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sites j and k (inclusive). We will occasionally use string notation, and correspond-
ingly concatenation, for configurations or partial configurations, writing for example
η(0 :6) = η(0) · · · η(6) = 0 1 1 0 1 0 1 = 012(01)2. For 0 ≤ ρ ≤ 1 we let Xρ ⊂ X de-
note the set of configurations with a well-defined density ρ, that is, configurations
η for which

(1.1) lim
N→∞

1

N

N∑
i=1

η(i) = lim
N→∞

1

N

−1∑
i=−N

η(i) = ρ.

Here we study the F-TASEP discrete-time dynamics as described above. For
ρ /∈ {1/2, 2/3} we will determine the ultimate fate of any initial configuration η ∈
Xρ. We will also describe the translation invariant (TI) states (i.e., TI probability
measures on X) of the system which are stationary under the dynamics (the TIS
states); without loss of generality we restrict consideration to states for which almost
all configurations have the same well-defined density ρ, called states of density ρ,
and will frequently assume further that these states are ergodic under translations.
We would also like to determine the final TIS state when the dynamics is started
in a Bernoulli measure: an initial state µ(ρ) for which each site is independently
occupied with probability ρ. In this, however, we will not be completely successful.

We will make use of a closely related model, the totally asymmetric stack model
(TASM), another particle system on Z evolving in discrete time. In the TASM there
are no restrictions on the number of particles at any site, so that the configuration
space is Y = ZZ

+, where Z+ = {0, 1, 2, . . .}. We denote stack configurations by
boldface letters, so that a typical configuration is n = (n(i))i∈Z. The dynamics is
as follows: at each integer time, every stack with at least two particles (n(i) ≥ 2)
sends one particle to the neighboring site to its right. This model is thus essentially
a discrete-time zero range process.

There is a natural correspondence between the TASM and the F-TASEP, with a
stack configuration n corresponding to a particle configuration in which successive
strings of n(i) particles are separated by single holes; as just stated the correspon-

dence is somewhat loose but yields a bijective map ψ : X(0) → Y , where X(0) ⊂ X
is the set of F-TASEP configurations η satisfying η(0) = 0. Moreover, if µ is a TI

probability measure on X and we define µ̂ = µ(X(0))−1µ ◦ ψ−1 then µ 7→ µ̂ is a
bijective correspondence between TI, or TIS, probability measures on Y and on X;
this correspondence is discussed in detail in Section 2.1. Using it, we show in Sec-
tion 2.2 that there are three phases for the F-TASEP, that is, three distinct regimes
in which the model exhibits qualitatively different behavior: the regions of low,
intermediate, and high density in which respectively 0 < ρ < 1/2, 1/2 < ρ < 2/3,
and 2/3 < ρ < 1.

In subsequent sections we show, for each density region, how to determine the
“final configuration” resulting from the evolution of some arbitrary initial configura-
tion; we then suppose that the initial configuration has a Bernoulli distribution and
study the distribution of the final configuration—that is, the TIS measure which
is the t → ∞ limit of an initial Bernoulli measure (this problem was studied for
the continuous time model in [6]). It is for the low density phase, treated in Sec-
tion 3, that we can say the most. We show that every initial configuration η0 of
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density ρ < 1/2 has a limit η∞—that is, it eventually freezes—and compute, for a
Bernoulli initial measure, the distribution of these final configurations, which arises
from a certain renewal process. Moreover, we show that if site i is a point of this
renewal process then the expected density at any site an odd distance ahead of i
is ρ, and that the two-point function in the final state, g(i) = 〈η∞(j)η∞(i + j)〉,
satisfies g(2n − 1) + g(2n) = 2ρ2 for any n ≥ 1; the latter property implies that
the asymptotic value of VL/L, where VL is the variance of the number of particles
in an interval of length L, has the same value ρ(1 − ρ) as for the initial Bernoulli
measure. We also compute the distribution of the distance moved by a typical
particle through the evolution and find that the expected value of this distance is
finite. Finally, we show (see Remark 3.10) that the ρ < 1/2 stationary state is also
the stationary state for the deterministic discrete-time totally asymmetric simple
exclusion process (TASEP) at density ρ (in each case with Bernoulli initial state)
or, after exchange of particles and holes, at density 1 − ρ.

A key technique for the study of the intermediate and high density regions is
to consider the dynamics in a moving frame; it is in this frame that a limiting
configuration exists for each initial configuration. Rather surprisingly, perhaps, the
behavior of the model in the high density region is largely parallel to that in the low
density region; we thus content ourselves with a rather brief treatment in Section 4.
For the intermediate region, discussed in Section 5, the dynamics is considerably
more complicated. Here we are able to carry out the second step of the program, that
is, to determine the limit of the initial Bernoulli measure, only partially, although
we do show that the final measure can be characterized in terms of a certain hidden
Markov process. Some technical and peripheral results are relegated to appendices.

We mention finally some further observations about the model which can be found
in [9]. When the empty lattice sites are regarded as cars and the occupied sites as
empty spaces, the model is closely related to certain traffic models [10,12], with the
low density region corresponding to jammed traffic, the high density to free flow,
and the intermediate density to stop and go. If in the low density phase an initial
Bernoulli measure is perturbed in some local way then the perturbation does not
dissipate; this is related to the finite expected value of the distance a particle moves,
mentioned above. Finally, the Fk-TASEP, defined by requiring that a particle have
k adjacent particles to its left before it can jump, has properties analogous to the F-
TASEP itself; in particular, there are again three phases, corresponding to density
regions ρ < k/(k+1), k/(k+1) < ρ < (k+1)/(k+2), and (k+1)/(k+2) < ρ (the
continuous-time version of this model is discussed in [3]).

2. Preliminary considerations

We begin this section by introducing some notation to be used throughout the
paper. We write Z± = {0,±1,±2, . . .} and N = {1, 2, . . .}. If λ is a measure on a
set A and F : A → R then λ(F ) denotes the expectation of F under λ; if further
f : A→ B then f∗λ is the measure on B given by (f∗λ)(C) = λ(f−1(C)). Finally,
we let τ be the translation operator which acts on a function f defined on Z via
(τf)(k) = f(k − 1).
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2.1. Correspondence of the F-TASEP and TASM. In Section 1 we intro-
duced the F-TASEP, with configuration space X = {0, 1}Z, and the TASM, with
configuration space Y = ZZ

+; in this section we establish the natural bijective cor-
respondence between the invariant measures for these two models. This correspon-
dence is obtained from the substitution map ϕ : Y → X defined by replacing each
n(i) in n = (. . . ,n(−1),n(0),n(1), . . .) by the string 1n(i)0, in such a way that
the string for n(1) begins at site 1; thus for n ∈ Y , η = ϕ(n) has η(i) = 1 for
i = −n(−1), . . . ,−1, η(0) = 0, η(i) = 1 for i = 1, . . . ,n(1), η(n(1)+1) = 0, η(i) = 1

for i = n(1) + 2, . . . ,n(1) + n(2) + 1, etc. Note that ϕ(Y ) = X(0) := {η | η(0) = 0}
and that ϕ−1 : X(0) → Y is the map ψ discussed in Section 1.

We next show that ϕ gives rise to a bijection Φ from the space of TI probability
measures on Y with finite density to the space of all TI probability measures on
X. If µ̂ is a TI measure on Y , µ̂n := µ̂

∣∣
Yn

with Yn = {n ∈ Y | n(1) = n},
and µn = ϕ∗µ̂n, then

∑
n≥0

∑n
i=0 τ

−i
∗ µn is a TI measure on X of mass Z(µ̂) :=∑

n≥0 nµ̂(Yn) = µ̂(n(1)). If Z(µ̂) is finite we then define

(2.1) Φ(µ̂) := Z(µ̂)−1
∑
n≥0

n∑
i=0

τ−i
∗ µn.

Φ(µ̂) is clearly TI and Φ is a bijection with inverse Φ−1 : µ 7→ µ̂ as described in

Section 1: Φ−1(µ) = µ(X(0))−1ψ∗
(
µ
∣∣
X(0)

)
. Φ preserves convex combinations and

this implies that µ̂ is ergodic (i.e., extremal) if and only if Φ(µ̂) is.

To state our next result we let U : X → X and Û : Y → Y be the one-step
evolution operators for the F-TASEP and TASM, respectively.

Theorem 2.1. (a) For any TI measure µ̂ on Y , with finite density Z(µ̂),

(2.2) U t
∗Φ(µ̂) = Φ(Û t

∗µ̂).

(b) Φ is a bijection of the TIS measures for the TASM and F-TASEP systems.

Proof. (b) is an immediate consequence of (a), and clearly it suffices to verify (a)

for µ̂ ergodic and t = 1. Let us write ν := U∗Φ(µ̂) and ν̃ := Φ(Û∗µ̂). Since U and Û
preserve ergodicity, just as does Φ, ν and ν̃ are ergodic, so that these two measures
are either equal or mutually singular. Hence to prove their equality it suffices to

find TI measures λ, λ′, and λ̃′ on X, with λ nonzero, such that

(2.3) ν = λ+ λ′ and ν̃ = λ+ λ̃′.

The key identity relating the dynamics of the TASM and the F-TASEP, easily
checked, is that Uϕ(n) = τ−γ(n(0))ϕ(Ûn), where γ(0) = γ(1) = 0 and γ(n) = 1 if
n ≥ 2. Suppose now that n is such that µ̂({n | n(0) = n}) > 0, and define

(2.4) λ = Z(µ̂)−1U∗ϕ∗
(
µ̂
∣∣
{n(0)=n}

)
, λ̃ = Z(µ̂)−1ϕ∗Û∗

(
µ̂
∣∣
{n(0)=n}

)
.

The identity given above implies that λ = τ
−γ(n)
∗ λ̃, and it follows from (2.1) that

ν − λ and ν̃ − λ̃ are (nonnegative) measures. Then since ν̃ is TI,

(2.5) ν̃ = τ
−γ(n)
∗ ν̃ = τ

−γ(n)
∗ (λ̃+ (ν̃ − λ̃)) = λ+ τ

−γ(n)
∗ (ν̃ − λ̃);

this establishes (2.3), with λ′ = ν − λ and λ̃′ = τ
−γ(n)
∗ (ν̃ − λ̃). □
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Note that if µ̂ is a TI state for the TASM, with density ρ̂ (in the sense that
almost every configuration has density ρ̂, defined by the analogue of (1.1)), then

the corresponding state µ of the F-TASEP has density ρ = ρ̂/(1 + ρ̂). If µ = µ(ρ)

then in the corresponding TASM measure µ̂ = µ̂(ρ) the n(i) are i.i.d. with geometric
distribution: µ̂{n(i) = k} = (1− ρ)ρk.

2.2. The three phases. We begin with some simple observations on the dynamics
in the TASM, letting nt(k) denote the height at time t of the stack of particles on
site k.

• If nt(k) ≥ 2 then nt+1(k) = nt(k) unless nt(k − 1) ≤ 1, in which case
nt+1(k) = nt(k)− 1;
• If nt(k) ≤ 1 then nt+1(k) = nt(k) unless nt(k − 1) ≥ 2, in which case
nt+1(k) = nt(k) + 1.

Thus the possible changes in the value of n(k) in one step of the dynamics, say
from t to t+ 1, may be summarized as

(2.6) 0 → 1 ⇆ 2 ← 3 ← 4 ← 5 ← · · · .

The indicated increases occur if and only if nt(k − 1) ≥ 2, and the decreases if and
only if nt(k − 1) ≤ 1.

Suppose now that µ̂ is a TI state for the TASM. For n ∈ Z+ define the random
variables Nn, N≤n, and N≥n on Y by

(2.7) N#(n) = lim
N→∞

1

N

N∑
i=1

χ#(n(i)) (# = n, ≤ n, or ≥ n),

where χn, χ≤n, and χ≥n are the characteristic functions of the sets {j | j = n},
{j | j ≤ n}, and {j | j ≥ n}, respectively. (By the ergodic theorem, these random
variables are well-defined for µ̂-a.e. n).

Lemma 2.2. If µ̂ is a TIS state for the TASM then for µ̂-a.e. n, (a) either N0(n) =
0 or N≥2(n) = 0, and (b) either N≤1(n) = 0 or N≥3(n) = 0.

Proof. (a) Suppose to the contrary that there is a positive probability that both
N0 > 0 and N≥2 > 0; then for some k ≥ 1, which we may take to be minimal,
µ̂{n(0) ≥ 2,n(k) = 0} > 0 (here we have used the translation invariance of µ̂).
Now in fact necessarily k = 1, since minimality of k implies that if n(0) ≥ 2 and
n(k) = 0 then n(1) = · · · = n(k − 1) = 1, and if k > 1 then at the next time
step we have n(1) = 2 and n(k) = 0, which by the stationarity of µ̂ contradicts
the minimality of k. But if n(0) ≥ 2 and n(1) = 0 then at the next time step the
empty stack at site 1 disappears; and since (2.6) implies that empty stacks cannot
be created, this contradicts the stationarity of µ̂.

(b) Suppose that with positive probability both N≥3 > 0 (which by (a) implies
N0 = 0) and N1 > 0. Let n be the minimal integer with n ≥ 3 and µ̂{N1 > 0, Nn >
0} > 0, and find as in (a) a minimal k with

(2.8) µ̂(n(0) = 1,n(1) = · · · = n(k − 1) = 2,n(k) = n) > 0.
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But then k = 1, just as for (a), and we again have a contradiction, since when
n(0) = 1 and n(1) = n the next time step yields n(1) = n − 1, contradicting the
minimality of n or stationarity of µ̂. □

To state our next result we let X(l) ⊂ X be the set of (low density) configurations

in which no two adjacent sites are occupied, X(i) ⊂ X be the set of (intermediate
density) configurations in which no two adjacent sites are empty and no three con-

secutive sites are occupied, and X(h) ⊂ X be the set of (high density) configurations
in which no two adjacent sites, and no two sites at a distance of 2 from each other,
are empty.

Corollary 2.3. (a) Let µ̂ be a TIS state of density ρ̂ for the TASM. Then: if
ρ̂ ≤ 1 then N≥2 = 0 µ̂-a.s.; if 1 ≤ ρ̂ ≤ 2 then N0 = N≥3 = 0 µ̂-a.s.; and if
ρ̂ ≥ 2 then N≤1 = 0 µ̂-a.s..

(b) Let µ be a TIS state of density ρ for the TASM. Then: if 0 ≤ ρ ≤ 1/2 then

µ(X(l)) = 1; if 1/2 ≤ ρ ≤ 2/3 then µ(X(i)) = 1; and if 2/3 ≤ ρ ≤ 1 then

µ(X(h)) = 1.

Proof. It is an immediate consequence of Lemma 2.2 that the three possibilities
N≥2(n) = 0, N0(n) = N≥3(n) = 0, and N≤1(n) = 0 are exhaustive and mutually
exclusive. But these are compatible only with ρ̂ ≤ 1, 1 ≤ ρ̂ ≤ 2, and ρ̂ ≥ 2,
respectively, proving (a). (b) is a direct translation of (a) from the TASM language
to the language of the F-TASEP. □

We will refer to the regions 0 < ρ < 1/2, 1/2 < ρ < 2/3, and 2/3 < ρ < 1
as the low, intermediate, and high density regions, respectively (note the strict

inequalities). Corollary 2.3 identifies X(l), X(i), and X(h) as the supports of TIS
measures in these regions. The supports take particularly simple forms at the
boundaries between regions: the support X(l)∩X(i) of a TIS measure with ρ = 1/2
consists of the two configurations in which 0’s and 1’s alternate, so that the TIS
measure, µ∗, must assign weight 1/2 to each of these configurations and is thus
unique. Similarly, there is a unique TIS measure for ρ = 2/3, which gives weight

1/3 to each of the three configurations in X(i) ∩ X(h), that is, those with pattern
· · · 0 1 1 0 1 1 0 · · · .

The dynamics of the F-TASEP takes a simple form for configurations in X(l),
X(i), and X(h): configurations in X(l) do not change with time, configurations in
X(i) translate two sites to the right at each time step, and configurations in X(h)

translate one site to the left at each time step. (As an immediate consequence we

see that any TI measure on X(l) ∪X(i) ∪X(h) is stationary.) It is convenient then
to consider modified dynamics in the intermediate and high density regions, under
which the corresponding configurations are stationary. In the low density region we
continue to use the original F-TASEP dynamics as described in Section 1; in the
intermediate density region one first executes, at each time step, the F-TASEP rule,
then adds a translation by two lattice sites to the left; in the high density region the
evolution is defined similarly, but the extra translation is by one site to the right.
We introduce corresponding evolution operators U (l), U (i), and U (h), so that when
discussing the evolution of an initial configuration η0 ∈ Xρ with ρ /∈ {0, 1/2, 2/3, 1}
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we will always write ηt = (U (#))tη0 with # = l, i, or h for ρ in the low, intermediate,

or high density region, respectively. Note that U (i) = τ−2U (l) and U (h) = τU (l).

Remark 2.4. For the TASM, low or high density configurations, i.e., those with
N≥2 = 0 or N≤1 = 0, are fixed under the dynamics, while those of intermediate
density, with N0 = N≥3 = 0, translate one site to the right at each time step.

As a final result of this section we show that TI measures always have limits
under the F-TASEP evolution.

Theorem 2.5. Let µ0 be a TI measure and let µt = U tµ0. Then µ∞ = limt→∞ µt
exists.

Proof. We may assume without loss of generality that µ0 is supported on Xρ, 0 ≤
ρ ≤ 1. The result is trivial if ρ = 0 or ρ = 1. For ρ /∈ {0, 1/2, 2/3, 1} we prove
below (see Theorems 3.1, 4.1, and 5.6) that for any η0 ∈ Xρ, η∞ = limt→∞ ηt exists.
Thus with F : Xρ → Xρ defined by F (η0) = η∞ we have the stated result, with

µ∞ = F∗µ0, since U
tµ0 = (U (#))tµ0 because µ0 is TI.

We next suppose that ρ = 1/2; the case ρ = 2/3 is similar. Let δt = µt(η(0)η(1))
denote the densities of double 1’s, which must equal that of double 0’s, at time t;
it is easy to see that δt is non-increasing in t, so that δ∞ = limt→∞ δt exists. As
noted above, the unique TIS measure at density 1/2 is µ∗; hence the Cesàro means

t−1
∑t

s=1 µs converge to µ∗ and this is consistent only with δ∞ = 0. But then for
any L > 0 and any ϵ > 0 there will be a T such that for t ≥ T the marginal of µt
on {0, 1}[−L,L] will, with probability at least 1 − ϵ, contain no double 1’s or double
0’s, and hence (using translation invariance) coincide with the marginal of µ∗. □

Remark 2.6. For ρ = 1/2 (and similarly for ρ = 2/3), limt→∞ ηt cannot exist
for general η0 ∈ Xρ. For then as above we would have µ∗ = µ∞ = F∗µ0, where
F (η0) = η∞, and if µ0 were the Bernoulli measure, then because F would commute
with translations, µ∗ would be mixing, which it is not.

2.3. Height profiles. Suppose now that ηt is a configuration of density ρ /∈
{1/2, 2/3} evolving by the dynamics above: ηt+1 = U (#)ηt, with # = l, i, or h.
We define a corresponding height profile ht : Z→ Z which, in the usual convention,
rises by one unit when ηt(i) = 0 and falls by one unit when ηt(i) = 1:

(2.9) ht(k)− ht(k − 1) = (−1)ηt(k).

Now (2.9) defines ht only up to an additive constant; to specify this we first define
the initial profile by making the arbitrary choice h0(0) = 0, which with (2.9) leads
to

(2.10) h0(k) =


0, if k = 0,∑k

i=1(−1)η0(i), if k > 0,

−
∑0

i=k+1(−1)η0(i), if k < 0.

Next we want to define the evolution operator on profiles, again denoted U (#),
choosing the additive constant at each step so that ht is stationary when ηt is. For
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ρ in the low density region this means that, given ht (and ηt, which may be obtained

from ht via (2.9)), we take ht+1(k) = (U (l)ht)(k), with

(2.11) (U (l)ht)(k) =

{
ht(k) + 2, if ηt(k − 1) = ηt(k) = 1 and ηt(k + 1) = 0,

ht(k), otherwise.

For ρ in the intermediate density region we must include a translation: ht+1 =
U (i)ht = τ−2U (l)ht, and in the high density region we need also a vertical shift:
ht+1 = U (h)ht = τU (l)ht − 1.

In the intermediate and high density regions we will use also a modified height
profile: h∗t (k) = ht(k) + k/3, k ∈ Z. It is easy to verify, using h0(0) = 0, that these
profiles satisfy

(2.12)

(i) k + ht(k) ≡ 0 mod 2, (ii) 3h∗t (k) ≡ 0 mod 2,

(iii) k +
3

2
h∗t (k) ≡ 0 mod 3.

3. The low density region

In this section we study the dynamics in the low density region 0 < ρ < 1/2. A
key role will be played by the height profile h of Section 2.3.

3.1. Evolution of a single configuration. Here we fix an initial configuration
η0 with density ρ, 0 < ρ < 1/2, and let ηt and ht be the corresponding evolving
configuration and height profile (as in Sections 2.2 and 2.3). We define a subset
P = P (ηt) ⊂ Z by

(3.1) p ∈ P iff ht(p) > sup
i<p

ht(i).

(Theorem 3.1(a) below justifies our suppression in (3.1) of the apparent t dependence
of P .) (1.1) implies that ht has mean slope 1−2ρ > 0, so that limi→±∞ ht(i) = ±∞
and hence P is unbounded above and below. Note further that as p runs over P ,
ht(p) takes each value in Z precisely once, that if p and p′ are consecutive elements
of P then ht(p

′) = ht(p)+1, and that if p ∈ P then ηt(p− 1) = ηt(p) = 0. It follows
from (3.2) below that P is precisely the set of points p with η∞(p−1) = η∞(p) = 0.

Theorem 3.1. (a) P as defined in (3.1) is independent of t.
(b) For each i ∈ Z, ηt(i) and ht(i) are nondecreasing in t and eventually con-

stant. If we denote these limiting values by η∞(i) and h∞(i) then for p and
p′ any consecutive points of P there is an n with

(3.2) η∞(p+ 1:p′) = 1 0 1 0 · · · 1 0 0 = (1 0)n0.

We note that (3.2) specifies η∞ completely. A graphical representation of the
contents of this theorem is shown in Figure 1, where the profiles h0 and h∞ are
represented as piecewise linear curves in the plane which are obtained by connecting
each pair of points (i, h(i)) and (i+ 1, h(i+ 1)) by a straight line segment.

Proof of Theorem 3.1. For the moment we denote the set defined in (3.1) by Pt.
Observe first that (2.11) implies that for fixed i, ht(i) is nondecreasing in t; moreover,
ht+1(i) > ht(i) is possible only if ht(i−1) > ht(i). This implies that if p ∈ P0 then for
all t ≥ 0, ht(p) = h0(p) and ht(p) > maxi<p ht(i). Thus p ∈ Pt and so P ⊂ Pt; since
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Figure 1. Portion of typical initial (blue, lower) and final (red,
upper) height profiles in the F-TASEP. The vertical dotted lines are
at sites in P .

ht(p) takes each value in Z precisely once, Pt = P , verifying (a). Moreover, for any
i ∈ Z there will be a p ∈ P with p > i, and the upper bound ht(i) < ht(p) = h0(p)
shows the existence of the limit h∞(i) = limt→∞ ht(i), and hence, via (2.9), also of
the limit η∞(i). Further, if p and p′ are two consecutive elements of P and p ≤ i < p′

then h∞(i) ≥ h∞(p) − 1, since if h∞(i) ≤ h∞(p) − 2 for some i with i > p then
necessarily η∞(j :j + 2) = 1 1 0 for some j with p < j < p′, and an exchange must
then take place, contradicting the time-independence of η∞. The conclusion that
h∞(p)− 1 ≤ h∞(i) ≤ h∞(p) for p ≤ i < p′ yields (3.2). □

3.2. A Bernoulli initial distribution. In this section we assume that the initial
configuration η0 is distributed according to the Bernoulli measure µ(ρ), with 0 < ρ <
1/2. Then almost every initial configuration η0 satisfies (1.1); for such configurations
the set P of (3.1) is well defined, the analysis of the preceding section applies, and
η∞ is determined as a function of η0. Theorem 3.1 suggests that to obtain the
distribution of η∞ we should obtain the joint distribution of the (ill-defined at the
moment) “random variables” p′− p of (3.2). To state a precise result we would like
to index the points of P , with pk < pk+1 for all k, but unfortunately this cannot be
done without introducing some unwanted bias into the differences pk+1 − pk.

To deal with this problem we first introduce the set V := {η0 | 0 ∈ P (η0)} and
let µ denote the measure µ(ρ) conditioned on V (we could just as well replace V by
{η0 | j ∈ P (η0)} for any j ∈ Z). For configurations η0 ∈ V we label the points of
P (η0) so that p0 = 0 and pk < pk+1. To describe the distribution of the differences
pk+1 − pk under µ we will use the Catalan numbers

(3.3) cn =
1

n+ 1

(
2n

n

)
, n = 0, 1, 2, . . .

(the sequence is entry A000108 in the Online Encyclopedia of Integer Sequences
[20]). cn counts the number of strings of n 0’s and n 1’s in which the number of
0’s in any initial segment does not exceed the number of 1’s, or alternatively the
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number of Dyck paths of length 2n: paths in the lower half plane, with possible
steps (1, 1) and (1,−1), from (0, 0) to (2n, 0).

Theorem 3.2. The random variables Nk = pk+1 − pk are i.i.d. under µ, with
distribution

(3.4) µ({Nk = 2n+ 1}) = cnρ
n(1− ρ)n+1, n = 0, 1, 2, . . . ,

Note that the independence of the variables Nk implies that the set P is a renewal
point process; this is the renewal process mentioned in Section 1.

Proof of Theorem 3.2. Whether or not a site p belongs to P is determined by the
η(i) with i ≤ p, whereas given that p ∈ P , the next point p′ of P is determined by
the η(i) with i > p. This establishes the independence of the increments Nk. More
specifically, if p ∈ P and l = p+ 2n+ 1 then p′ = l if and only if h0(l) = h0(p) + 1
and h0(i) ≤ h0(p) for p < i < l; the latter condition holds if and only if in the
string η(p+ 1: l − 1) the number of 0’s in any initial segment does not exceed the
number of 1’s, that is, if the segment of h0(i) for p ≤ i < p+ l forms a Dyck path.
Thus there are cn configurations of η(p+ 1: l) yielding p′ = l, and since each such
configuration has probability ρn(1− ρ)n+1, (3.4) is established. □
Remark 3.3. (a) The distribution µ∞ of η∞ may be expressed in terms of µ by

a standard construction: µ∞ = Z−1
∑

m≥0

∑m−1
i=0 τ−i

∗
(
µ
∣∣
Vm

)
, where Vm = {η0 ∈

V | p1 − p0 = m} and Z :=
∑

m≥0mµ(Vm) (compare the construction of Φ in

Section 2.1).

(b) In the continuous-time Facilitated Partially Asymmetric Exclusion Process the
transitions 1 1 0→ 1 0 1 and 0 1 1→ 1 0 1 occur at rates p and 1− p, respectively. It
can be shown [1] that if this process is started in a Bernoulli measure with density
ρ < 1/2 then the final state is again described by the measure µ∞ of (a), whatever
the value of p.

We now discuss some further properties of the final state of the system, still when
started from a Bernoulli measure.

Lemma 3.4. For any i ∈ Z, µ(ρ)({i ∈ P (η0)}) = 1− 2ρ.

Proof. One can verify the result by direct consideration of the initial state, but
it is easier to observe from Theorem 3.1(b) that the desired probability is just

µ(ρ)({η∞(i − 1) = η∞(i) = 0}), and the result then follows from µ(ρ)(η∞(i − 1)) =

µ(ρ)(η∞(i)) = ρ and µ(ρ)(η∞(i− 1)η∞(i)) = 0. □

Recall now the definitions of V and µ given above; note that µ(ρ)(V ) = 1 − 2ρ
and that, if η0 ∈ V , then during the evolution of η0 no particle can cross the bond
〈0, 1〉. This implies that η∞(1 :∞) depends only on η0(1 :∞), and in such a manner

that η∞(1) = η0(1) so that µ(η∞(1)) = µ(ρ)(η0(1)) = ρ.

Lemma 3.5. For any n ≥ 1, µ({2n ∈ P}) = µ({2n+ 1 ∈ P}).

Proof. For η0 ∈ V and x ∈ {0, 1} let ηx0 be obtained by inserting x into η0 im-
mediately to the right of the origin: ηx0 (i) = η0(i) for i ≤ 0, ηx0 (1) = x, and
ηx0 (i) = η0(i − 1) for i ≥ 2. We claim that 2n ∈ P (η0) iff 2n + 1 ∈ P (η00) ∩ P (η10),
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which immediately implies the result. For the claim, let h0 be the height function
for η0 and hx0 that for ηx0 . Note first that if 2n + 1 ∈ P (η10) then 2n ∈ P (η0);
this is clear geometrically, since in passing from h10 to h0 we raise, and shift one
site to the left, the portion of the height profile to the right of site 1. (An ana-
lytic proof similar to the argument given just below is easy to write down.) Next,
if 2n ∈ P (η0) then similarly 2n + 1 ∈ P (η00). Finally, we check in more detail
that if 2n ∈ P (η0) then 2n + 1 ∈ P (η10). We know that h0(2n) > h0(i) for
any i < 2n and must show that h10(2n + 1) > h10(i) for i < 2n + 1. Now if
i ≥ 1 this follows from h10(2n + 1) = h0(2n) − 1 > h0(i − 1) − 1 = h10(i), while
if i ≤ 0 we use the fact that h0(2n) is even and h0(2n) > h0(0) = 0 to write
h10(2n+ 1) = h0(2n)− 1 ≥ 1 > h0(0) ≥ h0(i) = h10(i). □

In stating the next theorem we let g denote the two-point correlation function in
the final state: g(k) = µ(ρ)(η∞(0)η∞(k)).

Theorem 3.6. (a) For any n ≥ 1, µ(η∞(2n− 1)) = ρ.
(b) For any n ≥ 1, g(2n− 1) + g(2n) = 2ρ2.

Proof. From Lemma 3.5 and the fact that µ(ρ)(η∞(i)η∞(i + 1)) = 0 for any i it
follows that the distribution under µ of (η∞(2n − 1), η∞(2n), η∞(2n + 1)) is sym-
metric under the exchange of the first and last variables. Thus µ(η∞(2n − 1)) =
µ(η∞(2n+ 1)), and this, with the observation above that µ(η∞(1)) = ρ, yields (a).
But then (b) follows immediately, from

µ(η∞(2n− 1)) =
1

1− 2ρ
µ(ρ)((1− η∞(−1))(1− η∞(0))η∞(2n− 1))

=
1

1− 2ρ
(ρ− g(2n)− g(2n− 1)). □

An alternative proof of Theorem 3.6(a)—which, in fact, generalizes that result to
µ(ηt(2n− 1)) = ρ for all t—is presented in Appendix B. Theorem 3.6(b) is then a
consequence, as above. A third proof of the latter is obtained from the computation
in Appendix A of the generating function for g(k).

We next observe that the truncated two point function gT (k) := g(k)−ρ2 decays
exponentially.

Lemma 3.7. Let α0 := (4ρ(1− ρ))1/2 < 1. Then for any α > α0 there is a Cα > 0
such that |gT (k)| ≤ Cαα

k.

Proof sketch. One finds the generating function GT (z) :=
∑∞

n=1 g
T (n)zn and ob-

serves that it is analytic for |z| < 1/α0. Some details are given in Appendix A. □
We next consider the variance of the number of particles in large boxes.

Theorem 3.8. Let SL =
∑L

i=1 η∞(i) and VL = Var(SL) = µ(ρ)(S2
L)− (ρL)2. Then

for 0 < ρ < 1/2, limL→∞ VL/L = ρ(1− ρ).

Proof. The exponential decay of Lemma 3.7 is amply sufficient to justify the stan-
dard formula

(3.5) lim
L→∞

VL
L

= ρ(1− ρ) +
∞∑
k=1

gT (k).
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But by Theorem 3.6,
∑n

k=1 g
T (k) = 0 if n is even. □

The result of Theorem 3.8 may also be understood in terms of the fact that, as
we next discuss, a typical particle moves only a microscopic distance during the
evolution. Thus the number of particles in a large box is, to high relative accuracy,
the same at the end of the evolution as it was at the beginning. We will in fact show
in Theorem 3.9 that the distance moved by such a typical particle has a geometric
distribution with mean ρ/(1− 2ρ).

Consider then a particle initially located at a site i, with pk < i < pk+1 − 1, and
let it be its position at time t. During the evolution, ht(it) will increase from h0(i)
to h0(pk) − 1, so that the particle will move a distance h0(pk) − h0(i) − 1. Now
consider further the collection of all Dyck paths of length 2n, which for the moment
we think of as starting at (0, 0); there are cn such paths and each configuration
described by one of them contains n particles, for a total of ncn particles. Let
∆(n, d) be the number of these particles which will move a distance exactly d, and
note that ∆(0, d) = 0. By conditioning on the site 2m where the path first returns
to height 0 (a standard trick for obtaining the recursion for Catalan numbers) we
find the recursion

(3.6) ∆(n, d) =

n∑
m=1

(
cn−m∆(m− 1, d− 1) + cm−1∆(n−m, d)

)
.

This relation holds even for d = 0 if we define ∆(n,−1) = cn.
Now introduce the generating functions G(u) =

∑∞
n=0 cnu

n and Gd(u) =∑∞
n=0∆(n, d)un (so that G(u) = G−1(u)). It is well-known [17] that G(u) sat-

isfies G(u) = 1 + uG(u)2 and that explicitly G(u) = 2/(1 +
√
1− 4u). From (3.6)

we have Gd(u) = uG(u)(Gd−1(u) +Gd(u)), easily solved to give

(3.7) Gd(u) = G(u)(G(u)− 1)d+1.

We next condition on there being a particle at the origin in η0, let D be the
distance that that particle moves, and find the distribution of D. For some k we
will have pk < 0 < pk+1; we first calculate the probability πn that pk+1−pk = 2n+1.
In that event there are n possible sites for pk, the probability that a selected site
lies in P (η0) is (1 − 2ρ) (Lemma 3.4), and we must divide by ρ to condition on
η0(0) = 1, so that from (3.4),

(3.8) πn = n(1− 2ρ)cnρ
n−1(1− ρ)n+1.

But since, given that pk+1 − pk = 2n+ 1, all compatible Dyck paths and positions
of the origin relative to the path are equally likely,

µ(ρ)(D = d | η0 = 1) =
∞∑
n=1

πn
∆(n, d)

ncn

=
(1− ρ)(1− 2ρ)

ρ
Gd(ρ(1− ρ))

=
1− 2ρ

1− ρ

(
ρ

1− ρ

)d

.(3.9)

We have proved:
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Theorem 3.9. The distance D moved by a “typical” particle, i.e., by the particle at
the origin given that at time zero there is such a particle, has geometric distribution,
with ratio ρ/(1− ρ) and mean ρ/(1− 2ρ).

Remark 3.10. Consider the deterministic discrete-time TASEP, in which all par-
ticles with an empty site to their left jump to that site at integer times. (We have
reversed the conventional choice of jump direction, with which the model is also
called CA 184 [4], for reasons to be seen shortly.) The model is often studied in a
probabilistic version, in which each jump takes place with some probability p; in
this case there is a unique TIS state [7]. For the deterministic model with den-
sity ρ < 1/2, however, any TI state in which, with probability 1, each particle is
isolated, is stationary, since each configuration simply translates to the left with
velocity 1. These are all the TIS measures [4]. It is then natural to consider a
modified dynamics in which, at each time step, one first does a TASEP update,
then translates all particles to the right by one site. This gives a modification of the
facilitated dynamics: an isolated particle does not move, but if there is a block of k
particles then the left-most one stays fixed and the remaining k − 1 move one step
to the right. Our analysis of the F-TASEP through the height function can then
be applied directly, so that an initial configuration η0 evolves under the modified
TASEP dynamics to the same η∞ as in the F-TASEP.

For TI initial (and hence final) states the modification of the dynamics will not
affect stationarity, so that if we start the system in some TI measure λ then the
final measure will be the F-TASEP final measure λ∞; in particular, if λ is Bernoulli
then the final measure will be the one of Remark 3.3. On the other hand, if λ is the
initial measure for the TASEP in which particles move to the right then the final
measure will be R∗((R∗µ)∞), where R : X → X is reflection. For either direction
of motion, stationary states at ρ > 1/2 may then be determined through the usual
particle-hole symmetry.

4. The high density region

We now turn to the high density region 2/3 < ρ < 1; we will be brief, because the
behavior of the model here is very similar to that in the low density region. Recall
from Sections 2.2 and 2.3 that the dynamics will now be given by ηt+1 = U (h)ηt and
ht+1 = U (h)ht.

Let us first fix an initial configuration η0 with density ρ, 2/3 < ρ < 1, and
determine its final form η∞. We define Q := {q ∈ Z | h∗t (q) < inf i<q h

∗
t (i)}; Theo-

rem 4.1(a) below justifies this notation, which ignores the apparent t dependence of
Q. Since ht has mean slope 1− 2ρ < −1/3, limi→±∞ h∗t (i) = ∓∞, so that Q is well
defined and unbounded above and below. Note that if q ∈ Q then η(q − 2:q) = 1 1 1
for all k.

Theorem 4.1. (a) Q as defined above is independent of t.
(b) For each i ∈ Z, ηt(i) and ht(i) are eventually constant, and if we denote

these limiting values by η∞(i) and h∞(i), then then for q and q′ any con-
secutive points of Q there is an n with

(4.1) η∞(q + 1:q′) = (0 1 1)n 1.
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Proof. The proof is completely parallel to that of Theorem 3.1. One first checks
that, for i ∈ Z, h∗t (i) is nonincreasing in t, with h∗t+1(i) < h∗t (i) possible only if
h∗t (k − 1) > h∗t (k); this implies that Q is time-independent and that the h∗∞, and

hence h∞ and η∞, exist. Then the fact that η∞ ∈ X(h) (see Corollary 2.3(c)) yields
(4.1). □

Now we suppose that the initial configuration η0 is distributed according to the
Bernoulli measure µ(ρ), with ρ satisfying 2/3 < ρ < 1. Let V ∗ := {η0 | 0 ∈ Q(η0)},
let µ∗ denote the measure µ(ρ) conditioned on V ∗, and for η0 ∈ Q index the points
of Q in increasing order, with q0 = 0. We first find the distribution of the differences
qk − qk−1, and in doing so will refer to the sequence

(4.2) dn =
1

2n+ 1

(
3n

n

)
, n = 0, 1, 2, . . . .

The dn are a particular case of Fuss-Catalan or Raney numbers [15] (OEIS entry
A001764 [20]). dn counts the number of paths from the origin to (3n,−n), with
possible steps (1, 1) and (1,−1), such that the path never goes below the line y =
−x/3.

Theorem 4.2. The random variables N∗
k = qk+1 − qk are i.i.d. under µ∗, with

distribution

(4.3) µ∗{N∗
k = 3n+ 1} = dnρ

2n+1(1− ρ)n, n = 0, 1, 2, . . . ,

Proof. Independence of the increments N∗
k is established as in the proof of The-

orem 3.2. As in that proof, if l = qk + 3n + 1 then qk+1 = l if and only if
h∗0(l) = h∗0(qk) − 2/3 and the segment of h0(i) for qk ≤ i < qk + l is a path of the
type counted by dn (see the previous paragraph). Thus there are dn configurations
of η(qk + 1: l) yielding qk+1 = l, each with probability ρ2n+1(1 − ρ)n, establishing
(3.4). □

Our next theorem summarizes various results for the high density region which
are parallel to the results of Section 3 for the low density region. In stating these we
define, as in Section 3, g(k) = µ(ρ)(η∞(0)η∞(k)). We omit the proofs, all of which
are modifications of those of the previous section.

Theorem 4.3. Suppose that 2/3 < ρ < 1. Then:

(a) For any i ∈ Z, µ(ρ)({i ∈ Q(η0)}) = 3ρ− 2.
(b) For any n ≥ 1, µ∗({3n ∈ Q}) = µ∗({3n+ 1 ∈ Q}).
(c) For any n ≥ 0, µ∗({η∞(3n+ 1) = 1}) = ρ.
(d) For any n ≥ 1, g(3n− 2) + g(3n− 1) + g(3n) = 3ρ2.

(e) Let α∗
0 := (27ρ2(1−ρ)/4d)1/3 < 1. Then for any α∗ > α∗

0 there is a Cα∗ > 0
such that |gT (k)| ≤ Cα∗α∗k.

(f) Let SL =
∑L

i=1 η∞(i) and VL = Var(SL) = µ(ρ)(S2
L) − (ρL)2. Then for

2/3 < ρ < 1, limL→∞ VL/L = ρ(1− ρ).

There is no analogue of Theorem 3.9, since in the high density region particles
never stop moving, either in the original dynamics given by U or the modified
dynamics given by U (h).
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5. The intermediate density region

In this section we study the dynamics in the intermediate density region 1/2 <
ρ < 2/3.

5.1. Evolution of a single configuration. We first discuss the evolution of a
given configuration of density ρ, beginning with some preliminary technical results.
Recall that in each of Sections 3 and 4 the final configuration was determined by
a special family of sites; these families were denoted P and Q respectively, and
were stationary during the evolution. In the intermediate region we need to define,
somewhat similarly, two families of sites, which we will denote by P = {pk}k∈Z and
Q = {qk}k∈Z; here, however, the sites in these families move during the evolution.

Definition 5.1. Suppose that we are given a height profile h(i), i ∈ Z, correspond-
ing via (2.9) to a configuration η of density ρ, 1/2 < ρ < 2/3; as usual we let
h∗(i) = h(i) + i/3. Let A,B

(
= A(η), B(η)

)
⊂ Z be the sets of those sites which

satisfy respectively

(5.1) h(a) > sup
r>a

h(r), a ∈ A, and h∗(b) < inf
r>b

h∗(r), b ∈ B.

A and B are disjoint, since if r ∈ A ∩ B then (5.1) implies that h(r) > h(r +
1) > h(r) − 1/3, impossible since h takes integer values. Moreover, A and B are
unbounded, both above and below, by our assumption on ρ; we index the points
of A and B as increasing sequences (aj)j∈Z and (bj)j∈Z, respectively. Let P be the
set of elements aj ∈ A such that there exists a b ∈ B satisfying aj−1 < b < aj ,
and similarly let Q be the set of bj ∈ B such that there exists an a ∈ A satisfying
bj−1 < a < bj . If we index P as the increasing sequence (pk)k∈Z, then clearly
exactly one point of Q—the smallest element of B ∩ (pk−1, pk)—lies in (pk−1, pk).
We denote this element qk−1.

Lemma 5.2. The sequences p = (pk)k∈Z and q = (qk)k∈Z satisfy

(5.2) · · · p−1 < q−1 < p0 < q0 < p1 < q1 · · ·
and

h(pk) > sup
r>pk

h(r),(5.3)

h(pk) ≥ sup
qk−1≤r≤pk

h(r),(5.4)

h∗(qk) < inf
r>qk

h∗(r),(5.5)

h∗(qk) ≤ inf
pk≤r≤qk

h∗(r).(5.6)

Moreover they are, up to a shift of labels, the unique sequences satisfying these
equations.

A graphical interpretation of (5.3)–(5.6) is given in Figure 2, drawn for future
purposes at time 0. Here h = h0 is represented as the piecewise linear curve obtained
by connecting each pair of points (k, h(k)) and (k+1, h(k+1)) by a line segment. We
have introduced also two families of straight lines: for each k ∈ Z, Lk is a horizontal
line through (p0,k, h0(p0,k)), and L∗

k a line of slope −1/3 through (q0,k, h0(q0,k)).
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(5.3) and (5.4) imply respectively that the profile must lie below Lk between qk−1

and pk and strictly below Lk to the right of pk. Similarly, (5.5) and (5.6) imply that
the profile lies above L∗

k between pk and qk and strictly above L∗
k to the right of qk.

Figure 2. Portion of typical initial height profile h0 (solid blue line),
with the initial pk and qk values and the lines Lk and L∗

k.

Proof of Lemma 5.2. (pk) and (qk) clearly satisfy (5.2), (5.3), and (5.5). (5.4) fol-
lows immediately from the fact that there can be no point of A between qk−1 and
pk; the proof of (5.6) is similar.

For uniqueness, suppose that (p̂k)k∈Z and (q̂k)k∈Z satisfy (5.2)–(5.6), and let

P̂ = {p̂k | k ∈ Z} and Q̂ = {q̂k | k ∈ Z}. From (5.3) and (5.5) we see that P̂ ⊂ A

and Q̂ ⊂ B. Now note that, for any k, (5.4) implies that no point of A can belong to
(q̂k−1, p̂k); this immediately yields p̂k ∈ P . Similarly, (5.6) implies that q̂k ∈ Q, so

that P̂ ⊂ P and Q̂ ⊂ Q. But now we may again use A ∩ (q̂k−1, p̂k) = ∅ to conclude
that no point of P , and hence by (5.2) no point of Q, can lie in (q̂k−1, p̂k); similarly,

no point of P or Q can lie in (p̂k, q̂k), so that P = P̂ and Q = Q̂. □
In our next result we record some trivial consequences of Lemma 5.2.

Lemma 5.3. If p and q are as in Lemma 5.2 then for any k ∈ Z we have
(a) h∗(pk + 2) = h∗(pk) − 4/3, (b) h(qk + 1) = h(qk) + 1, (c) h∗(qk) ≤ h∗(pk + 2),
and (d) h(pk+1) ≥ h(qk + 1).

Proof. Observe first that η(pk + 1) = η(pk + 2) = 1, for otherwise h(pk + 2) ≥
h(pk), contradicting (5.3); this gives (a). Similarly, η(qk + 1) = 0, since otherwise
h∗(qk + 1) < h∗(qk), contradicting (5.5), and this implies (b). (c) is an immediate
consequence of (5.5) and (5.6), and (d) of (5.4). □

We now turn to the dynamics. We fix an initial configuration η0, with density
ρ satisfying 1/2 < ρ < 2/3 (see (1.1)); this then evolves via ηt+1 = U (i)ηt and
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ht+1 = U (i)ht. Let At, Bt, Pt, Qt, at, bt, pt and qt denote the sets and sequences
obtained from ht as in the definitions above.

Remark 5.4. Before giving any further proofs we give a brief qualitative description
of the evolution of ht; a key role is played by the lines Lk, L

∗
k of Figure 2. During

the evolution, the point (pt,k, h(pt,k)) travels to the left along Lk, moving either zero
or two lattice sites at each time step and stopping just short of the intersection with
L∗
k. Similarly, (qt,k, ht(qt,k)) travels up and to the left along L∗

k, zero or three lattice
sites at each time step, and stops just short of intersection with Lk+1 (h∗t (qt,k) is
constant during this evolution). The precise limiting values p∞,k and q∞,k are given
in (5.13) and (5.14) below. After these special points have reached their limiting
positions the profile may continue to evolve between them, eventually reaching a
limiting position everywhere. In the region between p∞,k and q∞,k, the limiting
configuration has the form 0 1 1 0 1 1 · · · and h∞ has average slope −1/3, while
between q∞,k−1 and p∞,k the form is 1 0 1 0 · · · and h∞ is essentially flat. The
limiting configuration for the initial condition of Figure 2 is shown in Figure 3.

Figure 3. Portion of final height profile for the initial profile of
Figure 2, with the final pk and qk values.

Next we show that (with appropriate indexing) the points (pt,k, ht(pt,k)) and
(qt,k, h

∗
t (qt,k)) move during the evolution as described in Remark 5.4.

Lemma 5.5. The sequences pt and qt may be indexed so that for all t ≥ 0,

(pt+1,k, ht+1(pt+1,k)) = (pt,k, ht(pt, k)) or (pt,k − 2, ht(pt, k)),(5.7)

(qt+1,k, h
∗
t+1(qt+1,k)) = (qt,k, h

∗
t (qt, k)) or (qt,k − 3, h∗t (qt, k)).(5.8)

In particular, for each k ∈ Z the sequences (pt,k)
∞
t=0 and (qt,k)

∞
t=0 are nonincreasing

and the sequences (ht(pt,k))
∞
t=0 and (h∗t (qt,k))

∞
t=0 constant.
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Proof. Examination of the action of the dynamics near the pk and qk suggests that
appropriate indexing will yield pt+1,k = p′k and qt+1,k = q′k, where

p′k =

{
pt,k, if ηt(pt,k + 1:pt,k + 3) = 1 1 0,

pt,k − 2, if ηt(pt,k + 1:pt,k + 3) = 1 1 1,
(5.9)

q′k =

{
qt,k, if ηt(qt,k + 1:qt,k + 2) = 0 1,

qt,k − 3, if ηt(qt,k + 1:qt,k + 2) = 0 0,
(5.10)

(in each case the given possibilities are exhaustive). To verify this, and hence prove
the result (for one sees easily that ht+1(p

′
k) = ht(pt,k) and h∗t+1(q

′
k) = h∗t (qt,k))

it suffices, by the uniqueness in Lemma 5.2, to check that (p′k) and (q′k) satisfy
(5.2)–(5.6).

Now (5.2)–(5.6) imply that if p′k = pt,k − 2 then either q′k−1 = qt,k−1 − 3 or
qt,k−1 ≤ pt,k − 3, and that if q′k = qt,k − 3 then either pt,k ≤ qt,k − 4 or pt,k = qt,k − 3

but p′k = pt,k − 2; (5.2) for (p′k) and (q′k) follows. To continue, recall that the U (i)

dynamics takes place in two steps, with the usual F-TASEP dynamics, at which let
us say ht(i) becomes H(i), followed by a two-site translation to the left (we also
write H∗(i) = H(i) + i/3). Now for i > pt,k, H(i) ≤ ht(pt,k), with equality only
if i = pt,k + 2 and ηt(pt,k + 1:pt,k + 3) = 1 1 0, and it is precisely in this case that
i becomes p′k after the translation. Thus (5.3) is satisfied for p′k. (5.5) for q′k is
checked similarly.

One can check (5.4) and (5.6) considering separately the various cases of (5.9) and
(5.10). To illustrate, consider (5.6) when p′k = pt,k−2 and q′k = qt,k. If pt,k ≤ i ≤ qt,k
and h∗t (i) = h∗(qt,k) then from (5.6) at time t necessarily η(i− 1: i+ 1) = 1 1 0, so
that H∗(i) = h∗t (i) + 2, and this with (5.5) implies that H∗(i) ≥ h∗t (qt,k) + 2/3 for
pt,k ≤ i ≤ qt,k + 2. After the translation step this becomes H∗(i) ≥ h∗t (qt,k) for
p′k ≤ i ≤ q′k, verifying (5.6) in this case. □

Theorem 5.6. For each i, k ∈ Z, ηt(i), ht(i), pt,k, and qt,k are eventually constant.
If we denote these limiting values by η∞(i), h∞(i), p∞,k, and q∞,k, then p∞ and
q∞ are the sequences obtained from h∞ as in Definition 5.1, and η∞ is given by

η∞(q∞,k−1 + 1:p∞,k) = 0 1 0 1 . . . 0 1 0,(5.11)

η∞(p∞,k + 1:q∞,k) = 1 1 0 1 1 . . . 0 1 1.(5.12)

Moreover,

p∞,k = q0,k − 3(h0(p0,k)− h0(q0,k)) + 4,(5.13)

q∞,k = p0,k+1 − 3(h∗0(p0,k+1)− h∗0(q0,k)) + 3.(5.14)

We can summarize the theorem thus: the final configuration η∞ has the form

(5.15) η∞ = · · · (0 1)nk(0 1 1)mk(0 1)nk+1(0 1 1)mk+1 · · · ,

with

(5.16)
2nk = p∞,k − q∞,k−1 − 1 = 3(h∗0(q0,k)− h∗0(q0,k−1)),

3mk = q∞,k − p∞,k + 1 = 3(h0(p0,k+1)− h0(p0,k)).

These results are illustrated in Figure 4.
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Figure 4. Illustration of equations (5.11), (5.12), and (5.15).

Proof of Theorem 5.6. The nonincreasing sequences (pt,k)
∞
t=0 and (qt,k)

∞
t=0 are clearly

bounded below, since, for example,
(
qt,k, ht(qt,k)

)
must remain on the line L∗

k, and
by (5.4) must stay below Lk. Thus the limits p∞,k and q∞,k exist and will be at-
tained by some finite time. Suppose that t is a time for which qt,k−1, pt,k, and qt,k
have reached their limiting values.

To establish (5.11), note first that if ηt satisfies (5.11) then this will remain true
as t increases. Moreover, if (5.11) does not hold (for ηt) then by (5.4) we must have
that

(5.17) ηt(q∞,k−1 + 1:p∞,k + 3) = · · · 0 0 (10)j 1 1 0
for some j ≥ 0. But then ηt+1 must either satisfy (5.11) or be of the form (5.17)
with j replaced by some j′ ≥ j + 1. Thus (5.11) must be attained in finite time.
(5.12) is obtained similarly, with (5.17) replaced by

(5.18) ηt(p∞,k + 1:q∞,k + 2) = · · · 1 1 1 (011)j 0 1.
Finally, it follows from (5.11) that q∞,k = i+ 3, where i is the site at which the

lines L∗
k−1 and Lk intersect, and this is just (5.14). Similarly, (5.12) implies that

p∞,k = i′ + 4, with i′ is the intersection of Lk and L∗
k, yielding (5.13). □

5.2. An initial Bernoulli distribution. We again take up the case in which the
initial configuration η0 is distributed according to the Bernoulli measure µ(ρ), now
with 1/2 < ρ < 2/3, and ask for the distribution of the final configuration η∞,
which we will obtain from the joint distribution of the random variables nk and mk

of (5.15) (once these are precisely defined—compare Theorem 3.2). Note that these
variables are expressed in (5.16) as functions of the initial configuration; we will
hence in this section refer to properties of the initial configuration only, and write
simply η, h, pk, and qk rather than η0, etc. While the process . . . , nk,mk, nk+1 . . .
is not Markovian, we will show that one may define a “hidden” Markov process,
determined by the initial configuration, such that the variables nk and mk are
functions of the variables of that process.

To obtain a well-defined labeling of the points of P and Q we introduce V :=
{η ∈ Xρ | 0 ∈ P (η)}, defining p0(η) = 0 for η ∈ V and labeling the remaining points
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of P (η) and Q(η) to satisfy (5.2). We write µ for the measure µ(ρ) conditioned on
V . We also decompose Xρ as Xρ = X−

ρ × X+
ρ , where X−

ρ ⊂ {0, 1}Z− is the set

of configurations α : Z− → {0, 1} which satisfy limN→∞(N + 1)−1
∑0

i=−N α(i) =

ρ, and X+
ρ ⊂ {0, 1}N is the set of configurations β : N → {0, 1} which satisfy

limN→∞N−1
∑N

i=1 β(i) = ρ. We correspondingly write η ∈ Xρ as (η−, η+).
Now suppose that F ⊂ V is an event, with µ(F ) > 0, specifying an arbitrary

amount of information about η− and the pk, h(pk), qk, and h(qk) for k < 0, including

in particular the values of q−1 = q̃ and h∗(q−1) = h̃∗, while F0 ⊂ V specifies only

q−1 = q̃ and h∗(q−1) = h̃∗ (note that the nonlocality in Definition 5.1 means that
η− does not determine the pk and qk, k < 0). Clearly from (5.3) and (5.5), and
the fact that p0 = h(p0) = 0 on V , the occurrence of either F or F0 implies that I
occurs, where

(5.19) I (= Ih̃∗) := {η | h(i) < 0 and h∗(i) > h̃∗ for all i ≥ 1}.

The next result gives the basic Markovian property of the pk’s and qk’s.

Lemma 5.7. The distribution of η+ when conditioned on F is the same as when
conditioned on F0. Moreover, this distribution is explicitly given by the marginal of
µ(ρ) on X+

ρ , conditioned on I.

In preparation for the proof we make a preliminary definition: for α ∈ X−
ρ we

adapt Definition 5.1 to define A′(α) := {a ≤ 0 | h(a) > supa<r≤0 h(r)}, B′(α) :=
{b < 0 | h∗(b) < infb<r≤0 h

∗(r)} (so that 0 ∈ A′(α), 0 /∈ B′(α)) and obtain P ′(α) and
Q′(α) from A′(α) and B′(α) in parallel with Definition 5.1; we index the elements
of these sets as (p′k)k≤0 and (q′k)k<0, with p′0 = maxP ′(α). We view P ′(η−) and
Q′(η−) as approximations to P (η) ∩ Z− and Q(η) ∩ Z− which depend only on η−.
But we have

Lemma 5.8. If η ∈ V then P ′(η−) = P (η) ∩ Z− and Q′(η−) = Q(η) ∩ Z−.

Proof. Clearly B(η) ∩ Z− ⊂ B′(η−) for all η ∈ X and if η ∈ V then A′(η−) =
A(η) ∩ Z−. We index the points of A(η) and A′(η−) so that a0 = a′0 = 0. Then
q−1(η) = min

(
B(η) ∩ (a−1, a0)

)
and since, by (5.6), h∗(r) ≥ h∗(q−1) for a−1 ≤ r <

q−1, B
′(η−) ∩ (a−1, q−1) = ∅. From this we find easily that B′(η−) ∩ (−∞, q−1] =

B(η) ∩ (−∞, q−1] and the result follows. □

Proof of Lemma 5.7. Without loss of generality we may assume that F has the form
V ∩GL ∩HN , where GL specifies η(i) for −L ≤ i ≤ 0 and HN specifies (pk, h(pk))
for −N ≤ k ≤ 0 and (qk, h

∗(qk)) for −N ≤ k < 0, and in particular requires that

p0 = h(p0) = 0, q−1 = q̃, and h∗(q−1) = h̃∗. We claim that F = GL ∩ H ′
N ∩ I,

where H ′
N gives the same specification to the p′k(η

−) and q′k(η
−) that HN gave to

the pk and qk. Assuming this, for J an arbitrary event depending only on η(i) for

i ≥ 1 we have, using first F ⊂ V and then µ(ρ)(F ) = µ(ρ)(GL ∩ H ′
N )µ(ρ)(I) and

µ(ρ)(J ∩ F ) = µ(ρ)(GL ∩H ′
N )µ(ρ)(J ∩ I),

(5.20) µ(J | F ) = µ(ρ)(J | F ) = µ(ρ)(J | I),

which is the desired conclusion.
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To verify that F = GL ∩ H ′
N ∩ I we observe first that if η ∈ F then (5.3) and

(5.5) imply that η ∈ I; moreover, by Lemma 5.8, η ∈ H ′
N ; thus F ⊂ GL ∩H ′

N ∩ I.
Conversely, if η ∈ GL ∩ H ′

N ∩ I then η ∈ I implies that 0 ∈ A(η) and, with
q̃ ∈ B′(η−), that q̃ ∈ B(η). Moreover, from η ∈ H ′

N it follows that 0 ∈ P ′(η−), and
with η ∈ I and q̃ ∈ Q′(η−) this implies that η ∈ V ; from this, GL ∩H ′

N ∩ I ⊂ F is
immediate. □

A similar result holds with the roles of the pk and qk interchanged. Let V ∗ :=
{η ∈ Xρ | 0 ∈ Q(η)}, index the points of P and Q on V ∗ via q0(η) = 0 and (5.2),

and let µ∗ be µ(ρ) conditioned on V ∗. Suppose that F ∗ ⊂ V ∗ is an event, with
µ(F ∗) > 0, specifying an arbitrary amount of information about η− and the pk,
h(pk), qk, and h(qk) for k < 0, including in particular the values of p−1 = p̂ and

h(p−1) = ĥ, while F ∗
0 ⊂ V specifies only p−1 = p̂ and h(p−1) = ĥ. The occurrence

of either F ∗ or F ∗
0 implies that I∗ occurs, where

(5.21) I∗ (= I∗
ĥ
) := {η | h∗(i) > 0 and h(i) < ĥ for all i ≥ 1}.

The proof of the next result is parallel to that of Lemma 5.7.

Lemma 5.9. The distribution of η+ when conditioned on F ∗ is the same as when
conditioned on F ∗

0 . Moreover, this distribution is explicitly given by the marginal of

µ(ρ) on X+
ρ , conditioned on I∗.

We next turn to the definition of the Markov process. Let (Yj)j∈Z be the sequence
of random variables on V which take values in Z2 and are defined for k ∈ Z by

(5.22)
Y2k =

(
pk − qk−1, h(pk)− h(qk−1)

)
,

Y2k+1 =
(
qk − pk, h(qk)− h(pk)

)
,

This definition seems to single out p0 (among the points of P ∪Q) to play a special
role, but the next lemma shows that this is not really the case.

Lemma 5.10. (a) Fix k ∈ Z and define the variables Y ′
j , j ∈ Z, on V by

Y ′
j = Yj+2k. Then the joint distribution of (Y ′

j )j∈Z is the same as that of

(Yj)j∈Z.
(b) Suppose that (Y ∗

j )j∈Z is defined on V ∗ by replacing Y by Y ∗ in (5.22). Then

(Y ∗
j )j∈Z and (Yj)j∈Z have the same joint distribution.

Proof. For (a) it suffices to show that the distribution of τ−pkη, the configuration
seen from pk, is the same as µ itself. But this measure is

µ(ρ)(V )−1
∑
i∈Z

τ−i
∗ µ(ρ)

∣∣
V ∩{pk=i} = µ(ρ)(V )−1

∑
i∈Z

µ(ρ)
∣∣
τ−i(V ∩{pk=i})

= µ(ρ)(V )−1µ(ρ)
∣∣∪

i∈Z τ−i(V ∩{pk=i})

= µ(ρ)(V )−1µ(ρ)
∣∣
V
= µ.

Replacing pk by qk in the above, and in the last line V by V ∗ and µ by µ∗ =
µ(ρ)(V ∗)−1µ(ρ)

∣∣
V ∗ , we obtain (b). □

Theorem 5.11. (Yj)j∈Z is a Markov process.
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Proof of Theorem 5.11. We discuss first the transition from Y0 to Y1. Observe that
if η ∈ V then Y1(η) is determined by Y0(η) =

(
−q−1(η),−h(q−1)

)
and η+, for

certainly B(η) ∩ (0,∞) is determined by η+ and then since p0(η) = 0, q0(η) =
min (B(η) ∩ (0,∞)). But by Lemma 5.7 no knowledge of Yj , j < 0, can affect the
distribution of η+ determined by Y0; this is the Markov property. Lemma 5.10(a)
then implies that transitions from Y2k to Y2k+1, k ∈ Z, are all Markovian. That the
transitions from Y2k−1 to Y2k are also Markovian follows from Lemma 5.10(b) and
an argument on V ∗ similar to the above. □

There are two transition matrices for this Markov process, for odd and even
steps respectively. These can be expressed in terms of combinatorial quantities
en,ma,b which generalize the Catalan and Fuss-Catalan numbers encountered earlier

(although we don’t have closed-form expressions for these quantities). Here a, m,
and n are integers, with a ≥ −1 and n ≥ 0, and b is of the form 2l/3 with l
an integer (see (2.12.ii)) and b ≤ 4/3. en,ma,b counts the number of (partial) height

profiles h : {0, . . . , n} → Z, with h(i + 1) − h(i) = ±1 for i = 0, . . . , n − 1, which
satisfy

(5.23) h(0) = 0, h(n) = m, and b− i

3
≤ h(i) ≤ a, 1 ≤ i ≤ n.

Note that if b ≤ −2n/3, so that the left-hand inequality in (5.23) is satisfied for

all possible h, then e2n,00,b = cn, and similarly that for a ≥ n, e3n,−n
a,0 = dn (see (3.3)

and (4.2)). Thus ea,b is a generalization of the Catalan and Fuss-Catalan sequences
which allows for appropriate upper and lower bounds on the profiles. Note that if
we consider these profiles as arising from configurations in {0, 1}{1,...,n} and weight
these configurations with a Bernoulli product measure of density ρ then the set of
configurations counted by en,ma,b has probability fn,ma,b := en,ma,b ρ

(n−m)/2(1− ρ)(n+m)/2.

We calculate the transition matrix M0 from Y0 to Y1 (which is the matrix for

any transition Y2n → Y2n+1) by taking Y0 = (−q̃,−h̃∗+ q̃/3) and using the marginal

on X+
ρ of the conditional measure µ(ρ)(· | Ih̃∗); to obtain the matrix M1 for the

transition from Y1 to Y2 (or Y2n+1 → Y2n+2) we take Y1 = (−p̂,−ĥ) and use the

marginal on X+
ρ of µ(ρ)(· | I∗

ĥ
). To compute the normalization µ(ρ)(Ih̃∗) we note that

a partial profile h(i)ni=1 obeys the bounds defining Ih̃∗ and passes through (n,m) iff

it satisfies (5.23) with a = −1 and b = h̃∗ + 2/3. Thus there are en,m−1,h̃∗+2/3
such

profiles; each has probability ρ(n−m)/2(1− ρ)(n+m)/2 so that

(5.24) µ(ρ)(Ih̃∗) = lim
n→∞

−1∑
m=h̃∗+2/3−n/3

fn,m−1,h̃∗+2/3
.

To obtain µ(ρ)(I∗
ĥ
), note that the restrictions corresponding to the bounds defining

I∗
ĥ
are given by (5.23) with a = ĥ− 1 and b = 2/3, so that

(5.25) µ(ρ)(I∗
ĥ
) = lim

n→∞

ĥ−1∑
m=2/3−n/3

fn,m
ĥ−1,2/3

.
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We can now write down the transition matrixM0
y0,y1 for the transition Y0 → Y1

(and any Y2n → Y2n+1). Set y0 = (−q̃,−h̃∗ + q̃/3) as above and y1 = (q′, h′), and

note that M0
y0,y1 vanishes unless h̃∗ + 2/3 − q′/3 ≤ h′ ≤ −2. When this condition

is satisfied, a configuration η+ with height function h contributes to µ(Y1 = y1 |
Y0 = y0) = µ(ρ)(Y1 = y1 | Ih̃∗) iff: (i) h reaches (q′, h′) while obeying the restrictions
specified by (5.23) with the replacements n → q′, m → h′, a → −1, and b →
h′ + q′/3, and (ii) h satisfies h(i) ≤ −1 and h∗(i) ≥ h′ + q′/3 + 2/3 for i ≥ q′ + 1,
that is, the tail of h is a translate of a profile contributing to I∗−h′ (see (5.25) and

preceding discussion). Thus if h̃∗ + 2/3− q′/3 ≤ h′ ≤ −2,

(5.26) M0
y0,y1 =

f q
′,h′

−1,h′+q′/3 µ
(ρ)(I∗−h′)

µ(ρ)(Ih̃∗)
=
f
y1,1,y1,2
−1,y1,2+y1,1/3

µ(ρ)(I∗−y1,2)

µ(ρ)(I−y0,2−y0,1/3)
.

A similar calculation gives the matrix for transitions Y1 → Y2 (and any Y2n+1 →
Y2n+2); taking y1 = (−p̂,−ĥ) and y2 = (p′′, h′′) we see thatM1

y1,y2 vanishes unless

2− p′′/3 ≤ h′′ ≤ ĥ− 1, and when this is satisfied,

(5.27) M1
y1,y2 =

fp
′′,h′′

h′′,2/3 µ
(ρ)(I−h′′−p′′/3)

µ(ρ)(I∗
ĥ
)

=
f
y2,1,y2,2
y2,2,2/3 µ(ρ)(I−y2,2−y2,1/3)

µ(ρ)(I∗−y1,2)
.

Although we have not provided a very explicit expression for the transition
probability for the Markov chain, we can more explicitly characterize this pro-
cess as a Gibbs state. Consider for example the probability that Yn = yn for
−2N + 1 ≤ n ≤ 2N , given that Y−2N = y−2N . It follows from (5.26) and (5.27)
(and even more directly from the successive bounds on the height function h im-
plied by the history of the Markov chain) that this probability is given (somewhat
formally) by

(5.28)

M0
y−2N ,y−2N+1

M1
y−2N+1,y−2N+2

· · ·M0
y2N−2,y2N−1

M1
y2N−1,y2N

= Z−1 exp

(
−

N−1∑
n=−N

(
v0(y2n, y2n+1) + v1(y2n+1, y2n+2)

))
,

where Z = µ(ρ)(I−y−2N,2−y−2N,1/3)/µ
(ρ)(I−y2N,2−y2N,1/3) and

v0(y2n, y2n+1) =


− log f

y2n+1,1,y2n+1,2

−1,y2n+1,2+y2n+1,1/3
,

if −y2n,2 +
2− y2n,1 − y2n+1,1

3
≤ y2n+1,2 ≤ −2,

∞, otherwise;

v1(y2n+1,2n+2) =


− log f

y2n+2,1,y2n+2,2
y2n+2,2,2/3 ,

if 2− y2n+2,1

3
≤ y2n+2,2 ≤ −y2n+1,2 − 1,

∞, otherwise.

The two-sided conditional probability that Yn = yn for −2N+1 ≤ n ≤ 2N−1, given
that Y−2N = y−2N and Y2N = y2N , is then given by the same formula (5.28), with
Z now a normalizing constant. We can argue similarly for all two-sided conditional
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probabilities, and we thus see that our Markov chain is a Gibbs state with interaction
potentials given by v0 and v1.

Remark 5.12. Numerical simulations of the model in the intermediate density
region show convincingly that the two-point function g(k) in the final state satisfies

an analogue of Theorems 3.6(b) and 4.3(d): for any n ≥ 0,
∑6

i=1 g(6n + i) = 6ρ2.
We conjecture that this is in fact true, but have no proof at the moment.

Acknowledgments: We thank Ivan Corwin and Pablo Ferrari for helpful com-
ments. The work of JLL was supported by the AFOSR under award number
FA9500-16-1-0037.

Appendix A. Generating functions

Our goal is to calculate the generating function G(z) :=
∑∞

n=1 g(n)z
n of the

two-point function in the low density region; the generating function GT (z) of the
truncated two-point function (see Lemma 3.7 and its proof) is then given by GT (z) =
G(z)− ρ2z/(1− z). We will use the quantities

ψ(n) = cnρ
n(1− ρ)n+1, Ψ(u) =

∑
n≥0

ψ(n)un =
2(1− ρ)

1 +
√
1− 4ρ(1− ρ)u

,(A.1)

θ(n) =
∑
m≥n

ψ(m), Θ(u) =
∑
n≥0

θ(n)un =
1− uΨ(u)

1− u
(A.2)

λ(n) =
∑
m≥n

θ(m), Λ(u) =
∑
n≥0

λ(n)un =
Θ(1)− uΘ(u)

1− u
.(A.3)

Here (A.1) is obtained from a standard formula for Catalan series, see e.g. [17].
In obtaining (A.2) we have used Ψ(1) = 1, which follows from (A.1) or from the
normalization of the distribution (3.4). From (A.1)–(A.3) we further obtain

(A.4) Θ(1) = λ(0) =
1− ρ
1− 2ρ

, λ(1) = Θ(1)− 1 =
ρ

1− 2ρ
.

Now write g(n) =
∑

m≥0 gm(n), where gm(n) is the contribution to g(n) from
configurations in which m points of P , say p1 < p2 < · · · < pm, lie between sites
0 and n; note that gm(n) = 0 unless m and n have the same parity. We let
p0 = −(2n0 +1) be the largest point of P to the left of 0, and pm+1 be the smallest
point of P to the right of n. We first consider the special case m = 0; with n = 2l
and p1 = 2n1, n1 > l, we have

(A.5) g0(n) = (1− 2ρ)
∑
n0≥0

∑
n1≥l+1

ψ(n0 + n1) = (1− 2ρ)λ(l + 1),

and then, using (A.4)

(A.6)
∑
l≥1

g0(2l)z
2l =

1− 2ρ

z2

(
Λ(z2)− z2ρ

1− 2ρ
− 1− ρ

1− 2ρ

)
.
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Now we turn to the case m ≥ 1, writing p1 = 2n1 with n1 ≥ 1, pj−pj−1 = 2nj+1
for j = 2, . . . ,m, n− pm = 2l+1, and pm+1− pm = 2nm+1 +1 with nm+1 > l. The
contribution to gm(n) for fixed p1, . . . , pm is

(1− 2ρ)

∑
n0≥0

ψ(n0 + n1)

 m∏
j=2

ψ(nj)

 ∑
nm+1≥l+1

ψ(nm+1)


= (1− 2ρ)θ(n1)

m∏
j=2

ψ(nj)θ(l + 1).(A.7)

Multiplying (A.7) by zn and summing over n and n1, . . . , nm, and then over m,
yields

(A.8)
∑
m≥1

∑
n≥1

gm(n)zn = (1− 2ρ)

(
Θ(z2)− 1

)2
z(1− zΨ(z2))

.

The generating function G(z) is the sum of (A.6) and (A.8).
From the formulas above it is clear that the possible singularities of G(z) are at

z = α0 := (4ρ(1− ρ))−1/2, where Ψ(z2) is singular, and at the unique root z = 1 of
zΨ(z2) = 1; this uniqueness may be verified, for example, from the fact [17] that Ψ
satisfies Ψ(u) = 1 − ρ + uρΨ2(u). (There is also a singularity at z = 0, but Ψ(u)
as defined in (A.1) is clearly regular at u = 0; this singularity lies on the second
sheet.) A straightforward calculation shows that G(z) has a simple pole at z = 1,
with residue ρ2, and this pole is removed in passing to GT (z) via

(A.9) GT (z) = G(z)− ρ2z

1− z
.

Thus GT (z) is analytic for |z| < α0 (see Theorem 3.7).

Remark A.1. If one writes G(z) = Geven(z) + Godd(z), where Geven and Godd

are respectively even and odd in z, then one finds that Geven(z) + zGodd(z) =
2ρ2z2/(1− z2). This is an independent proof of Theorem 3.6(b).

Appendix B. A semi-infinite system

Consider again the system at low density. In Section 3.2 we introduced the event
F := {η0 | 0 ∈ P (η0)}, where P (η0) was defined in (3.1); F is invariant under the
F-TASEP dynamics and, under that dynamics on F , no particles jump from site 0
to site 1. Thus the behavior of the system on N, conditioned on the occurrence of
F , is independent of the system to the left of the origin and so is equivalent to the
dynamics of a semi-infinite system on N, with a boundary condition given by an
extra site at 0 which is always empty. It is this semi-infinite system that we study
here, and in fact, for this system, our arguments apply at all densities.

In this appendix only we write X = {0, 1}N, define τ : X → X to be the left
shift operator, τ(xη) = η for x = 0, 1, and say that a measure µ on X is τ -
invariant if µ(τ−1(A)) = µ(A) for any measurable A ⊂ X; we define the density
for such a measure to be ρµ = µ(η(i)) for any i ∈ N. As usual we let ηt denote the
configuration at time t, under the F-TASEP evolution with boundary condition as
described above, when the initial configuration is η0.
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Theorem B.1. If µ is a τ -invariant measure on X and n ∈ N is odd then for all
t ≥ 0, µ(ηt(n)) = ρµ.

Note that Theorem B.1 generalizes Theorem 3.6(a) in two ways: it is valid for an
arbitrary τ -invariant initial measure, and the result holds at all times, not just in
the final state, i.e., not just for η∞. By taking µ to be the Bernoulli measure µ(ρ)

and considering the t→∞ limit we obtain a new proof of the earlier result.
We begin by introducing two distinct “coarse grainings” π1, π2 : X → {0, 1, d}N.

For the first, π1(η)(i) = x if η(2i−1) = η(2i) = x (where x = 0, 1) and π1(η)(i) = d
if η(2i− 1) 6= η(2i); for the second, π2(xη) = π1(η) for x = 0, 1 (here the symbol d
stands for “different”).

Lemma B.2. Suppose that η0 ∈ X and for x ∈ {0, 1} let ζ0 = xη0. Then for any
t ≥ 0, π1(ηt) = π2(ζt).

Proof. If ζt = xηt for all t, which certainly holds if x = 0, then the result is
immediate. We consider then x = 1 and suppose that there is a time t∗, which we
take to be minimal, such that ζt∗ 6= 1ηt∗ . We will show that then for all n ≥ 1,
π1(ηt)(n) = π2(ζt)(n) for all t ≥ 0 and all η0 ∈ X. The case n = 1 is easily verified;
we proceed by induction, assuming that the result is true for n. Now necessarily
ηt∗−1(1 :2) = 1 0, ζt∗−1(1 :3) = 1 1 0, and ζt∗(2 :3) = 0 1, ζt∗(i) = (1ηt∗)(i) for

i ≥ 4. Writing η̂0 := τ2ηt∗ and ζ̂0 := τ2ζt∗ we thus have that ζ̂0 = 1η̂0. Since

τ2ηt∗+t = η̂(t) and τ2ζt∗+t = ζ̂(t), it follows from the induction hypothesis that
π1(ηt)(n+ 1) = π2(ζt)(n+ 1). □

Proof of Theorem B.1. The result is immediate for n = 1. Now observe that for
x = 0, 1 and n odd,

(B.1) µ
(
ηt(n :n+ 1) = xx

)
= µ

(
ηt(n+ 1:n+ 2) = xx

)
.

For if η0 ∈ X and ζ0 = yη0 then from Lemma B.2, ηt(n :n+ 1) = xx if and only
if ζt(n+ 1:n+ 2) = xx, and (B.1) follows from the τ -invariance of µ. But (B.1)
implies that the distribution of (ηt(2n − 1), ηt(2n), ηt(2n + 1)) is symmetric under
the exchange of the first and last variables. From this, and the n = 1 result the
general case follows by induction. □
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