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In view of this complicated situation, we will not try to produce a comprehensive
theory of the Bunimovich stadium billiards from the topological point of view,
but present the results on their topological entropy that are independent of the
approach. For this we will find a subspace of the phase space that is compact and
invariant, and on which the billiard map is continuous. We will find the topological
entropy restricted to this subspace. This entropy is a lower bound of the topological
entropy of the full system, no matter how this entropy is defined. Finally, we will
find the limit of our estimates as the length of the billiard table goes to infinity.

The reader who wants to learn more on other properties of the Bunimovich sta-
dium billiards, can find it in many papers, in particular [2, 4, 6–9, 11]. While some
of them contain results about topological entropy of those billiards, none of those
results can be considered completely rigorous.

The paper is organized as follows. In Section 2 we discuss the problems connected
with defining topological entropy for billiards. In Section 3 we produce symbolic
systems connected with the Bunimovich billiards. In Section 4 we perform actual
computations of the topological entropy.

2. Topological entropy of billiards

LetM = ∂Ω×[−π/2, π/2] be the phase space of a billiard and let F : M → M be
the billiard map. We assume that the boundary of the billiard table is piecewise C2

with finite number of pieces. In such a situation the map F is piecewise continuous
(in fact, piecewise smooth) with finitely many pieces. That is, M is the union of
finitely many open sets Mi (of quite regular shape) and a singular set S, which is
the union of finitely many smooth curves, and on which the map is often even not
defined. The map F restricted to each Mi is a diffeomorphism onto its image.

This situation is very similar as for piecewise continuous piecewise monotone
interval maps. For those maps, the usual way of investigating them from the topo-
logical point of view is to use coding. We produce the symbolic system associated
with our map by taking sequences of symbols (numbers enumerating pieces of con-
tinuity) according to the number of the piece to which the n-th image of our point
belongs. On this symbolic space we have the shift to the left. In particular, the
topological entropy of this symbolic system was shown to be equal to the usual
Bowen’s entropy of the underlying interval map (see [13]).

Thus, it is a natural idea to do the same for billiards. Thus, for a point x ∈ M,
whose trajectory is disjoint from S, we take its itinerary (code) ω(x) = (ωn), where
ωn = i if and only if F(x) ∈ Mi. The problem is that the set of itineraries obtained
in such a way is usually not closed (in the product topology). Therefore we have to
take the closure of this set. Then the question one has to deal with is whether there
is no essential dynamics (for example, invariant measures with positive entropy) on
this extra set.

A rigorous approach to studying topological entropy for Sinai billiards can be
found in the recent paper of Baladi and Demers [3]. The Sinai billiard maps are
different from the Bunimovich stadium maps in the sense that the former have
uniform hyperbolicity, and the transfer operators have spectra gaps. The stadium
billiard is hyperbolic, but not uniformly. Moreover, here we have to deal with the
trajectories that are bouncing between the straight line segments of the boundary.
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To complete the list of problems, the coding with four pieces of the boundary seems
to be not sufficient (as has been noticed in [4]).

The papers dealing with the topological entropy of Bunimovich stadium billiards
use different definitions. In [4] and [11], topological entropy is explicitly defined as
the exponential growth rate of the number of periodic orbits of a given period. In [8],
first coding is performed in a different way, using rectangles defines by stable and
unstable manifolds. This coding uses an infinite alphabet. Then various definitions
of topological entropy for the obtained symbolic system are used. In [3], topological
entropy is defined as the topological entropy of the corresponding symbolic system,
that is, as the exponential growth rate of the number of nonempty cylinders of a
given length in the symbolic system. As we mentioned, it is shown that the result
is the same as when one is using the classical Bowen’s definition for the original
billiard map. In [2], topological entropy is not formally defined, but it seems that
the authors think of the entropy of the symbolic system.

In this paper, we will be considering a subsystem of the full billiard map. This
subsystem is a continuous map of a compact space to itself, and is conjugate to a
subshift of finite type. Thus, whether we define the topological entropy of the full
system as the entropy of the symbolic system or as the growth rate of the number of
periodic orbit, our estimates will be always lower bounds for the topological entropy.

3. Subsystem and coding

We consider the Bunimovich stadium billiard table, with the radius of the semi-
circles equal to 1, and the lengths of straight segments ℓ > 1. The phase space
of this billiard map will be denoted by Mℓ, and the map by Fℓ. The subspace of
Mℓ consisting of points whose trajectories have no two consecutive collisions with
the same semicircle will be denoted by Kℓ. The subspace of Kℓ consisting of points
whose trajectories have no N + 1 consecutive collisions with the straight segments
will be denoted by Kℓ,N . We will show that if ℓ > 2N+2, then the map Fℓ restricted
to Kℓ,N has very good properties.

In general, coding for Fℓ needs at least six symbols. They correspond to the
four pieces of the boundary of the stadium, and additionally on the semicircles we
have to specify the orientation of the trajectory (whether φ is positive or negative),
see [4]. However, in Kℓ this additional requirement is unnecessary, because there
are no multiple consecutive collisions with the same semicircle. This also implies
that in Kℓ for a given ℓ the angle φ is uniformly bounded away from ±π/2.

While in [2] the statements about generating partition are written in terms of
measure preserving transformations, the sets of measure zero that have to be re-
moved are specified. In Kℓ the only set that needs to be removed is the set of points
whose trajectories are periodic of period 2, bouncing from the two straight line seg-
ments. However, this set carries no topological entropy, so we can ignore it. Thus,
according to [2], the symbolic system corresponding to Fℓ on Kℓ is a closed subshift
Σℓ of a subshift of finite type with 4 symbols. We say that there is a transition from
a state i to j if it is possible that ωn = i and ωn+1 = j. In our subshift here are
some transitions that are forbidden: one cannot go from a symbol corresponding to
a semicircle to the same symbol. There are of course also some transitions in many
steps forbidden; they depend on ℓ.
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For every element of Σℓ there is a unique point of Kℓ with that itinerary. However,
the same point of Kℓ may have more than one itinerary, because there are four points
on the boundary of the stadium that belong to two pieces of the boundary each.
Thus, the coding is not one-to-one, but this is unavoidable if we want to obtain
a compact symbolic system. Another solution would be to remove codes of all
trajectories that pass through any of four special points, and at the end take the
closure of the symbolic space.

This problem disappears when we pass to Kℓ,N with ℓ > 2N + 2. Namely, then
the angle φ at any point of Kℓ,N whose first coordinate is on the straight line piece,
is larger than π/4 in absolute value.

Let us look at the geometry of this situation. Let C be the right unit semicircle
in R2 (without endpoints), A ∈ C, and let L1, L2 be half-lines emerging from A,
reflecting from C (like a billiard flow trajectory) from inside at A (see Figure 2).
Assume that for i = 1, 2 the angles between Li and the horizontal lines are less than
π/4, and that Li intersects C only at A. Consider the argument arg(A) of A (as in
polar coordinates on in the complex plane, where the origin is at the center of the
circle).

Figure 2. Situation from Lemma 3.1.

Lemma 3.1. In the above situation, | arg(A)| < π/4. Moreover, neither L1 nor L2

passes through an endpoint of C.

Proof. If | arg(A)| ≥ π/4, then both lines L1 and L2 are on the same side of
the origin, so the incidence and reflection angle cannot be the same. Therefore,
| arg(A)| < π/4.

Suppose that L1 passes through the lower endpoint of C (the other cases are
similar). Then arg(A) < 0, so L2 intersects the semicircle also at the point with
argument

arg(A) + (arg(A)− (−π/2)) = 2 arg(A) + π/2,

which is a contradiction. □
In view of the above lemma, the collision points on the semicircles cannot be too

close to the endpoints of the semicircles (including endpoints themselves). Thus, the
correspondence between Kℓ,N and its coding system Σℓ,N is a bijection. Standard
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considerations of topologies in both systems show that this bijection is a homeo-
morphism, say ξℓ,N : Kℓ,N → Σℓ,N . If σ is the left shift in the symbolic system, then
by the construction we have ξℓ,N ◦Fℓ = σ ◦ ξℓ,N . In such a way we get the following
lemma.

Lemma 3.2. If ℓ > 2N + 2, then the systems (Kℓ,N ,Fℓ) and (Σℓ,N , σ) are topolog-
ically conjugate.

We can modify our codings, in order to simplify further proofs. The first thing
is to identify the symbols corresponding to two semicircles. This can be done due
to the symmetry, and will result in producing symbolic systems Σ′

ℓ and Σ′
ℓ,N , which

are 2-to-1 factors of Σℓ and Σℓ,N respectively. Since the operation of taking a 2-to-1
factor preserves topological entropy, this will not affect our results.

With this simplification, Σ′
ℓ is a closed, shift-invariant subset of the phase space

of a subshift of finite type Σ̃. Subshift of finite type Σ̃ looks as follows. There are
three states, 0, A,B (where 0 corresponds to the semicircles), and the only forbidden
transitions are from A to A and from B to B.

Then Σ′
ℓ,N is a closed, shift-invariant subset of Σ′

ℓ, where additionally n-step
transitions involving only states A and B are forbidden if n > N . However, it pays to
recode Σ′

ℓ,N . Namely, we replace states A and B by 1, 2, . . . , N and −1,−2, . . . ,−N .

If (ωn) ∈ Σ′
ℓ,N , and ωk = ωk+m+1 = 0, while ωn ∈ {A,B} for n = k + 1, k +

2, . . . , k + m, then for the recoded sequence (ρn) we have ρk = ρk+m+1 = 0 and
(ρk+1, ρk+2 . . . , ρk+m) is equal to (1, 2, . . . ,m) if ωk+1 = A and (−1,−2, . . . ,−m) if
ωk+1 = B.

Geometric meaning of the recoding is simple. We unfold the stadium by using
reflections from the straight parts (see Figure 3). We will label the levels of the
semicircles by integers. Our new coding translates to this picture as follows. We

Figure 3. Unfolded stadium.

start at a semicircle, then go to a semicircle on the other side and m levels up or
down, etc.

For symbolic systems, recoding in such a way amounts to the topological conju-
gacy of the original and recoded systems (see [12]). This means that the system

(Σ′
ℓ,N , σ) is topologically conjugate to a subsystem of Σ̃N , which is the subshift of
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finite type defined as follows. The states are −N,−N + 1, . . . , N − 1, N . And the
transitions are: from 0 to 0, 1 or −1; from i to i + 1 and 0 if 1 ≤ i ≤ N − 1; from
N to 0; from −i to −i− 1 and 0 if 1 ≤ i ≤ N − 1; and from −N to 0.

Lemma 3.3. If ℓ > 2N + 2, then (Σ′
ℓ,N , σ) is topologically conjugate to (Σ̃N , σ).

Proof. Both sets Σ′
ℓ,N and Σ̃N are closed and Σ′

ℓ,N ⊂ Σ̃N . Therefore, it is enough

to prove that Σ′
ℓ,N is dense in Σ̃N . For this we show that, for every sequence

(ρ0, ρ1, . . . , ρk) appearing as a block in an element of Σ̃N , there is a point (r0, φ0) ∈
Kℓ,N for which after coding and recoding a piece of trajectory of length k + 1, we
get (ρ0, ρ1, . . . , ρk). By taking a longer sequence, we may assume that ρ0 = ρk = 0.

Consider all candidates for such trajectories in the unfolded stadium, when we do
not care whether the incidence and reflection angles are equal and we allow extra
intersections with the semicircles. That is, we consider all curves that are unions of
straight line segments from x0 to x1 to x2 . . . to xm in the unfolded stadium, such
that x0 is in the left semicircle at level 0, x1 is in the right semicircle at level n1, x2
is in the left semicircle at level n1+n2, etc. Here n1, n2, . . . are the numbers of non-
zero elements of the sequence (ρ0, ρ1, . . . , ρk) between a zero element and the next
zero element, where we also take into account the signs of those non-zero elements.
In other words, this curve is an approximate trajectory (of the flow) in the unfolded
stadium that would have the recoded itinerary (ρ0, ρ1, . . . , ρk). Additionally we
require that x0 and xm are at the midpoints of their semicircles. The class of such
curves is a compact space with the natural topology, so there is the longest curve in
this class. We claim that this curve is a piece of the flow trajectory corresponding
to the trajectory we are looking for.

If we look at the ellipse with foci at xi and xi+2 to which xi+1 belongs, then xi+1

has to be a point of tangency of that ellipse and the semicircle. Since for the ellipse
the angles of incidence and reflection are equal, the same is true for the semicircle.

Observe also that if xi+1 cannot be an endpoint of a semicircle. If it were, then
an infinitesimally small movement of this point along the semicircle would result in
both straight segments of the curve that end/begin at xi+1 to get longer.

It remains to prove that our curve intersects the semicircles only at the points
xi. This follows from the observation that if ℓ ≥ 2N + 2 then the angles between
the segments of our curve and the straight parts of the billiard table boundary are
smaller than π/4. Suppose that the segment from xi to xi+1 intersects the semicircle
C to which xi+1 belongs at some other point y (see Figure 4). Then xi+1 and y
belong to the same half of C. Since at xi+1 the incidence and reflection angles of
our curve are equal, the segment from xi+1 to xi+2 also intersects C at some other
point, so xi+1 should belong to the other half of C, a contradiction. This completes
the proof. □

Remark 3.4. By Lemmas 3.2 and 3.3 (plus the way we obtained Σ′
ℓ,N from Σℓ,N ),

it follows that if ℓ > 2N + 2 then the natural partition of Kℓ,N into four sets is a
Markov partition.
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y

xi +1

Figure 4. Two intersections.

4. Computation of topological entropy

In the preceding section we obtained some subshifts of finite type. Now we have
to compute their topological entropies. If the alphabet of a subshift of finite type
is {1, 2, . . . , k}, then we can write the transition matrix M = (mij)

n
i,j=1, where

mij = 1 if there is a transition from i to j and mij = 0 otherwise. Then the
topological entropy of our subshift is the logarithm of the spectral radius of M
(see [1, 12]).

Lemma 4.1. Topological entropy of the system (Σ′
ℓ, σ) is log(1 +

√
2).

Proof. The transition matrix of (Σ′
ℓ, σ) is1 1 1
1 0 1
1 1 0

 .

The characteristic polynomial of this matrix is −(1+x)(x2−2x−1), so the entropy
is log(1 +

√
2). □

In the case of larger, but not too complicated, matrices, in order to compute the
spectral radius one can use the rome method (see [1,5]). For the transition matrices

of Σ̃N this method is especially simple. Namely, if we look at the paths given by
transitions, we see that 0 is a rome: all paths lead to it. Then we only have to
identify the lengths of all paths from 0 to 0 that do not go through 0 except at
the beginning and the end. The spectral radius of the transition matrix is then the
largest zero of the function

∑
x−pi − 1, where the sum is over all such paths and pi

is the length of the i-th path.

Lemma 4.2. Topological entropy of the system (Σ̃N , σ) is the logarithm of the
largest root of the equation

(4.1) (x2 − 2x− 1) = −2x1−N .
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Proof. The paths that we mentioned before the lemma, are: one path of length 1
(from 0 directly to itself), and two paths of length 2, 3, . . . , N each. Therefore, our
entropy is the logarithm of the largest zero of the function 2(x−N + · · · + x−3 +
x−2) + x−1 − 1. We have

x(1− x)
(
2(x−N + · · ·+ x−3 + x−2) + x−1 − 1

)
= (x2 − 2x− 1) + 2x1−N ,

so our entropy is the logarithm of the largest root of equation (4.1). □
Now that we computed topological entropies of the subshifts of finite type in-

volved, we have to go back to the definition of the topological entropy of billiards
(and their subsystems). As we mentioned earlier, the most popular definitions ei-
ther employ the symbolic systems or use the growth rate of the number of periodic
orbits of the given period. For subshifts of finite type that does not make difference,
because the exponential growth rate of the number of periodic orbits of a given pe-
riod is the same as the topological entropy (if the systems are topologically mixing,
which is the case here). As the first step, we get the following result, that follows
immediately from Lemmas 3.2, 3.3 and 4.2.

Theorem 4.3. If ℓ > 2N + 2, then topological entropy of the system (Kℓ,N ,Fℓ) is
the logarithm of the largest root of the equation (4.1).

Now, independently of which definition of the entropy h(Fℓ|Kℓ
) of (Kℓ,Fℓ) we

choose, we get the next theorem.

Theorem 4.4. We have

(4.2) lim inf
ℓ→∞

h(Fℓ|Kℓ
) ≥ log(1 +

√
2).

Proof. On one hand, Kℓ,N is a subset of Kℓ, so h(Fℓ|Kℓ
) ≥ h(Fℓ|Kℓ,N

) for every N .
Therefore, by Theorem 4.3,

lim inf
ℓ→∞

h(Fℓ|Kℓ
) ≥ lim

N→∞
log yN ,

where yN is the largest root of the equation (4.1). The largest root of x2−2x−1 = 0
is 1 +

√
2. In its neighborhood the right-hand side of (4.1) goes uniformly to 0 as

N → ∞. Thus, limN→∞ yN = 1 +
√
2, so we get (4.2). □

If we choose the definition of the entropy via the entropy of the corresponding
symbolic system, then, taking into account Lemma 4.1, we get a stronger theorem.

Theorem 4.5. We have

(4.3) lim
ℓ→∞

h(Fℓ|Kℓ
) = log(1 +

√
2).

Of course, the same lower estimates hold for the whole billiard.

Remark 4.6. In this paper we studied the classical Bunimovich stadium billiards.
However, our methods can be used for a larger class of billiards1. In particular,
the semicircles can be replaced by “caps” of similar shapes. The estimates that
used the fact that the caps are semicircles, can be modified if the assumption that
ℓ > 2N + 2 is replaced by a stronger one. Another problem may appear if we

1We thank the anonymous referee for pointing this out.
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want to specify generating partitions. This may be important for the definition of
topological entropy. However, in Theorem 4.4 we consider only a subsystem and
provide the lower estimate for the entropy, so this theorem will hold for a large
class of caps. Investigating how large such class may be and checking whether other
modifications of the billiard table will give similar results, is a subject for a separate
paper.
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