and so it is nonempty.

Lemma 3.7 (see [4, Lemmas 10.1.10 and 10.1.11]). The following two properties
hold:

(1) each ν ∈ MZ(c) is a Gibbs measure for c with respect to TZ ;
(2) any Gibbs measure for c with respect to TZ is ergodic.

Using the former properties, one can now proceed as in the proof of Theo-
rem 10.1.9 in [4] to show that:

(1) there exists a unique equilibrium measure νc for TZ ;
(2) there exists a unique invariant Gibbs measure for TZ ;
(3) the two measures coincide and are ergodic.

The measure νc induces a Φ-invariant probability measure µa on Λ by (3.2). More-
over, any Φ-invariant probability measure µ on Λ is of this form for some TZ-
invariant probability measure ν on Z.

Since PΦ(a) = 0, the measure µ is an equilibrium measure for a with respect to
Φ if and only if ν is an equilibrium measure for c with respect to TZ . Furthermore,
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one can verify that µ is ergodic with respect to Φ if and only if ν is ergodic with
respect to TZ . This readily implies the three properties in the theorem (note that
µa is the unique equilibrium measure for a). □
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